Adopted Levels, Gammas Type Author Citation Literature Cutoff Date Full Evaluation Balraj Singh ENSDF 27-May-2014 $Q(\beta^{-})=10910 SY$; S(n)=4760 SY; S(p)=19320 SY; $Q(\alpha)=-10860 SY$ 2012Wa38 $Q(\beta^-)$, S(n), S(p), $Q(\alpha)$: systematic uncertainties given by 2012Wa38: 550, 643, 780, 780, respectively. S(2n)=7360~640, S(2p)=34990~860, $Q(\beta^-n)=7430~530~(2012Wa38)$, values from systematics). 1997Be70: ⁶²V first identified in ⁹Be(²³⁸U,F), E=750 MeV/nucleon, U beam of 2x10⁷ ion/s at GSI facility, identification by energy loss and time-of-flight. 2003So02: produced in 76 Ge $^{30+}$ on 58 Ni, E=61.8 MeV/nucleon. Identification via energy loss, tof. Observed strong 646 γ in 60 Cr via a β^- decaying 60 V isomer. See also 2005Ga01, 2003So21, 2005GaZR (thesis), and 2002MaZN (thesis) from the GANIL experimental group. 2011Da08: ⁶⁰Ti produced in the fragmentation of 57.8 MeV/nucleon. 86Kr beam impinged on 50 mg/cm² thick tantalum target using LISE-2000 spectrometer at GANIL facility. Detector system included a three-element Si-detector telescope containing a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Product identified by mass, atomic number, charge, energy loss and time of flight. Measured half-life. 2014Ga07: E(⁶¹V)=90.0 MeV/nucleon beam from Coupled Cyclotron Facility at NSCL-MSU. Secondary ⁶¹V beam produced in ⁹Be(⁸²Se,X),E=140 MeV/nucleon primary reaction followed by fragment separation by A1900 fragment separator. Secondary ⁹Be target=376 mg/cm² thick located at target position of S800 magnetic spectrograph. Measured Eγ, Iγ, γγ-coin, and (⁶⁰Ti)γ-coin using GRETINA array of 36-folded segmented HPGe detectors arranged in 58° and 90° geometry. Gamma-ray energies were deduced from Doppler- corrected spectra. Deduced levels, J, π. Comparison of level structure in ⁶⁰Ti with shell-model calculations. Others: Nuclear Structure. Theory: 2013Xu01, 2012Ch48, 2012Ca30, 2008Gu03, 2008Ob01, 2005Ch12, 2005Ho32. Additional information 1. # ⁶⁰Ti Levels #### Cross Reference (XREF) Flags A $${}^{9}\text{Be}({}^{61}\text{V},{}^{60}\text{Ti}\gamma)$$ | E(level) [†] | J^{π} | T _{1/2} | XREF | Comments | |-----------------------|--------------------|------------------|------|---| | 0.0 | 0+ | 22 ms 2 | A | $\%\beta^-$ =100; $\%\beta^-$ n=?; $\%\beta^-$ 2n=?
$T_{1/2}$: weighted average of 22.4 ms 25 (2011Da08, from time correlation between implantation and β -ray events), and 22 ms 2 (2005Ga01, 2003So21).
Theoretical $\%\beta^-$ n=1.62, $\%\beta^-$ 2n=0 (1997Mo25). | | 850 5 | $(2^+)^{\ddagger}$ | | Α | | | 1716 7 | $(4^+)^{\ddagger}$ | | A | | [†] Levels are from 2014Ga07. [‡] From systematics of even-even nuclei, and comparison with shell-model calculations. ## Adopted Levels, Gammas (continued) $$\gamma$$ (60Ti) ## **Adopted Levels, Gammas** #### Level Scheme Intensities: Relative photon branching from each level