⁵⁸Ni(³He,nγ) 1989Sc28,1974Ka24

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012	

E(³He)=8, 12 MeV. Neutron singles, γ singles, $n\gamma$, $\gamma\gamma$, and $n\gamma\gamma$, $n\gamma(\theta)$ (1989Sc28).

E(³He)=10 MeV. γ singles and n γ spectra (1974Ka24).

The heavy-ion reaction ${}^{40}Ca({}^{23}Na,p2n\gamma)$ with $E({}^{23}Na)=70$ MeV showed appreciable strength but no spectroscopic information (1989Sc28).

⁶⁰Zn Levels

No measurable half-life observed, 1 ps<T_{1/2}<1 ns (1989Sc28).

E(level)	$J^{\pi \dagger}$	Comments
0.0	0+‡	
1004.1 5	2+ [‡]	
2193.3 7	4+ [‡]	
3035.1 12		
3510.6 8	$(3^+)^{\ddagger}$	J^{π} : $2^{(+)}$, $4^{(+)}$ from ny angular correlation.
3627.2 12		
3812.2 12		
3972.7 10	2	
4200.2 11	$5^{(+)}$	
4351.3 12	$5^{(+)}$	
4776.3 12	$5^{(+)}$	
4913.5 11		
5337.5 12	$3^{(+)}, 4^{(+)}$	
5503.8 14		
6639.4 11		
7372.8 23	4	
8702.4 14		

[†] Spin from n γ angular correlation, π from multipolarity of decay γ , except as noted.

[‡] From Adopted Levels.

Ι_γ@ Mult.& δ& α^{\dagger} Comments E_i(level) E_{γ} J_f^{π} J_i^{π} \mathbf{E}_{f} 2^{+} 1004.2[#] 5 1004.1 100 $0.0 \ 0^+$ 4^{+} 1189.4[#] 5 100 1004.1 2+ 2193.3 1004.1 2+ 3035.1 2031 1 100 (3^{+}) 2193.3 4+ 3510.6 1318 1 12 1004.1 2+ α =0.000596 *12*; α (K)=4.17×10⁻⁵ *6*; 2506 1 (M1+E2) 0.000596 12 88 -3 1 α (L)=4.13×10⁻⁶ 6; α (M)=5.91×10⁻⁷ 9; α (N+..)=0.000549 11 $\alpha(N)=2.40\times10^{-8}$ 4; $\alpha(IPF)=0.000549$ 11 3627.2 2623 1 100 1004.1 2+ 3812.2 2808 1 1004.1 2+ 100 3510.6 (3+) 3972.7 2 462^{*a*} 1 6 1780 *1* 14 2193.3 4+ 1004.1 2+ 2968 2 10

 $\gamma(^{60}\text{Zn})$

Continued on next page (footnotes at end of table)

⁵⁸Ni(³He,n γ) 1989Sc28,1974Ka24 (continued) $\gamma(^{60}$ Zn) (continued) Ι_γ@ α^{\dagger} δ& E_{γ} Mult.& E_i(level) \mathbf{E}_{f} J_{c}^{π} Comments 3972.7 3971 2 70 $0.0 \quad 0^+$ 2 5⁽⁺⁾ 690^a 1 3510.6 (3+) 4200.2 33 2006.8[#] 10 67 2193.3 4+ (M1+E2) +4 2 0.000380 10 $\alpha = 0.000380 \ 10;$ $\alpha(K) = 6.18 \times 10^{-5} 10;$ α (L)=6.13×10⁻⁶ 10; $\alpha(M) = 8.78 \times 10^{-7} 14;$ α(N+..)=0.000311 9 $\alpha(N)=3.56\times10^{-8}$ 6; α (IPF)=0.000311 9 $5^{(+)}$ $\alpha = 0.000444$ 7; $\alpha(K) = 5.42 \times 10^{-5}$ 4351.3 2158 1 100 2193.3 4+ 0.000444 7 (M1+E2) +3.558; $\alpha(L)=5.37\times10^{-6}$ 8; $\alpha(M) = 7.69 \times 10^{-7} 11;$ α(N+..)=0.000384 6 $\alpha(N)=3.12\times10^{-8}$ 5; α (IPF)=0.000384 6 5⁽⁺⁾ α =0.00060 4; α (K)=3.91×10⁻⁵ 4776.3 2583 1 100 2193.3 4+ (M1+E2) <+4.5 0.00060 4 8; $\alpha(L)=3.87\times10^{-6}$ 8; $\alpha(M) = 5.55 \times 10^{-7} 11;$ α (N+..)=0.00055 4 $\alpha(N)=2.25\times10^{-8}$ 5; α (IPF)=0.00055 4 1403 1 3510.6 (3+) 4913.5 28 72 1004.1 2+ 3909 2 $3^{(+)}, 4^{(+)}$ 3510.6 (3⁺) 5337.5 1827 *I* 65 0.000287 24 $\alpha = 0.000287 \ 24;$ (M1+E2) $\alpha(K)=7.21\times10^{-5}$ 19; $\alpha(L)=7.16\times10^{-6}\ 20;$ $\alpha(M) = 1.03 \times 10^{-6} 3;$ α(N+..)=0.000207 22 $\alpha(N) = 4.16 \times 10^{-8} 11;$ α (IPF)=0.000207 22 δ : if J_f=4, then J_i=3 (or 4) with $\delta = -1.05$ (or 0.02); if J_f=2, then $J_i=3$ and $\delta=-0.5$ 1. 1004.1 2+ 4333 2 35 3972.7 2 5503.8 1531 *I* 100 6639.4 1726 *1* 19 4913.5 4200.2 5(+) 2439 1 47 3510.6 (3⁺) 3129 2 34 7372.8 4 3400 2 100 3972.7 2 8702.4 $2063 \ 1$ 70 6639.4 4200.2 5⁽⁺⁾ $4502 \ 2$ 30

[†] Additional information 1.

[‡] From 1989Sc28, except as noted. ΔE not given, estimated by the evaluator.

[#] From 1974Ka24.

[@] Relative branching from each level.

& From ny angular correlation analysis. $\Delta \pi$ =no assumed from large δ values (1989Sc28).

^a Placement of transition in the level scheme is uncertain.

3