⁶⁰Co β⁻ decay (1925.28 d)

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012

Parent: ⁶⁰Co: E=0.0; $J^{\pi}=5^+$; $T_{1/2}=1925.28$ d 14; $Q(\beta^-)=2822.8$ 2; $\%\beta^-$ decay=100.0

Based on an evaluation by R. G. Helmer, January 1998 including some general comments from previous evaluation (1993Ki10). This evaluation was done as part of a collaboration of evaluators from Laboratoire National Henri Becquerel (LNHB) in France; Physikalisch-Technische Bundesanstalt (PTB) in Germany; HMS Sultan and AEA Technology in the United Kingdom; Khlopin Radium Institute (KRI) in Russia; Centro de Investigaciones Energeticas, Medioambientales, y Tecnologicas (CIEMAT) and Universidad Nacional a Distancia (UNED) in Spain; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho National Engineering and Environmental Laboratory (INEEL) in the United States. See also: 1999BeZQ, 1999BeZS.

⁶⁰Co generally from ⁵⁹Co(n,γ). Measured Eγ, Iγ with Compton suppression spectrometer, Ge(Li) and NaI detectors (1976Ca18). Measured Eβ, Iβ, Eγ with magnetic spectrometer, Ge(Li) detector (1968Ha03). Measured γ(θ) from ⁶⁰Co polarized in Fe by low-temperature techniques with Ge(Li) and NaI detectors (1980Kr05). Measured γγ(t) with combined plastic-NaI detectors and centroid shift technique (1976Kl04). Measured Eβ in iron-free spectrometer (1968Wo02). For β(θ) emitted from polarized ⁶⁰Co, see 1980Ch14. For γγ(θ) measurements, see 1969Kh11. Measured Iγ by detecting neutrons from the d(γ,n) reaction caused by the 2505 γ-ray (1978Fu05).

For K-shell ionization in the β^- decay of ⁶⁰Co, see 1983Ki04.

Others: 2008Sy01, 2006Pa20, 2004Ge20, 2004Ka07, 2003Lu04, 1983La06, 1982Er10, 1977Lo01, 1976Bo16, 1976Hu09, 1973Fu15, 1972Le14, 1970Wa19, 1970Di01, 1970Ri20, 1969Va20, 1969Ra23, 1961Ca05, 1956Wo09, 1954Ke04.

Decay scheme is internally consistent since the total decay energy computed from this scheme is 2821.0 2 keV compared to the Q value of 2822.8 2.

1998Ku24: measured "Near-Zero Energy" electrons (distribution, peak= 0.2 eV, FWHM=1 eV) intensity=0.14 per β^- decay. 2010Wa40: measured β - asymmetry by polarizing a ⁶⁰Co source using a low-temperature nuclear orientation method.

⁶⁰Ni Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0+	stable	The β^- feeding of this level is a unique 4 th forbidden transition. From the systematics (1998Si17), the log <i>ft</i> of this transition will be >23 and the corresponding intensity will be <1.0x10 ⁻¹⁰ %.
1332.508 <i>4</i> 2158.612 <i>21</i>	2^+ 2^+	0.9 ps 3	$T_{1/2}$: from $\gamma\gamma(t)$ by 1976K104.
2505.748 4	4+	3.3 ps 10	$T_{1/2}$: see Adopted Levels.

[†] From ⁶⁰Ni Adopted Levels.

β^{-} radiations

E(decay)†	E(level)	Iβ ^{−‡}	Log ft	Comments
317.88 10	2505.748	99.88 <i>3</i>	7.512 2	av $E\beta=95.77$ 15 I β^- : from 100.00 - I ₈₋ (1332) - I ₈₋ (2158).
670 [#] 20	2158.612	0.000 2	≥14.0 ² <i>u</i>	$I\beta^{-1}$: from the log <i>ft</i> systematics (1998Si17), the lowest log <i>ft</i> values for unique second forbidden decays are 13.86 for ¹⁰ Be and 14.36 and 14.61 for higher masses. For a reasonable lower limit of 14.4 for the log <i>ft</i> for this transition, the β intensity would be less than 0.001%. Therefore, the evaluator has assigned the most probable value as 0.000 with an uncertainty of 0.002
1492 20	1332.508	0.12 3	14.70 ² <i>u</i> 11	assigned the most produce value as 0.000 with an uncertainty of 0.002. av $E\beta$ =625.87 21 I β ⁻ : average of measured values of 0.15 1 (1954Ke04), 0.010 2 (1956Wo09), 0.12 (1961Ca05), and 0.08 2 (1968Ha03).

$^{60}{\rm Co}\,\beta^-$ decay (1925.28 d) (continued)

β^- radiations (continued)

[†] From 1968Ha03, except as noted.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{60}\text{Ni})$

A possible γ of 467 keV with I γ <0.0004% (1969Va20) and <0.00023 (1976Ca18) from the known level at 2626 keV to the 2158 level is not included here. At the lower intensity limit, the I $_{\beta}$ to the 2626 level would be <0.001%.

E_{γ}^{\ddagger}	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	E_f J	$\frac{\pi}{f}$	Mult. [@]	$\delta^{\mathbf{@}}$	α^{\dagger} &	Comments
347.14 7	0.0075 4	2505.748	4+	2158.612 2	+	[E2]		0.00557 8	α =0.00557 8; α (K)=0.00499 7; α (L)=0.000503 7; α (M)=7.06×10 ⁻⁵ 10; α (N+)=2.90×10 ⁻⁶ 4 α (N)=2.90×10 ⁻⁶ 4 I _y : from consideration of <0.005 (1955Wo44), 0.0078 12 (1969Va20), <0.006 (1970Di01), 0.00758 50 (1976Ca18), and 0.0069 10 (1977Lo01).
826.10 <i>3</i>	0.0076 8	2158.612	2+	1332.508 2	2+]	M1+E2	+0.9 3	0.000337 18	α =0.000337 <i>18</i> ; α (K)=0.000303 <i>17</i> ; α (L)=2.97×10 ⁻⁵ <i>17</i> ; α (M)=4.18×10 ⁻⁶ <i>23</i> ; α (N+)=1.80×10 ⁻⁷ <i>1</i> α (N)=1.80×10 ⁻⁷ <i>10</i> I _y : from 1976Ca18; others: 0.0055 <i>47</i> (1969Va20) and 0.003 2 (1972Le14)
1173.228 3	99.85 <i>3</i>	2505.748	4+	1332.508 2	2+]	E2(+M3)	-0.0025 22	0.0001722 25	α=0.0001722 25; α(K)=0.0001500 21; α(L)=1.465×10 ⁻⁵ 21; α(M)=2.06×10 ⁻⁶ 3 α(N)=8.88×10 ⁻⁸ 13; α(IPF)=5.42×10 ⁻⁶ 8 I _γ : from I _γ (1173)=(I _β -(2505) - I _γ (347)[1.0+α(347)] - I _γ (2505)[1.0+α(2505)]) / [1.00+α(1173)+α _π (1173)]= 99.87 3 / 1.000174 4. δ: from 1980Kr05. α: from 1985HaZA evaluation of measured values; from theory (1976Ba63) α=1.65x10 ⁻⁴ , α _K =1.50x10 ⁻⁴ , and α _L =1.48x10 ⁻⁵ 4. α: α _π =6.2*10 ⁻⁶ 7 interpolated from theoretical values of 1979Sc31; this value is negligible since it is only about 5% of the corresponding α.
1332.492 4	99.9826 6	1332.508	2+	0.0 0)+]	E2		0.0001625 23	α=0.0001625 23; α(K)=0.0001137 16; α(L)=1.108×10 ⁻⁵ 16; α(M)=1.560×10 ⁻⁶ 22 α(N)=6.73×10 ⁻⁸ 10; α(IPF)=3.61×10 ⁻⁵ 5 I _γ : from I _γ (1332)=(100.00 - I _γ (2158)[1.0+α(2158)] - I _γ (2505)[1.0+α(2505)]) / [1.00+α(1332)+α _π (1332)]= 99.9988 2 / 1.000162 6. In the evaluation 1991BaZS, this is computed in the same fashion, but is given as 99.983% 6; the origin of the larger uncertainty is not clear. α: α and α _K from 1985HaZA evaluation of measured values; from theory (1976Ba63) α=1.25x10 ⁻⁴ , α _K =1.14x10 ⁻⁴ , and α _L =1.13x10 ⁻⁵ . α: α _π =3.4*10 ⁻⁵ 4 interpolated from theoretical values of 1979Sc31; 3.0×10 ⁻⁵ 3 (1994GrZW).

ω

γ ⁽⁶⁰ Ni) (continued)							
E _γ ‡	I_{γ} # <i>a</i>	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	$a^{\dagger \&}$	Comments
158.57 3	0.0012 2	2158.612	2+	0.0 0+	[E2]	0.000439 7	α =0.000439 7; α (K)=4.45×10 ⁻⁵ 7; α (L)=4.32×10 ⁻⁶ 6; α (M)=6.08×10 ⁻⁷ 9; α (N+)=0.000390 6 α (N)=2.64×10 ⁻⁸ 4; α (IPF)=0.000389 6 I _γ : from consideration of 0.0012 2 (1955Wo44), <0.002 (1969Ra23), 0.0092 16 (1970Di01), 0.0005 2 (1972Le14), 0.0020 13 (1973Fu15), and 0.00111 18 (1976Ca18).
505.692 5	2.0×10 ⁻⁶ 4	2505.748	4+	0.0 0+	E4	8.63×10 ⁻⁵ 12	$\begin{aligned} &\alpha = 8.63 \times 10^{-5} \ I2; \ \alpha(\text{K}) = 7.76 \times 10^{-5} \ I1; \ \alpha(\text{L}) = 7.58 \times 10^{-6} \ I1; \\ &\alpha(\text{M}) = 1.069 \times 10^{-6} \ I5; \ \alpha(\text{N}+) = 4.62 \times 10^{-8} \ 7 \\ &\alpha(\text{N}) = 4.62 \times 10^{-8} \ 7 \\ &I_{\gamma}: \text{ from consideration of } <4x10^{-5} \ (1970\text{Di}01), \ 9x10^{-6} \ 7 \ (1973\text{Fu}15), \\ &<1x10^{-3} \ (1977\text{HaXC}), \ 2.0x10^{-6} \ 4 \ (1978\text{Fu}05), \ \text{and} \ 5.2x10^{-6} \ 20 \\ &(1988\text{Se}09). \end{aligned}$

values, the input to this fit included 346.93 7 (1978Ca18 where the authors average their result and that of 1969Va20); 826.06 [from ⁵⁹Co(p, γ)⁶⁰Ni (1975Er05)]; 2158.57 *10* [from ⁵⁹Co(p, γ) (1975Er05)]. Other measured γ energies include: 346.95 *10* (1969Va20)], 826.18 *20* (1969Va20), 826.28 *9* (1976Ca18, but includes value of 1969Va20), 2158.8 4 (1970Di01), 2158.9 2 (1969Ra07), and 2159.6 8 (1969Ho22).

[#] I(K x ray)=0.0112 computed from decay scheme.

[@] From ⁶⁰Ni Adopted gammas, except as noted.

[&] Interpolated using program BRICC, unless otherwise noted.

^{*a*} Absolute intensity per 100 decays.

4

⁶⁰₂₈Ni₃₂-4

$\frac{60}{\text{Co}}\beta^{-}\text{ decay (1925.28 d)}$

Decay Scheme

