62Ni(d, 3 He) 1984Ma60

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Kazimierz Zuber, Balrai Singh	NDS 125, 1 (2015)	25-Jan-2015			

1984Ma60: E=78 MeV. Measured $\sigma(E(^3He))$, $\sigma(\theta)$ $\theta(lab)=7.5^{\circ}-32.8^{\circ}$ with magnet spectrometer of QQDDQ system, $\Delta E-E$ detectors, FWHM=25 keV. Enriched to 96.64% Ni target. DWBA analysis, shell-model, particle-vibration-model calculations. Summed C²S: 5.6 for $1f_{7/2}^{-1}$ with centroid at 470 keV, 0.7 for $2p_{3/2}^{-1}$ with centroid at 1200 keV, 1.5 for $2s_{1/2}^{-1}$ with centroid at 2240 keV, 3.6 for $1d_{3/2}^{-1}$ with centroid at 3560 keV.

61 Co Levels

E(level)	${ m J}^\pi$	L^{\dagger}	$C^2S^{\#}$	Comments
0	7/2-‡	3	4.47	
1028 5	3/2-‡	1	0.59	
1619 5	- /	3	0.44	C^2S : for L+1/2.
1888 <i>5</i>		3	0.21,0.12	
1953 <i>5</i>		1	0.06,0.05	
2238 5		0	1.50	
2313 5		1	0.08,0.06	
2354 5		3	0.25,0.15	
2448 5		3	0.11,0.06	
2499 5		$(2,3)^{\textcircled{0}}$	0.05,0.03	$S=0.04$ for $7/2^-$ and 0.08 for $5/2^-$.
2574 5		2 3	1.35,0.90	
2893 5		3	0.19,0.11	
3026 5		2	0.20,0.14	
3218 5		2	0.37,0.25	
3421 5		(5)	0.09,0.20	
3491 5		3	0.29,0.16	
3599 <i>5</i>		(0,3) ^{&} 3	0.09	$S=0.14$ for $7/2^-$ and 0.24 for $5/2^-$.
3800 <i>5</i>		3	0.15,0.09	
3889 <i>5</i>		2	0.24,0.16	
4002 5		$(0,3)^{\&}$	0.08	$S=0.12$ for $7/2^-$ and 0.22 for $5/2^-$.
4159 5				
4267 5		$(0,3)^{\&}$	0.08	$S=0.13$ for $7/2^-$ and 0.23 for $5/2^-$.
4382 5		2	0.33,0.22	
4455 5		2	0.37,0.25	
4656 <i>5</i>		2	0.41,0.27	
4753 <i>5</i>		2 2	0.23,0.15	
4990 5			0.12,0.08	
5061 5		$(2,3)^{\textcircled{0}}$	0.11,0.07	$S=0.10$ for $7/2^-$ and 0.18 for $5/2^-$.
5150 5		$(2,3)^{\&}$	0.09,0.06	$S=0.07$ for $7/2^-$ and 0.13 for $5/2^-$.

[†] From DWBA analysis of $\sigma(\theta)$.

[‡] From Adopted Levels.

[#] From $(d\sigma/d\Omega)\exp[NC^2S/(2J+1)](d\sigma/d\Omega)_{dw}$, N=2.363. When two values are listed, first corresponds to L-1/2 and the second to L+1/2.
@ $\sigma(\theta)$ is fitted somewhat better with L=2 transfer.

[&]amp; $\sigma(\theta)$ is fitted somewhat better with L=3 transfer.