61 V β^- decay (48.3 ms) 2014Su07,2005Ga01

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2019			

Parent: ⁶¹V: E=0.0; $J^{\pi}=(3/2^{-},5/2^{-})$; $T_{1/2}=48.3$ ms *10*; $Q(\beta^{-})=1199\times10^{1}$ *89*; $\%\beta^{-}$ decay=100.0 ⁶¹V- J^{π} , $T_{1/2}$: From Adopted Levels of ⁶¹V.

⁶¹V-Q(β⁻): 11987 890 from mass excess (⁶¹V)=-30510 890 (2017Wa10) and measured mass excess (⁶¹Cr)=-42496.5 18 (2018Mo14). 2017Wa10 give 11970 900.

⁶¹V-Q(β^{-}): From 2017Wa10.

2014Su07: ⁶¹V beam produced from fragmentation of 120 MeV/nucleon ⁷⁶Ge beam on ⁹Be target, followed by mass separation by A1900 separator at NSCL-MSU accelerator facility. The resulting cocktail ion beam was transported to the Beta Counting System and implanted into a 1-mm-thick double-sided silicon strip detector. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin using SeGA array. Deduced levels J, π , estimate of $\%\beta^-n$ Comparisons made with shell-model calculations.

2005Ga01: ⁶¹V produced in fragmentation of ⁷⁶Ge³⁰⁺ beam on ⁵⁸Ni target. LISE3 achromatic spectrometer used to separate fragments; magnetic rigidity was tuned to optimize transmission of ⁶²V and ⁶⁴Cr fragments. Transmitted nuclei were identified by three consecutive Si detectors where two served for energy loss and time-of-flight measurements while the last determined their residual energies. Measured E γ , I γ , I β , $\gamma\gamma$, $\beta\gamma$ coin, γ (t), lifetimes with four Ge detectors placed around a thick Si telescope. Half-lives determined by fitting procedures involving five parameters: half-lives of mother, daughter and grand-daughter nuclei, the β -efficiency and the background rate over the 1 s collecting time. Tentative levels at 97, 310, 450 and 1027 proposed in 2005Ga01, all but the 310 level have been confirmed by 2014Su07.

2003So02: same method of 61 V production as in 2005Ga01. measured half-life of 61 V decay and probability of delayed-neutron decay from the observation of 2⁺ to 0⁺ transition in 60 Cr.

1999So20 (also 2001So07 and 1999Le67): ⁶¹V produced in the fragmentation of 60.4 MeV/nucleon ⁸⁶Kr beam with ⁵⁸Ni target; LISE3 spectrometer at GANIL facility. Measured half-lives of decays of ⁶¹V and ⁶¹Cr.

Theoretical calculations: 1995Ri05 Shell model calculations (predicted spin, binding energy, mass defect). All data are from 2014Su07.

Energy balance cannot be deduced since the decay scheme is most likely incomplete.

⁶¹Cr Levels

No evidence was found for isomeric states in 61 Cr based on $\gamma\gamma$ -coin data.

A tentative 310-keV level proposed by 2005Ga01 is not confirmed by 2014Su07; it is omitted here.

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0	(5/2 ⁻)	237 ms 11	Possible configuration= $\nu 5/2[303]$ of $f_{5/2}$ orbital or $\nu 1/2[301]$ of $p_{1/2}$ orbital. From likelihood of β feeding to the ground state, the former configuration is favored by $2005Ga01$.
70.8 <i>3</i>	(3/2,5/2,7/2)		
97.41 <i>23</i>	(3/2, 5/2, 7/2)		
224.1 4			
401.8 5			
450.6 <i>3</i>			
564.4 5			
631.7 8			
715.9 4			
773.7 4			
1026.6 3			
1222.0 5			
2061.9 5			
2261.4 6			

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

⁶¹V $β^-$ decay (48.3 ms) 2014Su07,2005Ga01 (continued)

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Comments
$(9.7 \times 10^3 \ 9)$	2261.4	2.5 8	
$(9.9 \times 10^3 \ 9)$	2061.9	2.2 7	
$(1.08 \times 10^4 \ 9)$	1222.0	1.4 3	
$(1.10 \times 10^4 \ 9)$	1026.6	8.4 8	$I\beta^{-}$: other: <14 (2005Ga01).
$(1.12 \times 10^4 \ 9)$	773.7	3.2 7	
$(1.13 \times 10^4 \ 9)$	715.9	6.1 8	
$(1.14 \times 10^4 \ 9)$	631.7	1.7 7	
$(1.14 \times 10^4 \ 9)$	564.4	1.5 4	
$(1.15 \times 10^4 \ 9)$	450.6	5.7 7	$I\beta^{-}$: other: <17 (2005Ga01).
$(1.16 \times 10^4 \ 9)$	401.8	1.7 5	
$(1.18 \times 10^4 \ 9)$	224.1	7.1 11	
$(1.19 \times 10^4 \ 9)$	97.41	10 6	
$(1.19 \times 10^4 \ 9)$	70.8	6.0 12	
$(1.20 \times 10^4 \ 9)$	0.0	<40	$I\beta^-$: estimated by 2014Su07.

[†] Apparent β feedings deduced from intensity balances. Since the decay scheme is considered as incomplete, true β feedings cannot be determined, thus no log *ft* values are deduced.

[‡] Absolute intensity per 100 decays.

$\gamma(^{61}\mathrm{Cr})$

Iγ normalization: Absolute intensities/100 decays of 61 V are given in 2014Su07. Based on observation and absolute intensity of the 644-keV transition in 60 Cr, $\%\beta^-$ n>10 is estimated by 2014Su07.

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult.	$\alpha^{\#}$	Comments
70.8 3	9.3 8	70.8	(3/2,5/2,7/2)	0.0	(5/2 ⁻)	D	0.083 18	Mult.: from Weisskopf estimates and non-observation of a long lifetime for 71-keV level. Additional information 1.
97.7 3	24.9 8	97.41	(3/2,5/2,7/2)	0.0	(5/2 ⁻)	D,M1+E2	0.24 21	$\alpha(exp)=0.17$ 13 (2014Su07) Additional information 2. Mult.: from Weisskopf estimates, and observation of no time delay between the 127- and 98-keV γ rays within the experimental detection limit of \approx 150 ns.
126.7 3	8.1 5	224.1		97.41	(3/2,5/2,7/2)	[D,E2]	0.09 8	Additional information 3.
331.0 4	1.7 5	401.8		70.8	(3/2,5/2,7/2)			Additional information 4.
353.6 [†] 5	1.2 4	450.6		97.41	(3/2,5/2,7/2)			Additional information 5.
407.6 7	1.7 7	631.7		224.1				
450.5 <i>3</i>	4.5 5	450.6		0.0	(5/2 ⁻)			Additional information 6.
467.0 <i>4</i> x576.7 <i>4</i>	1.5 <i>4</i> 0.7 <i>3</i>	564.4		97.41	(3/2,5/2,7/2)			
645.0 8	1.0 4	715.9		70.8	(3/2, 5/2, 7/2)			
676.4 6	0.9 4	773.7		97.41	(3/2,5/2,7/2)			

Continued on next page (footnotes at end of table)

$^{61}\mathbf{V}\,\beta^-$ decay (48.3 ms) 2014Su07,2005Ga01 (continued)

$\gamma(^{61}Cr)$ (continued)

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
715.9 <i>4</i> 773.7 <i>4</i>	5.1 6 2.3 5	715.9 773.7		0.0	$(5/2^{-})$ $(5/2^{-})$	Additional information 7.
929.4 4 1026.3 4 1151.2 4 1964.5 4 2164.0 5	3.7 5 4.7 6 1.4 3 2.2 7 2.5 8	1026.6 1026.6 1222.0 2061.9 2261.4		97.41 0.0 70.8 97.41 97.41	$\begin{array}{c} (3/2,5/2,7/2)\\ (5/2^-)\\ (3/2,5/2,7/2)\\ (3/2,5/2,7/2)\\ (3/2,5/2,7/2)\\ (3/2,5/2,7/2)\end{array}$	Additional information 8. Additional information 9. Additional information 10.

[†] Observed only in $\gamma\gamma$ -coin.

[‡] Absolute intensity per 100 decays.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

61 V β^- decay (48.3 ms) 2014Su07,2005Ga01

