Adopted Levels, Gammas

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Update	E. Browne, J. K. Tuli		1-Dec-2013

 $Q(\beta^{-}) = -6128.0 \ 16$; $S(n) = 11387.73 \ 5$; $S(p) = 9532.38 \ 20$; $Q(\alpha) = -6291.0 \ 3$ 2012Wa38

Datasets given as xref=k and l, both from XUNDL, based on 2013Sc08 and 2013Sc20⁶⁰Ni3c were included after the publication of this evaluation in Nuclear Data Sheets. This dataset has been revised accordingly.

Nuclear Structure.

2012Bh08, 2012Ca27, 2012Do04, 2012Gu16, 2012Ni03, 2011Gu20, 2011Kh10, 2011Mi12, 2011Ni21, 2011Qu04, 2010Gu13, 2010So04, 2010Lo03, 2009Ku13, 2008Ma17, 2006An27, 2003Sa08, 2002Be59, 2002De27, 2002Ma64. Level energies and densities. 2011Ba39, 2011Be41, 2011Bh06, 2011Na02, 2007Te10, 2004Sa40, 2003Na24, 2003Pe07, 2002No08. Compilations of B(E2) values: 2012Go17, 2012Pr08. Mass measurements: 2007Gu09, 2005Gu36, 2004He32. Nuclear Reactions: 2012Fu04, 2012Sc01, 2011Ch57, 2011Gu15, 2010Gu03, 2010Pr07, 2008Av03, 2007Po09, 2005Ha54. ⁶⁰Ni(d,d): 2012Ku21, 2006Ch28. ⁶⁰Ni(p,p'): 2011Mu10, 2010Be11, 2009Ku13, 2008Li05, 2004Ko34, 2002Sa49. ⁶⁰Ni(³He, ³He): 2010Ha19. 60 Ni(α, α'): 2010Sa34, 2006Lu01. ⁶¹Ni(p,d): 2009Le14. ⁶⁰Ni(¹⁷O,¹⁷O'): 2006Ha54, 2006Lu08. ⁶⁰Ni(¹⁸O,¹⁸O'): 2009Pe14, 2002Al01, 2002Ro29. ⁶⁰Ni(n,n): 2006Hu14. ⁵⁹Co(d,p): 2007Vo08. ⁵⁸Ni(¹⁸O,¹⁶O): 2006Pe02, 2005Al03, 2002Al01. Discovery of ⁶⁰Ni: 2012Ga06. 1998Go18: Measured photon rates and energy spectra from radiative muon capture.

 56 Fe(α,γ): 1974Fo03 for splitting of GDR, 1978KeZQ threshold effects.

Some L-values and arguments for J^{π} assignments

	L(p.t)		γ γ li	(θ) and (θ)	d 1		
E(level)	L(t,p)	L(³ He,d)@	L(p,d)&	(⁷ Li,2r	(γq)	Other	Adopted
Target J^{π} =	0+	7/2-	3/2-		172		1
0	0	3	1 f		a,k	0+	
1332	2	1+3	1 f	2+	b	2+	
2158	2	1	3 g	2+	е	2+	
2284	0	3	1		1	0+	
2505	4	1+3	3 g	4^{+}	С	4+	
2626		1+3	3 g	3+	e	3+	
3119	4	1				4^{+}	
3124			1+3		d,h,q	2+	
3194		1+3	1+3		d,h,u	1^{+}	
3269	2		1+3		e,h	2+	
3318		1			j?,1	0+	
3393	2		1+3		e,h	2+	
3588					k?,1	0+	
3670		1	(3)	(4^{+})	m	4^{+}	
3700					р	4+	
3736		1	1+3		e,h	2+	
3875			1+3		e,h	$1^{+}, 2^{+}$	
3925		1			e	2 ⁺ ,3 ⁺	
4007			1+3		e,h,t	2+	
4020			1		d,h,t	1^{+}	
4039	3		4			3-	
4078			1+3		d,h	1^+ , 2^+	

Others:

4112 4165 4265 4319 4335 4341 4355 4341 4355 4493 4555 4548 4579 4760	(0) 2	1 1? 1+3?	1+3 1+3 1+3 1+3 1+3 1+3	5 ⁺ 6 ⁺	s,h,v e,h v,e,h d,h,p v,e,h d,h e e,h	$2^{+} 5^{+} 6^{+} 2^{+} 2^{+} 2^{-} 2^{+} 2^{+} 3^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 2^{+} 1^{+} 2^{+} 2^{+} 2^{+} 2^{+} 1^{+} 2^{+$	
			us	$\gamma(\theta)$ and in pol in			
E(level) Target J^{π} =	L(t,p) = 0 ⁺	L(³ He,d)@ 7/2 ⁻	L(p,d)& 3/2 ⁻	(⁷ Li,2npγ)	Other	Adopted
4844 4849 4958	4				e,h e	1,2 1,2,3 4 ⁺	
4985 5015	4			(6 ⁺ ,8 ⁺)	i p	(6 ⁺) (5 ⁻)	
5048 5069 5110	(1)				e,h	(1,2) (1^{-}) 8^{-}	
5120 5244	4 4				p	4^+ 4^+	
5348 5396	3			7-	р	7 ⁻ 3 ⁻ 2 ⁺	
5530 5662	(0,2)			5,7	W	(2 ⁺) 5,7	
5785 5800				(7 ⁺)	р	(7 ⁺) 2 ⁺	
6181 6331	(1)				p	5 (1 ⁻) 2 ⁺	
6810 7550				5 ⁻ ,7 ⁻ ,9 ⁻	n	5 ⁻ ,7 ⁻ ,9 ⁻ 8 ⁻	
8280 8430 8433	3				0 n	(1^+) 3^- 8^-	
8959 9208					n n	8- 8-	
11207 11620 11860	2				0	2^+ (1 ⁺) (1 ⁺)	
12333 12515					n n	8 ⁻ 8 ⁻	
13908 14817					n n	8 ⁻ 8 ⁻	
15499 16110 					n n	8 8 ⁻	
Questi @ J^{π} & J^{π} a. 0^{+} b. 1,2 c. 3 ⁻	ion marks s: of ${}^{59}Co(g.s)$ of ${}^{61}Ni(g.$ from g.s. o 2,3 from β^- 4,5,6,7 ⁻	ignify uncert s.) is 7/2 s.) is 3/2 of even-even decay of from β^- d	ain identif 2 ⁻ . 2 ⁻ . nucleus. ⁵⁶⁰ Co(2 ⁺) lecay of ⁶⁰ Co	vith logft: (5 ⁺) wit	n E(lev =7.25 6 h logft	el). 5. =7.510 1.	
e. 1,2 f. J c	2,3 from ε of transferm	decay of ⁶⁰ Cu red neutron i	1(2 ⁺) wit s 3/2 from	<pre>h 5.9<logft (pol="" p,d).<="" pre=""></logft></pre>	<7.4.		

g. J of transferred neutron is 5/2 from (pol p,d). h. Not 3^+ from γ decay to g.s. i. 8⁺ excluded from branch to 4⁺ 2505 level. j. 0⁺ from $\sigma(\theta)$ in ⁵⁶Fe(⁶Li,d). k. 0⁺ from $\sigma(\theta)$ in ⁵⁸Fe(³He,n). 1. 0^+ from pair conversion and no corresponding γ (1981Pa10). m. 4^+ from L(d, ⁶Li)=4 n. 8^- from ⁶⁰Ni(e,e'). in 60 Ni(e,e'). and $\sigma(\theta)$ o. (1⁺) from $\sigma(\theta)$ and $A(\theta)$ in ⁶⁰Ni(p,p'), (pol p,p'). p. From L(α , α') q. Not 1⁺ from γ decay from 5244, 4⁺ level. r. From $\sigma(\theta)$ in ⁶⁰Ni(π^+, π^+'), (π $(\pi^-\,,\pi^{-\prime})$. s. Not 1^+ from $\gamma~$ decay to 2506, 4^+ level. t. From (γ, γ') u. From $(n,n'\gamma)$, Hauser-Feshbach-Moldauer calculations v. γ to 4^+ w. γ to 3⁺

⁶⁰Ni Levels

For properties of 15 resonances in the range E(n)=0-18 keV from ⁵⁹Ni(n, γ), see 1981MuZQ. Level configurations given in comments are from ⁵⁸Ni(α ,²He) and ⁶⁰Ni(pol p,p') reactions.

Cross Reference (XREF) Flags

А	60 Co β^- decay (1925.28 d)	N	59 Co(α ,t)	Other	's:
В	60 Co β^- decay (10.467 min)	0	59 Co(³ He,d γ)	AA	56 Fe(16 O, 12 C)
С	60 Cu ε decay	Р	58 Ni(α ,2p γ)	AB	60 Ni(n,n' γ)
D	⁶⁰ Ni(p,p'), (pol p,p')	Q	60 Ni(e,e')	AC	60 Ni($\pi^+,\pi^+{}'$), ($\pi^-,\pi^-{}'$)
E	28 Si(36 Ar,4p γ)	R	⁶⁰ Ni(d,d'), (pol d,d')	AD	⁶⁴ Zn(d, ⁶ Li)
F	⁵⁹ Ni(n, γ) E=thermal	S	60 Ni(α, α')	AE	${}^{58}\text{Fe}({}^{16}\text{O},{}^{14}\text{C})$
G	60 Ni(p,p' γ)	Т	⁵⁶ Fe(⁶ Li,d)	AF	60 Ni(γ,γ')
Н	59 Co(p, γ)	U	56 Fe(⁷ Li,2np γ)	AG	⁶⁰ Ni(n,n')
I	28 Si(35 Cl,3p γ)	V	⁵⁸ Ni(α , ² He), (α ,2p)	AH	61 Ni(3 He, α)
J	⁵⁸ Ni(t,p), (pol t,p)	W	⁵⁸ Ni(¹² C, ¹⁰ C)	AI	⁶⁰ Ni(³ He, ³ He')
K	⁶¹ Ni(p,d), (pol p,d)	X	⁶⁰ Ni(¹⁶ O, ¹⁶ O'), (⁶ Li, ⁶ Li')	AJ	Coulomb excitation
L	62 Ni(p,t)	Y	${}^{50}Cr({}^{12}C,2p\gamma)$	AK	60 Ni(pol γ, γ'):res
М	⁵⁹ Co(³ He,d)	Ζ	$^{51}V(^{12}C,2np\gamma)$	AL	60 Ni(γ,γ'),(pol γ,γ'):XUNDL-6

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0 ^l	0+	stable	ABCDEFGHIJKLMNOPQRSTUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL
1332.514 ¹ 4	2+	0.735 ps <i>21</i>	ABCDEFGHIJKLMNOPQRSTUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL μ=+0.32 6 (2001Ke02,2011StZZ); Q=+0.03 5

(1974Le13,2011StZZ)Configuration= $(\nu p_{3/2})^2$.

T_{1/2}: From 2008Or02, recommended value based on all known measurements. T_{1/2}=0.77 4 Wt. av.: 0.90 ps +21-14 in (n,n' γ), 0.91 ps 2 from DSA in Coul. ex. (2001Ke08), 0.715 ps 16 in ⁶⁰Ni(γ , γ') (1970Me08), 0.9 ps 3 $\gamma\gamma$ (t) (1976Kl04), 0.77 ps 6 from B(E2)=0.087 7 (1974Si01), 0.73 ps 2 from B(E2)=0.0928 20 (1974Li13), 0.69 ps 5 DSA (1973Fi15).

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				 µ: other: 0.18 24 from transient field integral PAC (1978Ha13). Q: from Coulomb excitation reorientation (1989Ra17,2011StZZ). Other value: -0.104 18 from electron scattering (1972Li12).
2158.632 ¹ 18	2+	0.59 ps 17	ABCDEFGHIJKLMNOPQRSTU XYZ	XREF: Others: AA, AB, AG, AH, AJ, AK, AL $T_{1/2}$: calculated from measured B(E2) \uparrow in ⁶⁰ Ni(e,e').
2284.80 4	0^+	>1.5 ps	CD FG JKLM O RST	$T_{1/2}$: >1.0 ps (1989Ko54) in (n,n' γ). XREF: Others: AB, AG, AK, AL $T_{1/2}$: >0.69 ps (1989Ko54) in (n,n' γ).
2505.753 ^l 4	4+	3.3 ps 10	A CDEFGHIJKLMNOPQRSTUVWXYZ	XREF: Others: AA, AB, AD, AE, AG, AJ $T_{1/2}$: from Coul. ex. (2001Ke08). Others: 1.1 ps 3 from B(E4)=0.00165 30 (from (e,e'), average of 0.0015 3 (1969To08), 0.0018 3(1961Cr01)) and I γ (2506 γ)=2.0×10 ⁻⁶ 4 (1978Fu05)). Others (from DSA): 0.9 ps +12-4 (1979Mo06), 3.3 ps 5 (1975Iv04), 0.5 ps +19-3 (1973Ro20), ≤4 ps (1980Ke06), 0.4 ps +4-2 (1989Ko54). J ^{π} : configuration=((ν p _{3/2})(ν f _{5/2})).
2626.06 ¹ 5	3+	≈0.6 ps	CDEFGHIJKLM OP R U YZ	XREF: Others: AB, AG, AH $T_{1/2}$: from ≤ 0.7 ps in 56 Fe(7 Li,2np γ) and >0.5 ps in 60 Ni(p,p' γ), DSA. Other: 0.6 ps +5-3 (1989Ko54) in (n,n' γ).
3119.87 ¹ 7	4+	0.24 ps 10	EFGHIJ LMnOPQR TU WXYZ	XREF: Others: AA , AB $T_{1/2}$: from ⁵⁶ Fe(⁷ Li,2np γ), DSA; 0.04 ps <i>I</i> (1989Ko54) in (n p' γ)
3123.698 25	2+	0.23 ps +17-10	CD FG K M P S U	XREF: Others: AA, AB, AF, AK, AL $T_{1/2}$: From $(p,p'\gamma)$,
3185.98 ⁿ 6	(3 ⁺) ^{<i>k</i>}	0.14 ps 4	CdEFGHIjk no U	XREF: Others: AB $T_{1/2}$: others: 1.6 ps 7 from ⁵⁶ Fe(⁷ Li,2np γ), DSA, 0.12 ps +5-2 (1989Ko54) in (n,n' γ). J ^{π} : J ^{π} =3 ⁺ in ²⁸ Si(³⁵ Cl,3p γ), (p, γ).
3193.87 <i>3</i>	1+ k	53 fs 14	Cd FG jk M o	XREF: Others: AB, AF, AK, AL T _{1/2} : other: 19 fs 7 From ⁶⁰ Ni(γ, γ').
3269.19 10	2+	71 fs 21	CD FGH JKLM O TU	XREF: Others: AB, AF, AK, AL T _{1/2} ; other: 0.10 ps $+3-2$ (1989Ko54) in (n,n' γ).
3317.829 25	0^+	0.24 ps +28-11	DFG JMRT x	XREF: Others: AA, AB, AE, AK $T_{1/2}$: 0.10 ps 3 (1989Ko54) in (n,n' γ).
3381 <i>5</i> 3393.14 <i>3</i>	2+	0.23 ps +35-11 0.13 ps +6-4	G N R x CD FGH JKLM S	XREF: Others: AB, AK, AL XREF: S(3350).
3587.72 ^a 3	0^+	<40 ps	CD FG T	XREF: Others: AA, AB $T_{1/2}$: from ${}^{60}\text{Ni}(p,p'\gamma)$, $p\gamma(t)$.
3619.46 9 3671.16 ^m 11	3+ <i>k</i> 4+	0.2 ps +5-1 0.06 ps 4	CDEFGH K O U BCDE GHI K MNOPQ U	XREF: Others: AB XREF: Others: AA, AB $T_{1/2}$: 0.11 ps +7-3 (1989Ko54) in (n,n' γ).
3702.9 ^b 10	4+		O RS X	XREF: Others: AB J^{π} : also L(¹⁶ O, ¹⁶ O')=4 for E=3690. 6+ in (n,n' γ).
3730.82 ⁿ 8 3734.44 6	4+ <i>k</i> 2+	0.21 ps +29-9 0.11 ps 4	DE GHIjk M O C FG jkL	XREF: Others: AB XREF: Others: AB, AK $T_{1/2}$: 0.10 ps 2 (1989Ko54) in (n,n' γ).

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
3798.0 10	1	118 fs 15		XREF: Others: AL
3871.050 22	2+ k	>3.0 ps	CD FG JK	XREF: Others: AB, AK
				T _{1/2} : 0.21 ps +16-9 in (p,p' γ), 0.04 ps 1 (1989Ko54) in (n,n' γ).
3887.36 7	2+ k	0.07 ps +7-4	C FG 1	XREF: Others: AB
3895 4		59 fs 25	DG l r	
3908 <i>3</i>	1	27 fs 5		XREF: Others: AL
3925.18 9	$2^+, 3^+$	0.19 ps + 19 - 8	CD FGH M r	$T_{1/2}$: also from (p,p' γ): 0.09 ps +16-12.
4006.444 24	21	21 IS /	CD FG JK N	$\pi \pi \tau$ ($60 \pi c$ ()
				$T_{1/2}^{3,1}$ Trom (γ, γ) . $T_{1/2}^{1,2}$: 28 fs 5 (1989Ko54) in (n,n' γ), 20 fs10 in
1010 886 24	1+	$12 f_{c} 3$		$(p,p'\gamma)$. VDEE: Others: AE AV A I
4019.880 24	1	12 18 5	CD F R	The I^{π} from ⁶⁰ Ni(a, a')
4035 4		25 fs 14	G	$1_{1/2}$, J . Holli $N(\gamma, \gamma)$.
4039.89 6	3-	22 fs 10	ABCD FGH JKLM ORST VWX	XREF: Others: AA, AB
	-		·····	$T_{1/2}$: 33 fs +15-12 from (p,p' γ), 38 fs 11 in
				$(n,n'\gamma).$
4077.99 5	$1^+, 2^+$	>12 fs	CD FGH K	XREF: Others: AB
	- 1			$T_{1/2}$: 14 fs 7 (1989Ko54) in (n,n' γ).
4111.96 9	2+ 5+	0.0 /	D FG K	
4165.50 8	2.	0.8 ps 4	DE GHIKMOP U	XREF: Others: AB The form $56E_{1}/21$: Ormed) DSA 1.4 ma + 14.6
				$\Gamma_{1/2}$: from ⁵⁸ Pe($\Gamma_{1,2}$ np γ), DSA. 1.4 ps +14-6 from ⁵⁸ Ni(α ,2p γ), DSA, 0.09 ps +9-3 (1989Ko54) in (n,n' γ), DSA.
4186.19 24	(4^{+})		Е	
4191.2 <i>10</i>			D G O	
4265.00 ¹ 8	6+	0.45 ps +11-21	DE P U YZ	$T_{1/2}$: from ⁵¹ V(¹² C,2np γ), DSA. 0.5 ps 3 from ⁵⁶ Fe(⁷ Li,2np γ), DSA.
4294.5 3			D H M	
4300.8 ^b 7			0 S X	J^{π} : L(α, α')=2+4 and L(³ He,d)=1 for E=4300; L(¹⁶ O, ¹⁶ O')=4 for E=4320.
4318.58 5	2+		CD FG JK X	XREF: Others: AK
4335.52 4	2		C F	
4341 4	(0^{+})	29 fs $+31-21$	DGLN CDCW P	
4333.30 14	2	45 18 +20-10		
1400.07	5+ i			
4450 7 7	5			
4493.16 5	2+	16 fs 14	CD FG K MNO S	
4534.14 14	2+		CDFKRX	J^{π} : L(¹⁶ O, ¹⁶ O')=4 for E=4540 multiplet. G to 0 ⁺ and 4 ⁺ .
4547.96 <i>3</i>	$1^+, 2^+$		CD FG 0	
4577.45 6	2+	<18 fs	CD FG JK M	
4579.0 5	(4^{+})		E	
4613° 7	1.0		D K R	
4760.23 9	1,2	0.05 m + 6.2		
+/00 4		0.05 ps +0-5		
4//9.13 0				
4843 93 8	2+	69 fs 21		XREF: Others: AL
1010.70	-	0.7 15 21		J^{π} , $T_{1/2}$: From (γ, γ') , (pol $\gamma, \gamma')$.
4848.9 6	1,2,3		Cd Hj M QR	· · · · · · · · · · · · · · · · · · ·
4859 <i>4</i>			G X	
4891 10			D	

⁶⁰Ni Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2} #	XREF	Comments
4928.98 <i>14</i> 4953.36 <i>7</i> 4958 <i>4</i> 4970.6 <i>10</i>	4+	61 fs 21 0.06 ps +5-3	DF F DFG L DG KMO	
4986.00 ^m 8	(6 ⁺)	$1.0^{(a)}$ ps +25-7	DE HI P U W	
5014.45 8 5048 3 7	(5 ⁻) ^J		DE IJ NPRS	J ^{π} : from L(α , α')=5 but J ^{π} =4 ⁺ in (α ,2p γ). T _{1/2} : 0.21 ps +256–1 from ⁵⁸ Ni(α ,2p γ), DSA. XREF: O(2)
5010.57	1,2			J^{π} : $J^{\pi}(5050 \ 100) = 4^+, 6^+$ in (e,e').
5065.02 6	(1 ⁻)	2.98 fs 28	bDFJ T	XREF: Others: AL T _{1/2} : From (γ, γ') ,(pol γ, γ').
5091.1 <i>10</i> 5106 <i>4</i>	0-	0.03 ps +5-3	b O X DG	
$5110^{-7} 20$	8 4+		A LMNO S	
5120.7	4		F	
5133 5			DG r	E(level): 5120 keV and 5132 keV might be the same level.
5148.51 ⁿ 8	6+ J		DE I Pr	
51/4 5 5191.7 8			D G D T	XREF: I(5192).
5205 5		16 fs <i>16</i>	D G T	
5236.20 10	5 ⁽⁺⁾		Е	
5244 5 5264 ^C 10	4+	0.05 ps $+5-3$		I^{π} : I ($\alpha \alpha'$) = 2 for E = 5250
5288.55 14			DF W	J . $L(a,a) = 2$ for $L = 5250$.
5307 8			d K w	
5318 5	7-	250 21	d G	
5370 5	/	250 ps 21		$^{1}_{1/2}$: from ¹³ Fe(¹ L1,2np γ), DSA. 290 ps 50 from 51 V(¹² C,2np γ), RDM.
5396 [°] 10	3-		D J S	
5410.8 <i>10</i> 5428 <i>10</i>			O D	
5446.98 11	2^+		D FGH JKL R	E(level): 59 Co(p, γ) gives 5444.6 <i>10</i> keV.
5449.5 4	0		E DF N	
5530 4	(2 ⁺)	20 fs 14	D GH JKL	J^{π} : L(p,t)=(2) for E=5510 <i>30</i> . γ to 3 ⁺ .
5612.40 <i>4</i> 5642 ^{<i>c</i>} 10			DF S DJ T	J^{π} : L(α, α')=3 for E=5600.
5650 ⁰	7+	0.70 . 21.2	MO	
5672.36 7 5710 70 4	/ .	$0.7 \circ \text{ps} + 21 - 3$	DE I PRUX F	
5741 10			D	
5780.5 5			D GH L O	J^{π} : L(p,t)=(6) for a multiplet at 5770 <i>30</i> .
5785.1 <i>4</i> 5799 <i>4</i>	(7^+) 2 ⁺		D M U DG S	
5830.8 ^{<i>a</i>} 7 5859.9 5			DG OR DF M	
5878.05 9 5901 69 10	6-		F	
5902.44 7	0		D F N	
5918.54 <i>21</i>			DF JKL	J^{π} : L(p,t)=4 for a level at 5920 <i>30</i> .

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	S		XRE	F		Comments
5931.1 11	1	21 fs 6						XREF: Others: AL I^{π} T: α : From $(\alpha \alpha')$ (pol $\alpha \alpha')$)
5946 ^c 10 5967.8 3				D F	М	RΤ		J ,1]/2. 110iii (y,y),(poi y,y).
5973 ^c 10 5992 ^c 10 6028 10	5-			BD D	J	S		
$6054^{\circ}\ 10$ $6066.72\ 11$				D F	jК			
$6076.6^{\circ} 9$ $6111.5^{\circ} 10$ $6112.43^{n} 15$	(8) ^j 7+			D D	Ij L IJ			J^{π} : L(p,t)=(4) for E=6070 <i>30</i> . XREF: I(6112).
$6142^{\circ} 10$ $6181.0^{\circ} 7$	/ 1 ⁻	1.80 fs 28		D D	Ј ЈК	S R T		J ^{π} : L(α , α')=3 for E=6160. XREF: Others: AL
6192 ^c 10				D	K	Q		T _{1/2} : From (γ, γ') ,(pol γ, γ').
6229.3 <i>11</i>	(2 ⁺)	20 fs 4	0.023 5	A DE	лм			XREF: Others: AL J^{π} : assignment is tentative.
$6239.2 \ 5$ $6278.34 \ 11$ $6292^{\circ} \ 10$	(6 ⁻)			DE DE	L J			
6327.21 ^c 15 6362.05 ^c 17	2+			DF DF	J J	S		
6382.4 <i>4</i> 6403 ^c 10	1	12 ts 3		D F D	I.			XREF: Others: AL $T_{1/2}$: From (γ, γ') , (pol $\gamma, \gamma')$. I^{π} : L(p,t)=(3) for E=6400 30.
6431 <i>10</i>	0+ i	$1.2^{(0)}$ m $+ 16.5$		D		D		
6465.25 <i>16</i>	1-	1.2 ps +10-5 1.7 fs 5		DF	13	r	W	XREF: Others: AL $J^{\pi}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$.
6489.28 <i>22</i> 6515.0 <i>9</i>	1^{+}	3.0 fs 5		DF	N		W	XREF: Others: AL
6516.72 <i>23</i> 6551 [°] <i>10</i>				D F D	к	S		$J^{\pi}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$. J^{π} : $L(\alpha, \alpha')=3$ for E=6530.
6567.33 20 6587.6.6	1-	1 25 fs 28		D F	1			YREE Others: AI
6610 ^C 10	1	1.25 13 20		D	v	т		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
6623 <i>10</i> 6647.17 <i>9</i>				D D D F	K	1		
6658 10 6672.4 9 6687 10	(9) <i>j</i>			ע	I			
6718.5 <i>10</i>	1-	6.7 fs 13		D				XREF: Others: AL XREF: D(6708).
6736.5 10	(1)	6 fs 3		D				E(level), J^{π} , $T_{1/2}$: From (γ , γ'),(pol γ , γ'). XREF: Others: AL XREF: D(6728).
6756.4 <i>3</i> 6761.39 <i>14</i>	7 ⁽⁺⁾			D F E	N			E(level), J [*] , I _{1/2} : From (γ, γ') , (pol γ, γ').
6765 ^c 10 6791 10				DE D	L			J^{π} : L(p,t)=(3) for E=6770 30.

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF		Comments
6810.95 <i>16</i>	9- <i>j</i>	0.55 ps 28	DE	I PQ	U YZ	$T_{1/2}$: from ⁵⁶ Fe(⁷ Li,2npγ), DSA. 0.6 ps +4-2 from ⁵⁸ Ni(α,2pγ), DSA.
6834.92 ^{<i>c</i>} 19 6835.18 24			D F F	K		
6837.2 <i>3</i> 6859 ^c 10	8-	0.6 [@] ps +5-2	DE D	I P Q) T W	
6892° 10 6911.93 9	1+	1.46 fs 28	AD F			XREF: Others: AL XREF: AL(6913.7). I^{π} T ₁ /2: From $(g \gamma')$ (pol $\gamma \gamma'$).
6950.4 <i>13</i> 6996.86 <i>20</i>	(10) <i>j</i>		F	I	S	J^{π} : L(α, α')=(3,4).
7027.83 ^{<i>n</i>} 15 7038.7 7	8^+ 1 ⁻	1.3 fs 4	E			XREF: Others: AL E(level) I^{π} T ₁ /2: From $(\chi \chi')$ (pol $\chi \chi'$)
7056.27 14	j		F	I		L(10,01), ,11/2. 11011 (7,7),por 7,7).
7101.4 <i>13</i>	(10) ^j			I		
7110 ^{<i>n</i>} 30 7207.6 3 7222.80 11	0.±		F	LN Q	2 T	J^{π} : L(p,t)=(2).
7250.0 <i>4</i> 7290 <i>30</i> 7316.13 <i>16</i>	8-		E	L	ΤW	
7339.68 25 7360.97 24 7380.3 5	(8) 8 ⁺		E E			
$7414.16\ 23$ $7433.45^{m}\ 16$	9+ <i>j</i>		F E	I P		
7465.66 25 7473.49 24	(7 ⁻) 1 ⁺	2.1 fs 3	E F			XREF: Others: AL
7495.2 <i>4</i>			F			$J^{\pi}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$.
7531.4 4	8^{+}		E	N		VDEE, 0/7522)
7552.0 <i>3</i>	δ		F	NQ	l	XREF: Q(7522).
7559.5 8	1-	6.5 fs 22				XREF: Others: AL E(level),J ^{π} ,T _{1/2} : From (γ , γ'),(pol γ , γ').
≈75708 7590 50			A		T W	
7627.4 17	j			I		
7647.4 7	1-	0.27 fs 3				XREF: Others: AK, AL XREF: AK(7650). $E(lavel) I^{\pi}$ T. (a) From (a(a')) (pol a(a'))
7657.6 8	1^{+}	0.97 fs 14				E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol $\gamma, \gamma')$. XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol $\gamma, \gamma')$.
7684.1 <i>4</i> 7690.0 <i>3</i>	1-	0.208 fs 28	F F			XREF: Others: AL I^{α} T
7691.4 <i>3</i>	(9 ⁻) j			I		<i>s</i> , <i>r</i> _{1/2} . <i>r</i> ₁₀ (<i>y</i> , <i>y</i>), (por <i>y</i> , <i>y</i>).
7732.5 <i>4</i> 7747.6 <i>5</i>	8 ⁺ 1 ⁻	0.55 fs 21	E			XREF: Others: AL
7760.33 18	$8^{-}_{1^{+}}$	17 fs 4	E	I		E(level), $J^{,r}$, $I_{1/2}$: From (γ, γ') , (pol $\gamma, \gamma')$.
1101.0 J	1	1./ 13 7	r	v		y, y ,

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		X	REF			Comments
7798.9 3			F					
7813 5 13	j			т				
7818 02 13	, in the second se		F	-				
7850 3 10	1+	1 66 fs 28	1					XREF: Others: AI
7050.5 10	1	1.00 13 20						F(level) I^{π} T _{1/2} : From $(\gamma \gamma')$ (nol $\gamma \gamma'$)
7880 4 12	1+	2.6.fs.6						XREF: Others: AL
7000.112	1	2.0 15 0						E(level) I^{π} T _{1/2} : From $(\gamma \gamma')$ (nol $\gamma \gamma'$)
7926.7.17	1+	8.2 fs 36						XREF: Others: AL
,,,=0,,, 1,	-							E(level) J^{π} , $T_{1/2}$: From (γ, γ') (pol $\gamma, \gamma')$.
7950.93 24	1+	0.76 fs 14	F					XREF: Others: AL
1950.95 21	1	0.70 15 17	-					$I^{\pi} T_{1/2}$: From $(\gamma \gamma')$ (pol $\gamma \gamma'$)
7980.81 21	9+		E					· ,1/2. 11011 (7,7),(por 7,7).
8042.6.16	1+	7.7 fs 28	-					XREF: Others: AL
0012.010	1	/// 15 20						E(level) $I^{\pi} T_{1/2}$: From $(\gamma \gamma')$ (nol $\gamma \gamma'$)
2011 260 17	o-i	$0.04^{(0)}$ = + 21.4		- ·				E(10001), 3, 11/2, 110111 (7,7), (por 7,7).
8044.20° 17	9 /	0.04 ps + 51 - 4	E	I L	P			
80/4.4 4	8'	0.001 6 . 25	E					
8086.0 5	1	0.201 fs 35						XREF: Others: AK, AL
								E(level), $J^{\prime\prime}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$.
8111.8 12	1+	3.0 fs 7					W	XREF: Others: AL
								E(level), $J^{\prime\prime}$, $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8126.6 7	1-	0.45 fs 6						XREF: Others: AK, AL
								XREF: AK(8124).
								E(level), $J^{\prime\prime}$, $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8189.1 7	1	1.04 fs 21						XREF: Others: AL
								E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8261.5 8	1-	0.40 fs 6						XREF: Others: AL
								E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8272.09 19	10^{-}		E					
8286.3 <i>3</i>	(1^{+})		DF					Configuration= $((\nu f_{7/2})^{-1}(\nu f_{5/2}))1^+$.
8294.0 8	1-	0.76 fs 28						XREF: Others: AL
								E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8351.8 <i>13</i>	1^{+}	2.4 fs 6						XREF: Others: AL
								E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8359.3 15	1+	3.4 fs 11						XREF: Others: AL
								E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8389.9 4	9-		E					
8407 4	1-	6.3 fs 37						XREF: Others: AL
								E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8426.69 12	9-		E					
8430 30	3-			L				
8433 ⁱ 10	8-			L	N	0		XREF: N(8445).
8451 5 16	1	23 fs 6		-		~		XREF: Others: AK AI
0101.010	1	2.5 15 0						XREF: ak(6460)
								$F(\text{level})$ I^{π} $T_{1/2}$: From (γ, γ') (nol $\gamma, \gamma')$
8464 0 13	1-	27 fs 7						XRFF: Others: AI
0404.0 15	1	2.7 13 7						F(level) I^{π} T ₁ :: From (2, 2') (pol 2, 2')
8485 50 ^r 24	0-		F					$E((even), j, n_{1/2}, non (y, y), (por y, y)).$
8504 7 3	7		E					
8515 2 0	1-	$0.60 f_{\rm c} 14$	г					VDEE: Others: M
0313.29	1	0.09 18 14						AREP. UHEIS. AL E(lovel) π T, From $(a_1a_2^{(1)})$ (related)
	10 i	a r Ø		_				E(level), J^{-} , $I_{1/2}$: FIOIII (γ, γ), (pol γ, γ).
8521.11° <i>17</i>	10 ⁻	0.5 [∞] ps +6−2	E	I	Р		W	
8565.60 18			F					
8638.5 3			F					
8655.4 9	1-	1.32 fs 28						XREF: Others: AL
								E(level), J^{π} , $T_{1/2}$: From (γ , γ'), (pol γ , γ').

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #				XREF	-		Comments
8656.8 8	1+	0.7 fs 6							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol $\gamma, \gamma')$.
8666.21 22 8688.4 <i>13</i>	1+	2.6 fs 7		F		L			XREF: Others: AL E(avel) $V_{1}T_{1}$ + From (avel) (pol avel)
8688.92 ^m 23 8747.0 12	10^{+} 1^{-}	0.90 fs 21		E	I				E(level), $J', T_{1/2}$. From (γ, γ') , (pol $\gamma, \gamma')$. XREF: Others: AL E(level) J''_{2} T \rightarrow From (γ, γ') (pol $\gamma, \gamma')$
8768 4	1+	8 fs 8							XREF: Others: AK , AL XREF: $AK(8760)$.
8778.6 10	1+	1.25 fs 35							E(level), J^{α} , $\Gamma_{1/2}$: From (γ, γ') , (pol γ, γ'). XREF: Others: AL
8781.6 10	1-	1.25 fs 35							XREF: Others: AL $F(\text{level})$ $T_{1/2}$. From (γ, γ') (nol $\gamma, \gamma')$
8793.6 9	1^{+}	1.11 fs 35							XREF: Others: AL E(level) $J^{\pi}_{-1,2}$: From (γ, γ') .(pol $\gamma, \gamma')$.
8846.5 14	1^{+}	1.5 fs 4							XREF: Others: AL E(level) J^{π} . T _{1/2} : From (γ, γ') . (pol $\gamma, \gamma')$.
8871.7 16	1^{+}	1.6 fs 4							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol $\gamma, \gamma')$.
8890.5 12	1+	0.83 fs 21							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8924.1 10	1-	0.36 fs 6							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8959 ⁱ 10	8-	79 keV	A			N	Q		XREF: N(8994). T _{1/2} : from (α t).
9010.5 19	1-	2.1 fs 7							XREF: Others: AL E(level). J^{π} . T ₁ /2; From (γ, γ').(pol γ, γ').
9045.20 <i>24</i> 9053.3 <i>24</i>	1-	2.9 fs 12		F					XREF: Others: AL E(level). J^{π} , $T_{1/2}$: From (γ, γ') (pol γ, γ').
9060 <i>50</i> 9068.9 <i>13</i>	1+	1.04 fs 28						W	XREF: Others: AL $E(evel) I^{\pi} T_{vel}$: From (x, a') (pol $x, a')$
9076.66 <i>17</i> 9092.3 8	1-	0.132 fs 28		F					XREF: Others: AK, AL XREF: AK(9110).
9123.01 ^r 21 9132.2 15	10- 1-	0.90 fs 21		E					E(level), $J', T_{1/2}$. From (γ, γ') , (pol γ, γ'). XREF: Others: AL E(level), $J'', T_{1/2}$. From (γ, γ') (pol γ, γ').
9132.27 ⁰ 20 9149 3	11- <i>j</i> 1-	0.18 [@] ps +10-8 0.69 fs 35		E	I		Р		XREF: Others: AL E(level) J^{π} , $T_{1/2}$: From (γ, γ') (pol γ, γ').
9208 ^e 10	8-	127 keV	Α			N	Q		XREF: Q(9172). T $_{1/2}$: from (α t).
9256.0 25	1-	1.5 fs 7							XREF: Others: AL E(level) I^{π} . T ₁ α : From (γ, γ') (nol γ, γ').
9264.30 <i>24</i> 9266.5 <i>24</i>	11 ⁻ 1 ⁻	1.4 fs 7		E					XREF: Others: AL E(level) J^{π} . T ₁ α : From (γ, γ') (pol γ, γ')
9274.7 15	1	2.6 fs 19							XREF: Others: AL E(level) I^{π} T ₁ $_{2}$: From ($\gamma \gamma'$) (pol $\gamma \gamma'$)
9301.2 15	1^{+}	0.55 fs 21							XREF: Others: AL

Adopted Levels, Gammas (continued)

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
9308.3 14	1-	0.49 fs 21		E(level), XREF: (XREF: A E(level)	J ^{π} , T _{1/2} : From (γ , γ'), (pol γ , γ'). Others: AK , AL AK(9310). K ^{π} T = From (γ , γ') (pol γ , γ')
9346.82 <i>18</i> 9352.6 <i>21</i>	1-	1.9 fs 8	F	XREF: (Dthers: AL
9395.5 15	1-	0.83 fs 35		E(level), XREF: ($J^{\prime\prime}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$. Others: AL
9410.7 <i>17</i>	1-	1.2 fs 5		E(level), XREF: (E(level)	$J^{\prime}, I_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$. Others: AL J^{\prime} T, μ : From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$
9426.2 <i>4</i> 9453.1 <i>16</i>	10^+ 1 ⁺	1.0 fs 4	E	XREF: (Dthers: AL \mathbb{I}
9463.9 11	1-	0.21 fs 21		E(level), XREF: ($\mathcal{J}^{\prime}, \mathcal{I}_{1/2}$: From $(\gamma, \gamma), (\text{pol } \gamma, \gamma)$. Others: AL
9468 <i>4</i>	1^{+}	1.9 fs 12		XREF: (E(level),	Dthers: AL $\overline{\mathcal{M}}$ T, μ ; From (γ, γ) , (pol $\gamma, \gamma)$.
9504.9 17	1-	10 fs 4		XREF: (E(level),	Dthers: AL I^{T} T ₁ (2): From (γ, γ), (pol γ, γ).
9599.0 15	1-	0.62 fs 28		XREF: (E(level)	Dthers: AL $I^{\pi} T_{1/2}$: From (γ, γ') (pol γ, γ')
9622.5 ^t 8 9640.2 21	10^{-} 1^{-}	3.0 fs 26	Е	XREF: 0	$\begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
9659.3 8	1-	0.049 fs 14		E(level), XREF: (XREF: A	J ^{π} ,T _{1/2} : From (γ , γ'),(pol γ , γ'). Others: AK, AL AK(9663).
9665.67 ^v 22	10+		E	E(level),	$J^{\pi}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$.
9701.4 15	1-	0.8 fs 5		XREF: 0 E(level),	Others: AL $J^{\pi}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$.
9714.9 <i>4</i> 9718.27 <i>22</i>	(10 ⁺) 11 ⁻		E E		
9721.0 18	1-	1.2 fs 8		XREF: C E(level),	Others: AL $J^{\pi}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$.
9751.5 23	1-	4.2 fs <i>35</i>		XREF: C E(level),	Others: AL $J^{\pi}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$.
9760.42 <i>24</i> 9774.8 <i>20</i>	11- 1-	1.9 fs 14	E	XREF: (E(level),	Dthers: AL $J^{\pi}, T_{1/2}$: From $(\gamma, \gamma'), (\text{pol } \gamma, \gamma')$.
9807.5 19	1-	1.6 fs 10		XREF: C E(level)	Dthers: AL $I^{\pi} T_{1/2}$: From $(\gamma \gamma')$ (nol $\gamma \gamma'$)
9831 4	1 ⁺	1.3 fs 6		XREF: (F(level)	Dthers: AL $I^{\pi} T_{1/2}$: From (γ, γ') (pol γ, γ')
9832.0 21	1-	1.3 fs 6		XREF: (E(level)	Dthers: AL $I^{\pi} T_{1/2}$: From (γ, γ') (pol γ, γ')
9871.3 20	1-	0.8 fs 6		XREF: (E(level),	Dthers: AL I^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9887.9 <i>4</i> 9893.5 <i>17</i>	10 ⁺ 1 ⁻	0.49 fs 28	E	XREF: (E(laval)	Dthers: AL \mathbb{I}^{T} T: α : From (α, α') (pol $\alpha(\alpha')$)
9953.7 <i>3</i> 9960.14 ^r 23	11-		F E		σ ,1 _{1/2} , 110m (γ,γ),(por γ,γ).
9989.27 ⁰ 24 10029.02 17	(12 ⁻) j	0.21 [@] ps +21-7	E I F F	W	

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$			XRE	F	Comments
10054 23 25	(11^{-})	F				
10158 6 3	(11^{-})	л Т				
10241 7 5	(12^{-})	ц Т				
10607.3.3	12-	г Г				
10788 661 22	12-	E E				
10788.00 22	12	E				
10823.23 23	11	E				
10077 68 22	11+	E				
~10977.08 25	11	E	п			
≈ 10965 11030 60 21	11+	F	п			
$11030.00\ 21$ $11044\ 14^{V}\ 24$	12+	E E	п			
11044.14 24	(12^{-})	E E	п			
110/9.14	(12)	E	_			
11112.8° 3	13 5	E	1			
11120.6 ¹ 9	12-	E		L		
≈11138			Н			
≈11149			Н			
≈11158			Н			
≈11207 ^{&}	2+		Н	L		Possible IAS of ⁶⁰ Co, 58-keV level, ⁶² Ni(p,t).
11224.9 <mark>9</mark> 5	(11^{+})	E	Н			
11255.23 ^p 20	12^{+}	E				
(11387.700 17)	$(1^{-},2^{-})$	F				E(level): $S(n)=11387.73 5$ (2012Wa38).
≈11429			Н			
11443.40 ^s 25	13-	E	Н			
11493.6 5	(12^{+})	E				
11553.3 ^r 3	13-	E				
≈11599			Н			
11620 20	(1^{+})	D				
≈11647			Н			
≈11702			Н			
≈11732			Н			
11750 ⁿ 30			Н	L		J^{π} : L(p,t)=(2).
11785.6 <mark>9</mark> 5	(12^{+})	E				
11851.17 ^p 23	13+	E				
11860 ^a 20	(1^{+})	D				Configuration= $((\nu f_{7/2})^{-1}(\nu f_{5/2}))1^+$.
11878.0 5	(13)	Е	Н			
≈11932			Н			
11950 30			Н	L		J^{π} : L(p,t)=(4).
						Possible IAS of ⁶⁰ Co, 1006-keV level, ⁶² Ni(p,t).
≈12130			Н			
12273.7 <mark>0</mark> 4	14- <i>j</i>		I			
12333 ⁱ 10	8-	E		N	0	XREF: N(12305).
≈12355?	0	-	н		•	
≈12465			Н			
12486.2 ⁹ 5	(13^{+})	Е	н			
12515 ^e 16	8-		Н	N	0	XREF: O(12505).
12578.4 ^p 3	14+	Е				
12742.1 5	13+	E				
12774.7 ^v 4	14^{+}	Е				
12859.3 6	13+	Е				No information about γ decay of this level.
13037.5 ^s 10	14^{-}	Е				· •
13246.3 ^{<i>u</i>} 4	13+	Е				
13282.3 ^w 5	(14^{+})	Е				
13353.0 ⁹ 6	(14^{+})	E				

⁶⁰Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF	Comments
13615.4 ^{\$} 5	15-		Е		
13662.2 ^{<i>p</i>} 4	15^{+}		Е		
13760 30				L	J^{π} : L(p,t)=(0).
13810.0 ⁰ 5	(15 ⁻)		E		
13908 ⁱ 10	8-		A	N Q	XREF: N(13883).
14201.0 <mark>9</mark> 6	(15^{+})		Е		
14463.7 ^{<i>u</i>} 4	15+		Е		
14645.5 ^v 5	16+		E		
14670 30				L	J^{π} : L(p,t)=(4).
14803.2 ^{<i>p</i>} 4	16+		E		
14817 ^e 10	8-	64 keV		N Q	XREF: Q(14840).
					$T_{1/2}$: from (α ,t).
14933.9 ^w 5	16+		E		
15164.84 7	(16^{+})		E		
15281.5 ^t 11	(16 ⁻)		E		
15499 ⁱ 10	8-			N Q	XREF: N(15483).
16026.6 ^{<i>u</i>} 5	17^{+}		E		
16098.1 ^p 4	(17^{+})		E		
16110 23	8-			N	
16194.4 ^{\$} 8	17^{-}		E		
16242.0? 9 <i>13</i>	(17^{+})		E		
16842.4 ^v 7	18+		E		
17235.8 ^w 8	18+		E		
17911.6 ^{<i>u</i>} 7	19+		E		
18131.4 ^t 13	(18^{-})		E		
19238.4 ^{<i>s</i>} 11	(19 ⁻)		E		
19504.4 ^v 10	20^{+}		E		
20017.9 ^w 11	(20^{+})		E		
20177.5 ^{<i>u</i>} 9	21+		E		
22863.5 ^v 13	(22^{+})		E		
22996.5 ^{<i>u</i>} 12	23+		E		

[†] Calculated from adopted gammas, except as noted.

[‡] Spin/parity and single-particle configuration assignments for levels de-excited by γ rays are based on band structure, γ -ray multipolarities and angular distributions. See separate table for comments to individual levels.

- [#] From ⁶⁰Ni(p,p' γ) p γ coin DSA, except as noted.
- [@] From ⁵⁸Ni(α ,2p γ), DSA.

- ^a From ⁵⁹Ni(α ,2p γ), DSA. ^k From ⁵⁹Co(p, γ). ^a From ⁵⁹Ni(n, γ) E=thermal. ^b From ⁵⁹Co(³He,d γ). ^c From ⁶⁰Ni(p,p'), (pol p,p').
- ^d From ⁶⁰Ni(p,p' γ).
- ^{*e*} From ⁵⁹Co(α ,t).
- ^{*e*} From ³⁹Co(α ,t). ^{*f*} From ⁶⁰Ni($\pi^+, \pi^+{}'$), ($\pi^-, \pi^-{}'$). ^{*g*} From ⁵⁶Fe(⁶Li,d). ^{*h*} From ⁶²Ni(p,t). ^{*i*} From ⁶⁰Ni(e,e'). ^{*j*} From ²⁸Si(³⁵Cl,3p).

⁶⁰Ni Levels (continued)

- ^k From comparison with Hauser-Feshbach-Moldauer calculations in $(n,n'\gamma)$.
- ^{*l*} Band(A): γ cascade based on g.s..
- ^{*m*} Band(B): $\Delta J=1$ structure based on 3671, 4⁺.
- ^{*n*} Band(C): $\Delta J=1$ structure based on 3186, 3⁺.
- ^{*o*} Band(D): Magnetic-dipole rotational band-1. Band based on 8044, 9⁻ state. Configuration= $\pi [1f_{7/2}^{-1}(fp)^1] \otimes \nu [1g_{9/2}^1(fp)^3]$.
- ^{*p*} Band(E): Magnetic-dipole rotational band-2. Band based on 11255, 12⁺ state. Configuration= $\pi [1f_{7/2}^{-1}(fp)^1] \otimes v [1g_{9/2}^2(fp)^2]$ or $\pi [1f_{7/2}^{-1}1g_{9/2}^1] \otimes v [1g_{9/2}^1(fp)^3]$.
- ^{*q*} Band(F): Magnetic-dipole rotational band-3. Band based on 11225, (11⁺) state. Configuration= $\pi [1f_{7/2}^{-1}(fp)^1] \otimes v [1g_{9/2}^2(fp)^2]$ or $\pi [1f_{7/2}^{-1} 1g_{9/2}^1] \otimes v [1g_{9/2}^1(fp)^3]$.
- ^{*r*} Band(G): Magnetic-dipole rotational band-4. Band based on 8485, 9⁻ state. Configuration= $\pi [1f_{7/2}^{-1}(fp)^1] \otimes \nu [1g_{9/2}^1(fp)^3]$.
- ^s Band(H): ΔJ=2 band based on 11443, 13⁻. Configuration= $\pi [1f_{7/2}^{-2}(fp)^2] \otimes \nu [1g_{9/2}^1(fp)^3]$.
- ^{*t*} Band(h): $\Delta J=2$ band based on 11120, 12⁻. Configuration= $\pi [1f_{7/2}^{-2}(fp)^2] \otimes \nu [1g_{9/2}^{1}(fp)^3]$.
- ^{*u*} Band(I): $\Delta J=2$ band based on 13246, 13⁺. Configuration= $\pi [1f_{7/2}^{-3}(1g_{9/2}^1(fp)^2) \otimes \nu [1g_{9/2}^1(fp)^3]$.
- ^{*v*} Band(J): $\Delta J=2$ band based on 9665, 10⁺. Two forked spin sequences, one based on 9665, 10⁺ and the other on 13282, (14⁺). Configuration= $\pi [1f_{7/2}^{-2}(1g_{9/2}^{1}(fp)^{1}] \otimes \nu [1g_{9/2}^{1}(fp)^{3}].$
- ^{*w*} Band(j): $\Delta J=2$ band based on 13282, (14⁺). Two forked spin sequences, one based on 9665, 10⁺ and the other on 13282, (14⁺). Configuration= $\pi [1f_{7/2}^{-2}(1g_{9/2}^{1}(fp)^{1}] \otimes \nu [1g_{9/2}^{1}(fp)^{3}].$

All γ data from (^{36}Ar,4p\gamma) where E γ is from this reaction.

15

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
1332.514	2+	1332.501 ^b 5	100 ^b	0.0 0+	E2		0.0001625 23		$\alpha = 0.0001625 \ 23; \ \alpha(K) = 0.0001137 \ 16; \\ \alpha(L) = 1.108 \times 10^{-5} \ 16; \ \alpha(M) = 1.560 \times 10^{-6} \ 22 \\ \alpha(N) = 6.73 \times 10^{-8} \ 10; \ \alpha(IPF) = 3.61 \times 10^{-5} \ 5 \\ B(E2)(W.u.) = 13.1 \ 4$
2158.632	2+	826.06 ^{&} 3	100.0 ^{&} 24	1332.514 2+	M1+E2	+0.9 3	0.000337 18		$\begin{array}{l} \alpha = 0.000337 \ 18; \ \alpha(\mathrm{K}) = 0.000303 \ 17; \\ \alpha(\mathrm{L}) = 2.97 \times 10^{-5} \ 17; \ \alpha(\mathrm{M}) = 4.18 \times 10^{-6} \ 23; \\ \alpha(\mathrm{N}+) = 1.80 \times 10^{-7} \ 1 \\ \alpha(\mathrm{N}) = 1.80 \times 10^{-7} \ 10 \\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.031 \ 13; \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 7.\mathrm{E} + 1 \ 4 \\ \delta: \ \mathrm{av} \ \mathrm{of} \ + 0.67 \ 21 \ \mathrm{from} \ ^{60}\mathrm{Ni}(\mathrm{p},\mathrm{p}'\gamma), \ \mathrm{and} \ + 1.2 \\ \ 3 \ \mathrm{from} \ ^{60}\mathrm{Cu} \ \varepsilon \ \mathrm{decay}. \ \mathrm{Poor} \ \mathrm{agreement} \ \mathrm{with} \\ + 0.03 \ + 1 - 25 \ \mathrm{from} \ ^{56}\mathrm{Fe}(^{7}\mathrm{Li}, 2\mathrm{np}\gamma). \ - 0.2 \ 2 \\ \mathrm{from} \ \mathrm{DCO} \ (2008\mathrm{To}15). \end{array}$
		2158.57 ^{&} 10	17.6 ^{&} 24	0.0 0+	(E2)		0.000439 7		B(E2)(W.u.)=0.22 7 α =0.000439 7; α (K)=4.45×10 ⁻⁵ 7; α (L)=4.32×10 ⁻⁶ 6; α (M)=6.08×10 ⁻⁷ 9; α (N+)=0.000390 6 α (N)=2.64×10 ⁻⁸ 4; α (IPF)=0.000389 6 Mult : $\Delta \pi$ =no from $I^{\pi'}$ s of connecting levels
2284.80	0+	952.4 ^{<i>a</i>} 2 2284.87	100 <i>ª</i>	$\begin{array}{cccc} 1332.514 & 2^+ \\ 0.0 & 0^+ \end{array}$	E0			0.016	I(γ + <i>ce</i>): I(E±) from 1961Pa10 is given. Ice(K)(2285)/Ice(K)(952)=0.074 <i>16</i> , Ice(K)(2285)/I(pair)=0.130 <i>28</i> , B(E0)/B(E2)=0.027 <i>4</i> , ρ^2 <0.028 (1981Pa10).
2505.753	4+	347.14 ^b 7	0.0076 ^b 5	2158.632 2+	E2		0.00557 8		α =0.00557 8; α (K)=0.00499 7; α (L)=0.000503 7; α (M)=7.06×10 ⁻⁵ 10; α (N+)=2.90×10 ⁻⁶ 4 α (N)=2.90×10 ⁻⁶ 4 B(E2)(W.u.)=0.19 6 Mult.: From DCO (2008To15).
		1173.228 ^b 3	100.00 ^b 3	1332.514 2+	E2(+M3)	-0.0025 22	0.0001722 25		$\begin{aligned} &\alpha = 0.0001722 \ 25; \ \alpha(K) = 0.0001500 \ 21; \\ &\alpha(L) = 1.465 \times 10^{-5} \ 21; \ \alpha(M) = 2.06 \times 10^{-6} \ 3 \\ &\alpha(N) = 8.88 \times 10^{-8} \ 13; \ \alpha(IPF) = 5.42 \times 10^{-6} \ 8 \\ &B(E2)(W.u.) = (5.5 \ 17); \\ &B(M3)(W.u.) = (1.8 \times 10^2 \ +32 - 18) \end{aligned}$

						Adopted L	evels, Gammas (co	ontinued)	
						γ	(⁶⁰ Ni) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
2505 752	4+	2505 (02 5	20,40=6.4		0+			9 (2) 10-5 12	Additional information 1. δ : from ⁶⁰ Co β^- decay (1925.28 d). Others: $-0.09 + 50 - 30$ from ⁵⁸ Ni(α ,2p γ), +0.02 +18-2 from ⁵⁶ Fe(⁷ Li,2np γ).
2303.753	4	2505.692 5	2.0×10 ° 4	0.0	0.	[E4]		8.63×10 ° 12	$\alpha = 8.65 \times 10^{-6} I2; \ \alpha(K) = 1.76 \times 10^{-6} I1; \ \alpha(L) = 7.58 \times 10^{-6} I1; \ \alpha(M) = 1.069 \times 10^{-6} I5; \ \alpha(N+) = 4.62 \times 10^{-8} 7 \ \alpha(N) = 4.62 \times 10^{-8} 7 \ B(E4)(W.u.) = 1.8 7 \ E_{\gamma}: \text{ from E(level).} \ Mult.: \text{ from } J^{\pi'}s \text{ of connecting levels.} \ Additional information 2. \ B(E4)(W.u.): 4.8 I0 \ \text{from measured B(E4)} \uparrow \text{ in } {}^{60}\text{Ni}(e,e')$
2626.06	3+	120.5 ^{<i>a</i>} 3	5.5 ^{<i>a</i>} 5	2505.753	4+	M1+E2		0.15 13	$\alpha(K)=0.14 \ 12; \ \alpha(L)=0.015 \ 13; \ \alpha(M)=0.0021$ $18; \ \alpha(N+)=8.E-5 \ 7$ $\alpha(N)=8 \ E-5 \ 7$
		467.3 ^{<i>a</i>} 2	100 ^{<i>a</i>} 5	2158.632	2+	M1(+E2)	+0.02 +11-27	0.00102 7	$\alpha = 0.00102 \ 7; \ \alpha(K) = 0.00091 \ 6; \ \alpha(L) = 9.0 \times 10^{-5} 6; \ \alpha(M) = 1.27 \times 10^{-5} \ 8; \ \alpha(N+) = 5.4 \times 10^{-7} \ 4 \alpha(N) = 5.4 \times 10^{-7} \ 4 B(M1)(W.u.) \approx (0.23); \ B(E2)(W.u.) \approx (0.76) 5: \ 40.28 \ 18 \ (20027 \times 15) $
		1293.7 ^{<i>a</i>} 2	53 ^{<i>a</i>} 5	1332.514	2+	M1+E2	-3.1 +4-6	0.0001595 23	α=0.0001595 23; α(K)=0.0001198 18; α(L)=1.168×10 ⁻⁵ 17; α(M)=1.646×10 ⁻⁶ 24 α(N)=7.10×10 ⁻⁸ 11; α(IPF)=2.63×10 ⁻⁵ 5 B(M1)(W.u.)≈0.00053; B(E2)(W.u.)≈5.6 Mult.: from 1989Ko54 in (n,n'γ) and (³⁶ Ar,4pγ). δ: from (n,n'γ); +0.11 15 (2008To15).
3119.87	4+	493.90 ^{&} 20	8.7 ^{&} 22	2626.06	3+	M1+(E2)	+0.25 40	0.00094 20	$\alpha = 0.00094 \ 20; \ \alpha(K) = 0.00085 \ I8; \alpha(L) = 8.4 \times 10^{-5} \ I8; \ \alpha(M) = 1.18 \times 10^{-5} \ 25; \alpha(N+) = 5.1 \times 10^{-7} \ I1 \alpha(N) = 5.1 \times 10^{-7} \ I1 B(M1)(W.u.) = 0.06 \ 3; \ B(E2)(W.u.) = (3.E+1 + 9-3) \delta: From DCO (2008To15).$
		1787.20 ^{&} 10	100.0 ^{&} 22	1332.514	2+	E2		0.000281 4	$\alpha = 0.000281 \ 4; \ \alpha(K) = 6.30 \times 10^{-5} \ 9; \alpha(L) = 6.12 \times 10^{-6} \ 9; \ \alpha(M) = 8.62 \times 10^{-7} \ 12; \alpha(N+) = 0.000211 \ 3 \alpha(N) = 3.73 \times 10^{-8} \ 6; \ \alpha(IPF) = 0.000211 \ 3 B(E2)(W.u.) = 9 \ 4 Mult.: From DCO = 1.10 \ 5 \ (2008To15).$

⁶⁰₂₈Ni₃₂-16

$\gamma(^{60}\text{Ni})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
3123.698	2+	497.9 ^{<i>a</i>} 2 613.7 3 839.2 ^{<i>a</i>} 4	$3.68^{a} 20$ 4.4 11 $1.01^{a} 16$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Mult.: d not consistent with ΔJ^{π} .
		965.2 ^{<i>a</i>} 3 1791.6 ^{<i>a</i>} 3	0.66 ^a 14 100 ^a 5	2158.632 2 ⁺ 1332.514 2 ⁺	M1+E2	-0.21 4	0.000237 4	α =0.000237 4; α (K)=5.93×10 ⁻⁵ 9; α (L)=5.75×10 ⁻⁶ 8; α (M)=8.10×10 ⁻⁷ 12; α (N+)=0.000171 3 α (N)=3.52×10 ⁻⁸ 5; α (IPF)=0.000171 3 B(M1)(W.u.)=0.013 +6-10; B(E2)(W.u.)=0.34 +20-28 Mult δ : from $\gamma\gamma(\theta)$ in ⁶⁰ Cu ε decay
		3124.1 ^{<i>a</i>} 3	10.5 ^a 6	$0.0 0^+$				
3185.98	(3 ⁺)	680.30 ^{&} 15	86 ^{&} 14	2505.753 4+	M1+E2		0.00055 11	$ \begin{array}{l} \alpha = 0.00055 \ 11; \ \alpha(\mathrm{K}) = 0.00050 \ 10; \ \alpha(\mathrm{L}) = 4.9 \times 10^{-5} \ 10; \\ \alpha(\mathrm{M}) = 6.9 \times 10^{-6} \ 14; \ \alpha(\mathrm{N} +) = 2.9 \times 10^{-7} \ 6 \\ \alpha(\mathrm{N}) = 2.9 \times 10^{-7} \ 6 \end{array} $
		1027.33 ^{&} 8	100 ^{&} 14	2158.632 2+	M1+E2	-6.1 +9-10	0.000226 4	
		1853.8 ^{&} 3	92 ^{&} 14	1332.514 2+	M1+E2		0.00028 3	α =0.00028 3; α (K)=5.72×10 ⁻⁵ 18; α (L)=5.55×10 ⁻⁶ 18; α (M)=7.82×10 ⁻⁷ 25; α (N+)=0.000218 24 α (N)=3.39×10 ⁻⁸ 11; α (IPF)=0.000218 24
3193.87	1^{+}	909.2 ^{<i>a</i>} 2	42.6 ^a 19	2284.80 0+				
		1035.2 ^a 2	78 ^a 4	2158.632 2+				
		1861.6 ^a 3	100 ^{<i>a</i>} 6	1332.514 2+				
		3194.1 ^{<i>a</i>} 3	42.6 ^{<i>a</i>} 19	$0.0 0^+$				
3269.19	2+	643.2 ^{<i>u</i>} 3	44.0 ^{<i>a</i>} 24	2626.06 3+				
		984.5 ^{<i>u</i>} 6	3.6 ^{<i>u</i>} 20	2284.80 0+	[E2]		0.000251 4	$\alpha = 0.000251 \ 4; \ \alpha(\text{K}) = 0.000225 \ 4; \ \alpha(\text{L}) = 2.21 \times 10^{-5} \ 4; \alpha(\text{M}) = 3.11 \times 10^{-6} \ 5; \ \alpha(\text{N}+) = 1.334 \times 10^{-7} \ 19 \alpha(\text{N}) = 1.334 \times 10^{-7} \ 19 B(\text{E2})(\text{W}, \textbf{u}, \textbf{u}) = 10 \ 6$
		1110.5 ^a 4	48 ^{<i>a</i>} 8	2158.632 2+				_ (,(,
		1936.9 ^a 3	100 ^{<i>a</i>} 4	1332.514 2+				
		3269.4 ^{<i>a</i>} 3	35.2 ^{<i>a</i>} 20	0.0 0+	[E2]		0.000920 13	$ \begin{array}{l} \alpha = 0.000920 \ 13; \ \alpha(\mathrm{K}) = 2.22 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.14 \times 10^{-6} \ 3; \\ \alpha(\mathrm{M}) = 3.02 \times 10^{-7} \ 5; \ \alpha(\mathrm{N}+) = 0.000895 \ 13 \\ \alpha(\mathrm{N}) = 1.314 \times 10^{-8} \ 19; \ \alpha(\mathrm{IPF}) = 0.000895 \ 13 \\ \mathrm{B(E2)(W,u)} = 0.23 \ 7 \end{array} $
3317.829	0^{+}	1159.09 ⁱ 13	1.18 ⁱ 11	2158.632 2+				
	-	1985.27 ^{<i>i</i>} 3	100.0 ⁱ 19	1332.514 2+				

17

 $^{60}_{28}\mathrm{Ni}_{32}$ -17

From ENSDF

	Adopted Levels, Gammas (continued)												
	γ ⁽⁶⁰ Ni) (continued)												
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$E_f J_f^{\pi}$	Mult. [#]	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments					
3317.829	0+	3318.6		0.0 0+	E0		0.064	$I_{(\gamma+ce)}$: I(E±) from 1961Pa10 is given. I(pair)(3318)/Ice(K)(1986)=11.5 <i>12</i> , B(E0)/B(E2)=0.49 8, $ρ^2$ =0.077 42 (1981Pa10).					
3381 3393.14	2+	$\frac{1222^{c}}{1234.51^{i}}\frac{5}{7}$ $\frac{2060.58^{i}}{3}$	100^{c} 12.6 ^{<i>i</i>} 7 100.0 ^{<i>i</i>} 23	2158.632 2 ⁺ 2158.632 2 ⁺ 1332.514 2 ⁺									
		3393.05 ⁱ 20	7.4 ⁱ 7	0.0 0+	[E2]	0.000968 14		$ \begin{array}{l} \alpha = 0.000968 \ 14; \ \alpha(\mathrm{K}) = 2.09 \times 10^{-5} \ 3; \ \alpha(\mathrm{L}) = 2.02 \times 10^{-6} \ 3; \\ \alpha(\mathrm{M}) = 2.85 \times 10^{-7} \ 4; \ \alpha(\mathrm{N}+) = 0.000945 \ 14 \\ \alpha(\mathrm{N}) = 1.239 \times 10^{-8} \ 18; \ \alpha(\mathrm{IPF}) = 0.000945 \ 14 \\ \mathrm{B(E2)(W.u.)} = 0.043 \ + 14 - 21 \end{array} $					
3587.72	0^+	393.76 ⁱ 6	32.7 ⁱ 8	3193.87 1+									
		1429.07 ¹ 3	100 ¹ 2	2158.632 2+									
		2255.18 ^t 5 3588	46.4 ⁴ 15	$\begin{array}{cccc} 1332.514 & 2^+ \\ 0.0 & 0^+ \end{array}$	E0		0.13	I _{($\gamma+ce$}): I(E±) from 1961Pa10 is given. I(pair)(3588)/Ice(K)(2256)=68 11, B(E0)/B(E2)(1429)=0.13 3, B(E0)/B(E2)(2256)=2.9 5 (1981Pa10).					
3619.46	3+	993.46 ⁱ 10	100 ^{<i>i</i>}	2626.06 3+	D								
		1113.9 ⁱ 3	33 ⁱ 4	2505.753 4+									
		1460 ^{<i>dk</i>}		2158.632 2+									
3671.16	4+	1165.2 2	100	2505.753 4+	M1+E2	0.000162 12		$\alpha = 0.000162 \ 12; \ \alpha(K) = 0.000142 \ 11; \ \alpha(L) = 1.39 \times 10^{-5} \ 11; \alpha(M) = 1.96 \times 10^{-6} \ 15; \ \alpha(N+) = 4.0 \times 10^{-6} \ 7 \alpha(N) = 8.4 \times 10^{-8} \ 6; \ \alpha(IPF) = 3.9 \times 10^{-6} \ 7$					
		1512.1 6	1.6	2158.632 2+	[E2]	0.000189 <i>3</i>		$\begin{array}{l} \alpha = 0.000189 \ 3; \ \alpha(\mathrm{K}) = 8.75 \times 10^{-5} \ 13; \ \alpha(\mathrm{L}) = 8.51 \times 10^{-6} \ 12; \\ \alpha(\mathrm{M}) = 1.199 \times 10^{-6} \ 17; \ \alpha(\mathrm{N}+) = 9.16 \times 10^{-5} \ 13 \\ \alpha(\mathrm{N}) = 5.18 \times 10^{-8} \ 8; \ \alpha(\mathrm{IPF}) = 9.15 \times 10^{-5} \ 13 \\ \mathrm{B(E2)(W,u)} = 1.3 \ 9 \end{array}$					
3702.9	4+	583 1	100	3119.87 4+				E_{γ} : from $(n,n'\gamma)$.					
3730.82	4+	545.0 1	27 9	3185.98 (3 ⁺)	M1+E2	0.0010 3		$\alpha = 0.0010 \ 3; \ \alpha(\text{K}) = 0.00089 \ 25; \ \alpha(\text{L}) = 8.8 \times 10^{-5} \ 25; \alpha(\text{M}) = 1.2 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 5.3 \times 10^{-7} \ 15 \alpha(\text{N}) = 5.3 \times 10^{-7} \ 15$					
		610.9 <i>3</i>	27 9	3119.87 4+	D								
		1105.0 4	45 9	2626.06 3 ⁺	M1+E2	0.000178 15		$\alpha = 0.000178 \ 15; \ \alpha(K) = 0.000159 \ 13; \ \alpha(L) = 1.56 \times 10^{-5} \ 13; \ \alpha(M) = 2.19 \times 10^{-6} \ 18; \ \alpha(N+) = 9.3 \times 10^{-7} \ 17 \ \alpha(N) = 0.5 \times 10^{-8} \ 2; \ \alpha(M) = 2.4 \times 10^{-7} \ 16$					
		1224.9 2	63 18	2505.753 4+	D			$u(\mathbf{N}) = 9.3 \times 10^{-6}$ 8, $u(\mathbf{IFF}) = 6.4 \times 10^{-70}$					
		2398.4 3	100 18	1332.514 2+	E2	0.000547 8		α =0.000547 8; α (K)=3.70×10 ⁻⁵ 6; α (L)=3.58×10 ⁻⁶ 5; α (M)=5.05×10 ⁻⁷ 7; α (N+)=0.000506 7 α (N)=2.19×10 ⁻⁸ 3; α (IPF)=0.000506 7 B(E2)(W u)=0.9 + 5-9					
3734.44	2+	611 <i>ak</i>	<3 ^a	3123.698 2+									
		1451.4 ^{<i>a</i>} 5	22 ^{<i>a</i>} 4	2284.80 0+	[E2]	0.0001754 25		α =0.0001754 25; α (K)=9.51×10 ⁻⁵ 14; α (L)=9.26×10 ⁻⁶ 13;					

							Adopted	l Levels, Gamma	as (continued)
								γ ⁽⁶⁰ Ni) (contin	nued)
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$lpha^\dagger$	Comments
									$\alpha(M)=1.304\times10^{-6}$ 19; $\alpha(N+)=6.98\times10^{-5}$ $\alpha(N)=5.63\times10^{-8}$ 8; $\alpha(IPF)=6.97\times10^{-5}$ 10 B(E2)(W.u.)=10 5
	3734.44	2+	2403.3 ^{<i>a</i>} 6	100 ^a 11	1332.514	2^{+}			
			3735.6 ^a 13	3.4 ^{<i>a</i>} 12	0.0	0+	[E2]	0.001096 <i>16</i>	$\alpha = 0.001096 \ 16; \ \alpha(\text{K}) = 1.80 \times 10^{-5} \ 3; \ \alpha(\text{L}) = 1.742 \times 10^{-6} \ 25; \\ \alpha(\text{M}) = 2.45 \times 10^{-7} \ 4; \ \alpha(\text{N}+) = 0.001076 \ 15 \\ \alpha(\text{N}) = 1.068 \times 10^{-8} \ 15; \ \alpha(\text{IPF}) = 0.001076 \ 15 \\ \text{B}(\text{E2})(\text{W.u.}) = 0.014 \ 7 \\ \end{array}$
	3798.0	1	3797.9 ^j 10	100 <i>j</i>	0.0	0^{+}	j		
	3871.050	2^{+}	677.17 ⁱ 5	16.7 ⁱ 4	3193.87	1^{+}			
			747.33 ⁱ 3	100 ⁱ 2	3123.698	2+			
			751.9 ⁱ 4	3.2 ⁱ 7	3119.87	4+			
			1244.93 ⁱ 22	2.6 ⁱ 5	2626.06	3+			
			1712.30 ⁱ 9	91 ⁱ 2	2158.632	2+			
			2538.53 ⁱ 4	55 ⁱ 1	1332.514	2^{+}			
			3870.94 ⁱ 7	43.5 ⁱ 15	0.0	0^{+}			
	3887.36	2^{+}	569.5 ⁱ 4	7 ⁱ 3	3317.829	0^{+}			
			693.57 ⁱ 11	30 ⁱ 3	3193.87	1^{+}			
			1381.8 ⁱ 3	28 ⁱ 5	2505.753	4+			
			2554.69 ⁱ 10	100 ⁱ 4	1332.514	2^{+}			
	3895		1269 ^c 5	67 ^C	2626.06	3+			
			2563 [°] 5	100 ^C	1332.514	2+	,		
	3908	1	3908 3	100	0.0	0^{+}	J		
	3925.18	$2^+, 3^+$	305.7 ¹ 3	30 ¹ 6	3619.46	3+			
			739.2 ⁴ 3	57 ¹ 10	3185.98	(3+)			
			805.6 ¹ 4	21' 6	3119.87	4+			
			1419.40 ^{<i>i</i>} 10	100' 8	2505.753	4+			
	1005 11:		1766.5 ^{<i>i</i>} 3	55' 8	2158.632	2+			
	4006.444	2+	883.11 3	1.01 2	3123.698	2+			
			1380.4 ^{<i>i</i>} 3	$2.8^{\prime} 4$	2626.06	3+			
			2673.86 ⁴ 4	100' 2	1332.514	2+		0 001100	
			4006.30 ^{<i>i</i>} 4	754 2	0.0	0+	E2	0.001190 17	$\alpha = 0.001190 \ 17; \ \alpha(\text{K}) = 1.622 \times 10^{-3} \ 23; \ \alpha(\text{L}) = 1.566 \times 10^{-6} \ 22; \\ \alpha(\text{M}) = 2.21 \times 10^{-7} \ 3; \ \alpha(\text{N}+) = 0.001172 \\ \alpha(\text{N}) = 9.60 \times 10^{-9} \ 14; \ \alpha(\text{IPF}) = 0.001172 \ 17 \\ \text{B}(\text{E2})(\text{W.u.}) = 0.8 \ 3 \\ \text{Model} = \sum_{n=1}^{7} \alpha(n+1) \left(n + 1 \right) \left(n + 1 \right)$
	1010 886	1+	131 0 ⁱ 1	0.5^{i} 2	3587 77	0+			where (γ, γ) , (por $\gamma, \gamma)$.
	4019.880	1	$431.9^{\circ} 4$ 702.11 <i>i</i>	$0.5^{\circ} 2$	3307.72	0+			
			102.11 806.221 6	$1.3^{-}2$ 7 1 $\frac{1}{2}$	3172 600	0 ⁺			
I			$090.25^{\circ}0$	7.1° 3	2123.098	∠ · 0+			
			1/34.98 11	9.5° S	2284.80	0'			

From ENSDF

	Adopted Levels, Gammas (continued)												
							γ (⁶⁰ Ni)	(continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Iγ	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments				
4019.886	1+	2687.33 ^{<i>i</i>} 4 4019.74 ^{<i>i</i>} 5	$42^i I$ $100^i 3$	1332.514 0.0	2+ 0+	M1		0.001087 <i>16</i>	$ \begin{array}{l} \alpha = 0.001087 \ 16; \ \alpha(\mathrm{K}) = 1.568 \times 10^{-5} \ 22; \ \alpha(\mathrm{L}) = 1.513 \times 10^{-6} \ 22; \\ \alpha(\mathrm{M}) = 2.13 \times 10^{-7} \ 3; \ \alpha(\mathrm{N}+) = 0.001069 \\ \alpha(\mathrm{N}) = 9.29 \times 10^{-9} \ 13; \ \alpha(\mathrm{IPF}) = 0.001069 \ 15 \\ \mathrm{Mult.: \ From} \ (\gamma, \gamma'), (\mathrm{pol} \ \gamma, \gamma'). \end{array} $				
4035		2703 ^c 5 4035 ^c 5	100 ^c 100 ^c	1332.514 0.0	2^+ 0^+								
4039.89	3-	853.8 ^{<i>i</i>} 4 1881.15 ^{<i>i</i>} 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3185.98 2158.632	(3 ⁺) 2 ⁺	[E1]		0.000586 9	α =0.000586 9; α (K)=3.21×10 ⁻⁵ 5; α (L)=3.11×10 ⁻⁶ 5; α (M)=4.37×10 ⁻⁷ 7; α (N+)=0.000550 8 α (N)=1.90×10 ⁻⁸ 3; α (IPF)=0.000550 8 R(E1)(Wu) = 0.0010 5				
		2707.44 ⁱ 8	100 ⁱ 4	1332.514	2+	[E1]		0.001103 16	$\alpha = 0.001103 \ I6; \ \alpha(K) = 1.91 \times 10^{-5} \ 3; \ \alpha(L) = 1.84 \times 10^{-6} \ 3; \alpha(M) = 2.59 \times 10^{-7} \ 4; \ \alpha(N+) = 0.001082 \ I6 \alpha(N) = 1.127 \times 10^{-8} \ I6; \ \alpha(IPF) = 0.001082 \ I6 B(E1)(W.u.) = 0.0006 \ 3$				
4077.99	1+,2+	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$14^{i} 2$ $55^{i} 3$ $100^{i} 3$	2626.06 2158.632 1332.514	3 ⁺ 2 ⁺ 2 ⁺								
4111.96	2+	$4077.6^{i} 9$ 992 ^c 5 1485.94 ⁱ 19 1606.10 ⁱ 14 2779.42 ⁱ 14	$9^{i} 2 \\92^{c} \\46^{i} 5 \\70^{i} 6 \\100^{i} 6$	0.0 3119.87 2626.06 2505.753 1332.514	0^{+} 4^{+} 3^{+} 4^{+} 2^{+}								
4165.50	5+	4111.6 ¹ 8 494.4 2	49 ¹ 9 9 2	0.0 3671.16	0+ 4+	M1+E2		0.0013 5	α =0.0013 5; α (K)=0.0012 4; α (L)=0.00012 4; α (M)=1.6×10 ⁻⁵ 6; α (N+)=6.9×10 ⁻⁷ 22 α (N)=6.9×10 ⁻⁷ 22				
		1044.4 2	14 4	3119.87	4+	M1+E2		0.000200 18	$\alpha(N)=0.5\times10^{-22}$ $\alpha=0.000200 \ l8; \ \alpha(K)=0.000180 \ l6; \ \alpha(L)=1.76\times10^{-5} \ l6; \ \alpha(M)=2.48\times10^{-6} \ 23; \ \alpha(N+)=1.07\times10^{-7} \ l \ \alpha(N)=1.07\times10^{-7} \ l \ \alpha(N)=1.0$				
		1539.0 <i>3</i> 1659.6 <i>3</i>	14 <i>4</i> 100 <i>9</i>	2626.06 2505.753	3+ 4+	M1+E2	-1.7 4	0.000224 6	$\alpha = 0.000224 \ 6; \ \alpha(K) = 7.15 \times 10^{-5} \ 12; \ \alpha(L) = 6.94 \times 10^{-6} \ 12; \alpha(M) = 9.78 \times 10^{-7} \ 16; \ \alpha(N+) = 0.000145 \ 5 \alpha(N) = 4.24 \times 10^{-8} \ 7; \ \alpha(IPF) = 0.000145 \ 5 B(M1)(W.u.) = 0.0011 \ 7; \ B(E2)(W.u.) = 2.2 \ 12 \delta; \ \alpha(her1.0 + 5 - 4 \ from \ 5^8Ni(\alpha, 2m)) = 1.1 + 8.9 \ in \ (^{36} \text{ Ar } 4m))$				
4186.19	(4+)	515 <i>I</i> 1560.2 <i>4</i>	67 <i>33</i> 100 <i>33</i>	3671.16 2626.06	4 ⁺ 3 ⁺	(D) (M1+E2)		0.000186 <i>17</i>	$\alpha = 0.000186 \ 17; \ \alpha(\text{K}) = 7.9 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 7.7 \times 10^{-6} \ 4; \alpha(\text{M}) = 1.08 \times 10^{-6} \ 5; \ \alpha(\text{N}+) = 9.8 \times 10^{-5} \ 13 \alpha(\text{N}) = 4.69 \times 10^{-8} \ 19; \ \alpha(\text{IPF}) = 9.8 \times 10^{-5} \ 13$				

	Adopted Levels, Gammas (continued)												
						γ ⁽⁶⁰ Ni) (con	tinued)						
E _i (level)	\mathbf{J}_i^{π}	Eγ [‡]	Iγ	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	$lpha^{\dagger}$	Comments					
4191.2		462 ^{dk} 520 ⁸ 572 ^c 5 1565 ^c 5	75 ^c 100 ^c	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$									
4265.00	6+	1145.67 ^e 15	5.4 ^e 8	3119.87 4+	E2		0.000179 3	$\alpha = 0.000179 \ 3; \ \alpha(K) = 0.0001583 \ 23; \ \alpha(L) = 1.546 \times 10^{-5} \ 22; \\ \alpha(M) = 2.18 \times 10^{-6} \ 3; \ \alpha(N+) = 3.06 \times 10^{-6} \ 5 \\ \alpha(N) = 9.37 \times 10^{-8} \ 14; \ \alpha(IPF) = 2.96 \times 10^{-6} \ 5 \\ B(E2)(Wu) = 2.3 + 12 - 7 $					
		1759.21 ^e 15	100 ^e 5	2505.753 4+	E2(+M3)	-0.08 +3-7	0.000270 4	$\alpha = 0.000270 \ 4; \ \alpha(\text{K}) = 6.57 \times 10^{-5} \ 22; \ \alpha(\text{L}) = 6.39 \times 10^{-6} \ 21; \\ \alpha(\text{M}) = 9.0 \times 10^{-7} \ 3; \ \alpha(\text{N}+) = 0.000197 \ 4 \\ \alpha(\text{N}) = 3.89 \times 10^{-8} \ 13; \ \alpha(\text{IPF}) = 0.000197 \ 4 \\ \text{B}(\text{E2})(\text{W.u.}) = (5.0 + 24 - 13); \ \text{B}(\text{M3})(\text{W.u.}) = (7.\text{E} + 4 + 7 - 6) \\ \delta; \ \text{other:} \ -0.1 + 4 - 2 \ \text{from}^{58} \text{Ni}(\alpha.2\text{pv}).$					
4294.5		1788.9 ^{&} 4	67 ^{&} 17	2505.753 4+									
4300.8		2961.8 ⁴ 1181 ⁸ 1795 ⁸	100~ 1/	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
4318.58	2^{+}	1692.45^{i} 8	$37^{i} 2$	2626.06 3 ⁺									
		$1813.5^{\circ} 5$ 2985.97 ^{<i>i</i>} 7	100^{i} 3	$2505.753 4^{+}$ $1332.514 2^{+}$									
		4318.52 ⁱ 11	41 ^{<i>i</i>} 2	0.0 0+									
4335.52	2	1829.9 ⁱ 4	6 ⁱ 2	2505.753 4+									
		2176.84 ¹ 4	100 ¹ 3	2158.632 2+									
		3002.5 ¹ 4	9 ¹ 2	1332.514 2+									
10.11	(0+)	4335.37 ¹ 23	31 ¹ 3	$0.0 0^+$									
4341	(0^{+})	$1217^{\circ} 5$	43°	$3123.698 \ 2^+$									
1355 56	2+	3024ak	100 100 ^a	13325142^+									
4355.50	2	$\frac{3024}{700gk}$	100	1332.314 2 3702 0 4^+									
4400.0		1130 ^g 1895 ^g		3269.19 2 ⁺ 2505.753 4 ⁺									
4407.46	5+	241.8 <i>I</i>	45 6	4165.50 5+	D			e e e e e e e e e e e e e e e e e e e					
		676.6 2	100 10	3730.82 4+	M1+E2		0.00056 11	$ \begin{array}{l} \alpha = 0.00056 \ 11; \ \alpha(\text{K}) = 0.00050 \ 10; \ \alpha(\text{L}) = 4.9 \times 10^{-5} \ 10; \\ \alpha(\text{M}) = 7.0 \times 10^{-6} \ 14; \ \alpha(\text{N}+) = 3.0 \times 10^{-7} \ 6 \\ \alpha(\text{N}) = 3.0 \times 10^{-7} \ 6 \end{array} $					
		736.4 4	61 10	3671.16 4+	M1+E2		0.00045 8	α =0.00045 8; α (K)=0.00041 7; α (L)=4.0×10 ⁻⁵ 7; α (M)=5.6×10 ⁻⁶ 10; α (N+)=2.4×10 ⁻⁷ 4 α (N)=2.4×10 ⁻⁷ 4					
		1288.3 4	13 <i>3</i>	3119.87 4+	M1+E2		0.000151 11	$\alpha = 0.000151 \ 11; \ \alpha(K) = 0.000116 \ 7; \ \alpha(L) = 1.13 \times 10^{-5} \ 7;$					

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -21

						Adopted	Levels, Gamn	nas (continued)
							γ (⁶⁰ Ni) (conti	nued)
E _i (level)	\mathbf{J}_i^π	${\rm E}_{\gamma}$ ‡	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
								$\alpha(M)=1.59\times10^{-6}$ 10; $\alpha(N+)=2.2\times10^{-5}$ 4
4407.46	5+	1781.3 <i>3</i>	29 3	2626.06	3+	E2	0.000278 4	$ \begin{array}{l} \alpha(\mathrm{N}) = 6.9 \times 10^{-8} \ 4; \ \alpha(\mathrm{IPF}) = 2.2 \times 10^{-5} \ 4 \\ \alpha = 0.000278 \ 4; \ \alpha(\mathrm{K}) = 6.34 \times 10^{-5} \ 9; \ \alpha(\mathrm{L}) = 6.16 \times 10^{-6} \ 9; \ \alpha(\mathrm{M}) = 8.68 \times 10^{-7} \\ 13; \ \alpha(\mathrm{N}+) = 0.000208 \ 3 \\ \alpha(\mathrm{N}) = 3.76 \times 10^{-8} \ 6; \ \alpha(\mathrm{IPF}) = 0.000208 \ 3 \end{array} $
4450.7		1901.70 <i>15</i> 1945 ⁸ 3118 ⁸	48 6	2505.753 2505.753 1332.514	4^+ 4^+ 2^+			
4493.16	2+	758.5^{i} 4	8 ⁱ 2	3734.44	2+			
		1306.5 ^{<i>i</i>} 5	$7^{i}2$	3185.98	(3+)			
		2334.4 ⁱ 3	12 ⁱ 2	2158.632	2+			
		3160.60 ⁱ 6	100 ^{<i>i</i>} 3	1332.514	2^{+}			
		4494.0 ^a 7	6.8 ^a 14	0.0	0^+			
4534.14	2+	2028.5 ¹ 5	63 ¹ 17	2505.753	4+			
		2375.6 ¹ 3	100 ¹ 14	2158.632	2+			
		3203 ^{ak}	54 ^a 18	1332.514	2+			
		4536 ^{ak}	$\leq 10^{a}$	0.0	0+			
4547.96	$1^+, 2^+$	813.48 ¹ 7	20 ¹ 1	3734.44	2+			
		1154.82' 12	13 ¹ 1	3393.14	2+			
		1354.08' 9	19 ⁴ 2	3193.87	1+			
		1424.24 ^{<i>i</i>} 4	72° 2	3123.698	2*			
		2263.17^{i} 4	$100^{\circ} 2$	2284.80	0^{-}			
		$2389.25^{\circ}5$	86° 2 251 2	2158.632	2+			
		$3213.27^{\circ} 8$	33° 2 171 5	1332.314	2' 0+			
1577 15	2+	4340.2° 3	47°	0.0	0 ⁺			
4377.43	2	$1308.10^{\circ} 23$ $2418.65^{\circ} 20$	29°4 28 ^і л	5209.19 2158 622	∠ 2+			
		2410.05 20 $3244 00^{i} 0$	20 4 $100^{i} \Lambda$	1332 514	$\frac{2}{2^+}$			
		4577 37 ^{<i>i</i>} 14	95^{i} 6	0.0	$\frac{2}{0^{+}}$			
4579.0	(4+)	1952.9 5	100	2626.06	3+	M1+E2	0.00032 3	α =0.00032 3; α (K)=5.21×10 ⁻⁵ 15; α (L)=5.05×10 ⁻⁶ 15; α (M)=7.11×10 ⁻⁷ 21; α (N+)=0.00026 3 α (N)=3.00×10 ⁻⁸ 0; α (IPE)=0.00026 2
4760 23	1.2	1491.5 ⁱ 3	31 ⁱ 6	3269 19	2^{+}			$u(1) = 3.07 \times 10^{-3}$, $u(111) = 0.00020^{-3}$
1100.25	1,2	1636.42^{i} 13	$85^{i}6$	3123.698	$\frac{2}{2^{+}}$			
		2601.5^{i} 4	$26^{i} 6$	2158.632	2+			
		3428.0^{i} 4	100^{i} 3	1332.514	$\frac{-}{2^{+}}$			
		4760.1 ^{<i>i</i>} 4	56 ⁱ 7	0.0	0+			
4768		1644 [°] 5	100 ^c	3123.698	2^{+}			
		2142 [°] 5	82 ^c	2626.06	3+			
4779.13		667.4 ¹ 5	6^{1} 3	4111.96	2^{+}			

					(continued)		
						γ (⁶⁰ Ni) (continue	ed)
E _i (level)	J_i^{π}	Eγ‡	I_{γ}	$E_f \qquad J_f^{\pi}$	Mult. [#]	α^{\dagger}	Comments
4779.13		1385.97 ^{<i>i</i>} 14	28 ^{<i>i</i>} 4	3393.14 2+			
		1585.33 ⁱ 13	54 ^{<i>i</i>} 4	3193.87 1+			
		2493.8 ⁱ 3	26 ⁱ 2	2284.80 0+			
		2620.40 ⁱ 8	100 ^{<i>i</i>} 4	2158.632 2+			
		3446.77 ⁱ 17	65 ⁱ 6	1332.514 2+			
4800.0		2641.3 ^{&k} 5	100 ^{&}	2158.632 2+			
4843.93	2+	3511.07 ⁱ 18	45 ⁱ 2	1332.514 2+			
		4843.76 ⁱ 9	100 ^{<i>i</i>} 4	0.0 0+	E2	0.001458 21	α =0.001458 21; α (K)=1.228×10 ⁻⁵ 18; α (L)=1.185×10 ⁻⁶ 17; α (M)=1.669×10 ⁻⁷ 24 α (N)=7.27×10 ⁻⁹ 11; α (IPF)=0.001444 21 Mult.: From (γ , γ'),(pol γ , γ').
4848.9	1,2,3	1579.5 ^a 6	1.0×10 ^{2<i>a</i>} 4	3269.19 2+			
		3518 ^a 2	$2.\times 10^{1a}$ 1	1332.514 2+			
4859		3527° 5	61 ^C	1332.514 2+			
4020.00		4859 5	1000	0.0 0			
4928.98		1194.4° 3	38° 13	3/34.44 2			
		$2770.5^{\circ}3$	98° 13	2158.632 2			
4052.26		$3596.4^{\circ} 4$	100° 15	1332.514 2*			
4953.30		$841.2^{\circ}3$	14 ¹ 3	4111.96 2			
		913.63° 14	$40^{i} 4$	4039.89 3			
		1684.4° 3	26' 5	3269.19 2			
4058	4+	3620.64° 14	100° /	1332.514 2			
4930	4	3626 [°] 5	67 ^C	13325142^+			
4970.6		$1299^{\circ}5$	25 ^c	3671.16 4 ⁺			
		2344 ^c 5	100 ^C	2626.06 3+			
		3638 ⁸		1332.514 2+			5 5
4986.00	(6+)	578.3 3	17 4	4407.46 5+	M1+E2	0.00084 22	$ \begin{array}{l} \alpha = 0.00084 \ 22; \ \alpha(\mathrm{K}) = 0.00076 \ 20; \ \alpha(\mathrm{L}) = 7.5 \times 10^{-5} \ 20; \ \alpha(\mathrm{M}) = 1.1 \times 10^{-5} \\ 3; \ \alpha(\mathrm{N}+) = 4.5 \times 10^{-7} \ 11 \\ \alpha(\mathrm{N}) = 4.5 \times 10^{-7} \ 11 \end{array} $
		720.9 2	51 4	4265.00 6+	D		
		820.5 2	13.2 19	4165.50 5+	M1+E2	0.00035 5	α =0.00035 5; α (K)=0.00031 5; α (L)=3.1×10 ⁻⁵ 5; α (M)=4.3×10 ⁻⁶ 7; α (N+)=1.9×10 ⁻⁷ 3 α (N)=1.9×10 ⁻⁷ 3
		1255.8 2	9.4 19	3730.82 4+	E2	0.0001623 23	$\alpha = 0.0001623 \ 23; \ \alpha(\text{K}) = 0.0001291 \ 18; \ \alpha(\text{L}) = 1.260 \times 10^{-5} \ 18; \ \alpha(\text{M}) = 1.774 \times 10^{-6} \ 25 \ \alpha(\text{N}) = 7.64 \times 10^{-8} \ 11; \ \alpha(\text{IPF}) = 1.88 \times 10^{-5} \ 3 \ \text{R(E2)}(\text{W} \ \mu) = 0.5 + 4.5$
		1314.5 2	34 4	3671.16 4+	E2	0.0001619 23	$\alpha = 0.0001619 \ 23; \ \alpha(K) = 0.0001170 \ 17; \ \alpha(L) = 1.141 \times 10^{-5} \ 16; \alpha(M) = 1.606 \times 10^{-6} \ 23$

 $^{60}_{28}\mathrm{Ni}_{32}$ -23

 $^{60}_{28}\mathrm{Ni}_{32}$ -23

L

From ENSDF

$\gamma(^{60}Ni)$ (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Iγ	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.#	α^{\dagger}	Comments
	4986.00	(6+)	1867.0 <i>3</i>	11.3 19	3119.87	4+	E2	0.000312 5	$\begin{aligned} &\alpha(\mathrm{N}) = 6.93 \times 10^{-8} \ 10; \ \alpha(\mathrm{IPF}) = 3.18 \times 10^{-5} \ 5 \\ &\mathrm{B(E2)(W.u.)} = 1.5 \ +11 - 15 \\ &\alpha = 0.000312 \ 5; \ \alpha(\mathrm{K}) = 5.80 \times 10^{-5} \ 9; \ \alpha(\mathrm{L}) = 5.63 \times 10^{-6} \ 8; \\ &\alpha(\mathrm{M}) = 7.94 \times 10^{-7} \ 12; \ \alpha(\mathrm{N+}) = 0.000248 \ 4 \\ &\alpha(\mathrm{N}) = 3.44 \times 10^{-8} \ 5; \ \alpha(\mathrm{IPF}) = 0.000248 \ 4 \end{aligned}$
			2480.6 <i>3</i>	100 6	2505.753	4+	E2	0.000584 9	B(E2)(W.u.)=0.09 +7-9 α =0.000584 9; α (K)=3.49×10 ⁻⁵ 5; α (L)=3.38×10 ⁻⁶ 5; α (M)=4.76×10 ⁻⁷ 7; α (N+)=0.000546 8 α (N)=2.07×10 ⁻⁸ 3; α (IPF)=0.000546 8 B(F2)(W.u.)=0.18 + 12 - 18
	5014.45	(5-)	749.5 <i>3</i>	33	4265.00	6+	E1	0.000189 <i>3</i>	$\alpha = 0.000189 \ 3; \ \alpha(K) = 0.0001700 \ 24; \ \alpha(L) = 1.655 \times 10^{-5} \ 24; \alpha(M) = 2.33 \times 10^{-6} \ 4; \ \alpha(N+) = 1.002 \times 10^{-7} \alpha(N) = 1.002 \times 10^{-7} \ 14$
			828.3 <i>3</i>	63	4186.19	(4+)	(E1)	0.0001528 22	α =0.0001528 22; α (K)=0.0001375 20; α (L)=1.337×10 ⁻⁵ 19; α (M)=1.88×10 ⁻⁶ 3 α (N)=8 11×10 ⁻⁸ 12
2			848.9 <i>1</i>	33	4165.50	5+	E1	0.0001452 21	α =0.0001452 21; α (K)=0.0001307 19; α (L)=1.271×10 ⁻⁵ 18; α (M)=1.79×10 ⁻⁶ 3 α (N)=7.71×10 ⁻⁸ 11
			1283.8 4	9 <i>3</i>	3730.82	4+	E1	0.0001733 25	$\alpha = 0.0001733 \ 25; \ \alpha(\text{K}) = 5.97 \times 10^{-5} \ 9; \ \alpha(\text{L}) = 5.78 \times 10^{-6} \ 9; \alpha(\text{M}) = 8.14 \times 10^{-7} \ 12; \ \alpha(\text{N}+) = 0.0001070 \ 1 \alpha(\text{N}) = 3.52 \times 10^{-8} \ 5; \ \alpha(\text{IPF}) = 0.0001070 \ 16$
			1343.3 2	55 6	3671.16	4+	E1	0.000208 3	$\alpha = 0.000208 \ 3; \ \alpha(K) = 5.52 \times 10^{-5} \ 8; \ \alpha(L) = 5.35 \times 10^{-6} \ 8; \alpha(M) = 7.53 \times 10^{-7} \ 11; \ \alpha(N+) = 0.0001466 \ 21 \alpha(N) = 3.26 \times 10^{-8} \ 5; \ \alpha(IPF) = 0.0001465 \ 21$
			1894.7 <i>3</i>	100 10	3119.87	4+	E1	0.000595 9	α =0.000595 9; α (K)=3.18×10 ⁻⁵ 5; α (L)=3.07×10 ⁻⁶ 5; α (M)=4.33×10 ⁻⁷ 6; α (N+)=0.000560 8 α (N)=1.88×10 ⁻⁸ 3; α (IPF)=0.000560 8
			2508.7 4	87 10	2505.753	4+	E1	0.000989 14	α =0.000989 <i>14</i> ; α (K)=2.12×10 ⁻⁵ <i>3</i> ; α (L)=2.05×10 ⁻⁶ <i>3</i> ; α (M)=2.88×10 ⁻⁷ <i>4</i> ; α (N+)=0.000966 <i>14</i> α (N)=1.251×10 ⁻⁸ <i>18</i> ; α (IPF)=0.000966 <i>14</i>
	5048.3	1,2	2889.6 ^a 7 3716 ^{ak} 5048 ^a 3	$1.0 \times 10^{2a} 4$ $\leq 35^{a} 9^{a} 5$	2158.632 1332.514 0.0	2^+ 2^+ 0^+			
	5065.02	(1 ⁻)	$3732.23^{i} 22$ $5064.79^{i} 7$ 2465 f	$30^{i} 3$ $100^{i} 3$ 100^{f}	1332.514 0.0	2^+ 0^+ 2^+			
	5106	<i>4</i> +	$1435^{\circ} 5$ $2600^{\circ} 5$ 2615°	100 [°] 100 [°] 82 [°]	2020.00 3671.16 2505.753 2505.753	5 4 ⁺ 4 ⁺ 4 ⁺			
	3120.7	4	3788 ⁸		1332.514	$\frac{4}{2^{+}}$			

24

$\gamma(^{60}\text{Ni})$ (continued)

E_i (level) J_i^{π}	E_{γ}^{\ddagger}	Iγ	E_f	\mathbf{J}_{f}^{π}	Mult.#	$\delta^{@}$	$lpha^{\dagger}$	Comments
5127.16	1392.3 ⁱ 5	18 ⁱ 7	3734.44	2+				
3	3794.8 ^{<i>i</i>} 4	100 ⁱ 13	1332.514	2+				
5133 3	3800 [°] 5	100 ^C	1332.514	2^{+}				
5148.51 6+	740.9 2	100 10	4407.46	5+	M1+E2	+0.4 1	0.000391 11	α =0.000391 <i>11</i> ; α (K)=0.000351 <i>10</i> ; α (L)=3.44×10 ⁻⁵ <i>10</i> ; α (M)=4.84×10 ⁻⁶ <i>14</i> ; α (N+)=2.09×10 ⁻⁷ 6 α (N)=2.09×10 ⁻⁷ 6
	883.5 1	28.6 24	4265.00	6+	D			
	982.9 3	11.9 24	4165.50	5+	M1+E2		0.000229 23	$\alpha = 0.000229 \ 23; \ \alpha(\mathbf{K}) = 0.000206 \ 21; \ \alpha(\mathbf{L}) = 2.01 \times 10^{-5} \ 21; \\ \alpha(\mathbf{M}) = 2.8 \times 10^{-6} \ 3; \ \alpha(\mathbf{N}+) = 1.22 \times 10^{-7} \ 12 \\ \alpha(\mathbf{N}) = 1.22 \times 10^{-7} \ 12$
1	477.3 4	4.8 24	3671.16	4+	E2		0.000181 3	$\alpha = 0.000181 \ 3; \ \alpha(K) = 9.17 \times 10^{-5} \ I3; \ \alpha(L) = 8.92 \times 10^{-6} \ I3; \alpha(M) = 1.257 \times 10^{-6} \ I8; \ \alpha(N+) = 7.87 \times 10^{-5} \ I2 \alpha(N) = 5.43 \times 10^{-8} \ 8; \ \alpha(IPE) = 7.86 \times 10^{-5} \ I2$
2	2029.0 5	7.1 24	3119.87	4+	E2		0.000381 6	α =0.000381 6; α (K)=4.98×10 ⁻⁵ 7; α (L)=4.83×10 ⁻⁶ 7; α (M)=6.80×10 ⁻⁷ 10; α (N+)=0.000326 5 α (N)=2.95×10 ⁻⁸ 5; α (IPE)=0.000326 5
2	2643.0 4	60 7	2505.753	4+	E2		0.000657 10	$\alpha(N)=2.93\times10^{-9}$ 5, $\alpha(N)=3.000520$ 5 $\alpha=0.000657$ 10; $\alpha(K)=3.14\times10^{-5}$ 5; $\alpha(L)=3.04\times10^{-6}$ 5; $\alpha(M)=4.28\times10^{-7}$ 6; $\alpha(N+)=0.000622$ 9 $\alpha(N)=1.86\times10^{-8}$ 3; $\alpha(IPE)=0.000622$ 9
5174 2	2548 [°] 5	100 ^C	2626.06	3+				u(11)-1.00×10 5, u(11)-0.000022 5
5191.7	927 <mark>h</mark>	100	4265.00	6+				
5205 2	2699 [°] 5	100 ^C	2505.753	4+				
5236.20 5 ⁽⁺⁾ 2	2116.0 <i>1</i>	100	3119.87	4+	D+Q			
5244 4^+ 2	2120 [°] 5	100 ^c	3123.698	2+				
5288.55 1	1248.86 ¹ 15	100 ¹ 12	4039.89	3-				
3	3955.2 ¹ 6	69 ¹ 17	1332.514	2+				
5	5287.8 ¹ 7	61 ¹ 14	0.0	0^{+}				
5318 2	2812 5	100	2505.753	4 ⁺	T 1		0.00(21.0	
5348.79	200.2 1	5.3 4	5148.51	6'	EI		0.00621 9	$\alpha = 0.00621 \ 9; \ \alpha(\mathbf{K}) = 0.00558 \ 8; \ \alpha(\mathbf{L}) = 0.000547 \ 8; \\ \alpha(\mathbf{M}) = 7.67 \times 10^{-5} \ 11; \ \alpha(\mathbf{N}+) = 3.22 \times 10^{-6} \ 5 \\ \alpha(\mathbf{N}) = 3.22 \times 10^{-6} \ 5 \\ \mathbf{P}(\mathbf{E}_{1})(\mathbf{M}_{\mathbf{H}}) = 8.7 \times 10^{-6} \ 10$
	334.2 1	16.9 8	5014.45	(5 ⁻)	E2		0.00636 9	$a = 0.00636 \ 9; \ \alpha(K) = 0.00570 \ 8; \ \alpha(L) = 0.000575 \ 8; \alpha(M) = 8.06 \times 10^{-5} \ 12; \ \alpha(N+) = 3.30 \times 10^{-6} \ 5 \alpha(N) = 3.30 \times 10^{-6} \ 5 R(E2)(W,u) = 4.0.5$
	362.8 1	7.6 6	4986.00	(6 ⁺)	E1		0.001128 16	$\alpha = 0.001128 \ 16; \ \alpha(K) = 0.001014 \ 15; \ \alpha(L) = 9.92 \times 10^{-5} \ 14; \alpha(M) = 1.395 \times 10^{-5} \ 20; \ \alpha(N+) = 5.93 \times 10^{-7} \alpha(N) = 5.93 \times 10^{-7} \ 9 $
4				< +	-		0.00 10-5 10	B(E1)(W.U.)=2.10×10 ° 25

25

 $^{60}_{28}\mathrm{Ni}_{32}$ -25

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								Adopted I	Levels, Gammas (continued)	
$\frac{E_{i}(\text{level})}{5} \frac{\mu_{i}^{2}}{1} = \frac{E_{f}^{2}}{1} = \frac{E_{f}}{1} = \frac{\mu_{f}}{1} $								<u>.</u>	$\gamma(^{60}\text{Ni})$ (continued	<u>l)</u>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$E_i(lev)$	evel)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5348.	8.79	7-	2843.0 <i>I</i>	3.7 4	2505.753	4+	E3		0.000528 8	<i>11</i> ; $\alpha(M)=1.106\times10^{-6}$ <i>16</i> ; $\alpha(N+)=4.78\times10^{-8}$ <i>7</i> $\alpha(N)=4.78\times10^{-8}$ <i>7</i> B(E1)(W.u.)=1.04×10^{-6} <i>9</i> $\alpha=0.000528$ <i>8</i> ; $\alpha(K)=4.11\times10^{-5}$ <i>6</i> ; $\alpha(L)=3.99\times10^{-6}$ <i>6</i> ; $\alpha(M)=5.62\times10^{-7}$ <i>8</i> ; $\alpha(N+)=0.000482$ <i>7</i> $\alpha(N)=2.44\times10^{-8}$ <i>4</i> ; $\alpha(IPF)=0.000482$ <i>7</i> B(F2)(W.u.)=0.42 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5379	9		2255 ^c 5	100 ^C	3123.698	2+				D(E3)(W.u.) = 0.420
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5410.	0.8		2905 <i>1</i>	100 	2505.753	4+				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5446.	6.98	2+	1091.42 ⁱ 9	94 ⁱ 5	4355.56	2+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1575.84 ⁱ 13	100 ⁱ 7	3871.050	2+				
$ \begin{array}{c} \begin{array}{c} 4114.4^{i} & 6 & 99^{i} & 12 & 1332.514 & 2^{+} \\ 5449.5 & 6^{+} & 2944.4 & 7 & 100 & 2505.753 & 4^{+} & E2 \\ 5476.04 & 1888.4^{i} & 3 & 100^{i} & 13 & 3587.72 & 0^{+} \\ & 2282.0^{i} & 3 & 81^{i} & 13 & 3193.87 & 1^{+} \\ 5530 & (2^{+}) & 2046^{+} & 5 & 67^{c} & 2626.06 & 3^{+} \\ 3371^{c} & 5 & 100^{c} & 2158.632 & 2^{+} \\ 5612.40 & 851.9^{i} & 3 & 4.5^{i} & 7 & 4760.23 & 1.2 \\ & 1064.2^{i} & 4 & .8^{i} & 9 & 4547.96 & 1^{+}.2^{+} \\ 1592.53^{i} & 100^{i} & 3 & 4019.886 & 1^{+} \\ & 1741.3^{i} & 5 & 3.0^{i} & 9 & 3871.050 & 2^{+} \\ 1878.0^{i} & 4 & 5^{i} & 1 & 3734.44 & 2^{+} \\ 2488.73^{i} & 10 & 20^{i} & 1 & 3123.698 & 2^{+} \\ 3453.67^{i} & 11 & 30^{i} & 1 & 2158.632 & 2^{+} \\ 5663.03 & 7^{+} & 514.4 & 2 & 11.1 & 19 & 5148.51 & 6^{+} & M1+E2 \\ & 677.7 & 2 & 100 & 7 & 4986.00 & (6^{+}) & M1+E2 & +0.18 + 17 - 16 & 0.00124 & a=0.00124; a(K)=0.00104; a(L)=0.000104; a(K)=0.000104; a(K)=0.0004817; a(L)=0.000104; a(K)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(L)=0.000104; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(K)=0.0004817; a(L)=0.0004817; a(L)=0.0004817; a(L)=0$				3288.5 ⁱ 3	27 ⁱ 7	2158.632	2+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$4114.4^{i}6$	99 ^{<i>i</i>} 12	1332.514	2+				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5449.	9.5	6+	2944.4 7	100	2505.753	4+	E2		0.000787 11	α =0.000787 <i>11</i> ; α (K)=2.62×10 ⁻⁵ <i>4</i> ; α (L)=2.54×10 ⁻⁶ <i>4</i> ; α (M)=3.58×10 ⁻⁷ <i>5</i> ; α (N+)=0.000758 <i>11</i> α (N)=1.554×10 ⁻⁸ 22; α (IPF)=0.000758 <i>11</i>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N 5476.	6.04		1888.4 ⁱ 3	100 ⁱ 13	3587.72	0^{+}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5530	0	(2^{+})	2282.0 ^{<i>i</i>} 3 2904 ^{<i>c</i>} 5	81 ^{<i>i</i>} 13 67 ^{<i>c</i>}	3193.87 2626.06	1+ 3+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,	3371 [°] 5	100 ^C	2158.632	2^{+}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5612.	2.40		851.9 ⁱ 3	4.5 ⁱ 7	4760.23	1,2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1064.2 ⁱ 4	4.8 ⁱ 9	4547.96	$1^+, 2^+$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1592.53 ⁱ 4	100 ⁱ 3	4019.886	1^{+}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1741.3 ⁱ 5	3.0 ⁱ 9	3871.050	2+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1878.0 ⁱ 4	5 ⁱ 1	3734.44	2+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2488.73 ⁱ 10	20 ⁱ 1	3123.698	2+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3453.67 ⁱ 11	30 ⁱ 1	2158.632	2^{+}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4279.8 ⁱ 4	7.7 ⁱ 14	1332.514	2^{+}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5611.8 ⁱ 4	8.2 ⁱ 12	0.0	0^{+}				
677.7 2 100 7 4986.00 (6 ⁺) M1+E2 +0.18 +17-16 0.000454 19 α =0.000454 19; α (K)=0.000408 17; α (L)=4.00×10 ⁻⁵ 17; α (M)=5.63×10 ⁻⁶ 23; α (N+)=2.43×10 ⁻⁷ 1 α (N)=2.43×10 ⁻⁷ 10 B(M1)(W1)=0.048 +21-48; B(E2)(W1)=6+12-6	5663.	3.03	7+	514.4 2	11.1 <i>19</i>	5148.51	6+	M1+E2		0.0012 4	α =0.0012 4; α (K)=0.0010 4; α (L)=0.00010 4; α (M)=1.5×10 ⁻⁵ 5; α (N+)=6.2×10 ⁻⁷ 18 α (N)=6.2×10 ⁻⁷ 18
$D(V(1)(W)) = U(140 \pm 77 \pm 40)$ $D(P(1)(W)) = U(140 \pm 77 \pm 77)$				677.7 2	100 7	4986.00	(6+)	M1+E2	+0.18 +17-16	0.000454 19	$\alpha = 0.000454 \ 19; \ \alpha(K) = 0.000408 \ 17; \ \alpha(L) = 4.00 \times 10^{-5} $ $17; \ \alpha(M) = 5.63 \times 10^{-6} \ 23; \ \alpha(N+) = 2.43 \times 10^{-7} \ 1$ $\alpha(N) = 2.43 \times 10^{-7} \ 10$ $P(M1)(W, u) = 0.048 + 21 \ 48; \ P(E2)(W, u) = 6 + 12 \ 6$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1255.1 <i>3</i>	22.2 19	4407.46	5+	E2		0.0001624 23	$\alpha(L) = 1.261 \times 10^{-5} \ 13; \ \alpha(K) = 0.0001293 \ 19; \\ \alpha(L) = 1.261 \times 10^{-5} \ 18; \ \alpha(M) = 1.776 \times 10^{-6} \ 25 \\ \alpha(N) = 7.65 \times 10^{-8} \ 11; \ \alpha(IPF) = 1.86 \times 10^{-5} \ 3 \\ B(F2)(Wu) = 2 \ 0 \ +9 = 20$
$1397.7.2$ 69.6 4265.00 6 ⁺ M1(+E2) -0.12.13 0.0001438.23 α =0.0001438.23; α (K)=9.35×10 ⁻⁵ .14;	1			1397.7 2	69 6	4265.00	6+	M1(+E2)	-0.12 13	0.0001438 23	$\alpha = 0.0001438 \ 23; \ \alpha(\text{K}) = 9.35 \times 10^{-5} \ 14;$

				Adopted Le	vels, Gammas (co	ontinued)	
				$\gamma(6)$	⁶⁰ Ni) (continued)		
J_i^{π} (level) J_i^{π}	E_{γ}^{\ddagger}	I_{γ} E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$lpha^\dagger$	Comments
							α (L)=9.08×10 ⁻⁶ <i>14</i> ; α (M)=1.280×10 ⁻⁶ <i>19</i> ; α (N+)=3.99×10 ⁻⁵

 $^{60}_{28}\mathrm{Ni}_{32}$ -27

						Adopte	ed Levels, Gamn	has (continued	_
							γ (⁶⁰ Ni) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
5663.03	7+	1498.0 <i>4</i>	3.7 19	4165.50	5+	E2		0.000185 <i>3</i>	$\begin{split} &\alpha(\mathrm{N}){=}5.56{\times}10^{-8}~9;~\alpha(\mathrm{IPF}){=}3.98{\times}10^{-5}~9\\ &\mathrm{B}(\mathrm{M1})(\mathrm{W.u.}){=}(0.0038~{+}17{-}38);~\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}){=}(0.05~{+}12{-}5)\\ &\alpha{=}0.000185~3;~\alpha(\mathrm{K}){=}8.91{\times}10^{-5}~13;~\alpha(\mathrm{L}){=}8.67{\times}10^{-6}~13;\\ &\alpha(\mathrm{M}){=}1.222{\times}10^{-6}~18;~\alpha(\mathrm{N+}){=}8.62{\times}10^{-5}~13\\ &\alpha(\mathrm{N}){=}5.28{\times}10^{-8}~8;~\alpha(\mathrm{IPF}){=}8.62{\times}10^{-5}~13\\ &\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}){=}0.14~{+}10{-}14 \end{split}$
5672.36		2478.42 ¹ 7	100 ^{<i>i</i>} 4	3193.87	1+				
		3046.7 ¹ 7	13 ¹ 4	2626.06	3+				
		3513.6 ¹ 3	56 ¹ 6	2158.632	2+				
5710.79		1632.99 ¹ 18	15 1	4077.99	$1^+, 2^+$				
		2317.65' 20	13' 2	3393.14	2+				
		2392.64 3	11' 1	3317.829	0^{+}				
		2517.00 ⁱ 9	68 [°] 2	3193.87	1+				
		2586.98' 12	20 ^{<i>i</i>} 1	3123.698	2+				
		3426.3' 5	26^{\prime} 7	2284.80	0+				
		3551.94^{i} 14	36' 2	2158.632	2+				
		5710.52' 10	100' 4	0.0	0+				
5780.5		3153.6 7	82° 13	2626.06	3+				
		3275.4° 7	100 13	2505.753	4				
5785.1	('/+)	799.0 ^{ex} 2	100 ^e	4986.00	(6 ⁺)	D(+Q)	-0.07 +9-27		
5799	2*	3293 ^d 5		2505.753	4 ⁺				
5020 0		4467 ^a 5		1332.514	2+ 4+				
3630.6		4498 <mark>8</mark>		1332 514	4 2 ⁺				
5859 9		$3700.9^{i}.9$	100 ⁱ	2158 632	2+ 2+				
5878.05		2684.19^{i} 12	100^{i} 5	3193.87	1+				
0010100		$4545.9^{i}.5$	$45^{i}9$	1332.514	2+				
5901.69	6-	1637.0 <i>1</i>	38 8	4265.00	- 6 ⁺	E1		0.000411 6	α =0.000411 6; α (K)=3.98×10 ⁻⁵ 6; α (L)=3.86×10 ⁻⁶ 6; α (M)=5.43×10 ⁻⁷ 8; α (N+)=0.000366 6
		1736.0 <i>1</i>	100 8	4165.50	5+	E1		0.000483 7	$\alpha(N)=2.53 \times 10^{-6} 4; \ \alpha(IPF)=0.000300 \ 0$ $\alpha=0.000483 \ 7; \ \alpha(K)=3.63 \times 10^{-5} 5; \ \alpha(L)=3.52 \times 10^{-6} 5;$ $\alpha(M)=4.95 \times 10^{-7} \ 7; \ \alpha(N+)=0.000442 \ 7$ $\alpha(N)=2.15 \times 10^{-8} \ 3; \ \alpha(IPF)=0.000442 \ 7$
5902.44		2633.3 ⁱ 3	18 ⁱ 3	3269.19	2^{+}				
		3276.32 ⁱ 20	24 ⁱ 3	2626.06	3+				
		3743.71 ⁱ 13	100 ^{<i>i</i>} 5	2158.632	2^{+}				

$^{60}_{28}\mathrm{Ni}_{32}$ -28

L

 $^{60}_{28}\mathrm{Ni}_{32}$ -28

From ENSDF

						Adopt	ed Levels,	G <mark>ammas</mark> (continu	ued)
							γ (⁶⁰ Ni)	(continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$lpha^\dagger$	Comments
5918.54	_	2525.4^{i} 3	83 ⁱ 15	3393.14	2+				
5931.1	1	5930.8^{j} 11	100^{j}	0.0	0^{+}	j			
5967.8		1474.6^{i} 3	100^{i} 13	4493.16	2+				
0,0110		5967.5 ⁱ 8	29^{i} 11	0.0	-0^{+}				
6066.72		1532.65 ⁱ 12	60 ⁱ 6	4534.14	2+				
		2797.7 ⁱ 5	23 ⁱ 6	3269.19	2+				
		3440.37 ⁱ 17	100 ⁱ 9	2626.06	3+				
		6067.2 ⁱ 8	15 ⁱ 6	0.0	0^{+}				
6076.6	(8)	727 <mark>h</mark>		5348.79	7-				
6111.5		963 ^h		5148.51	6+				
6112.43	7+	963.7 <i>3</i>	100 7	5148.51	6+	M1+E2	+0.3 2	0.000219 7	α =0.000219 7; α (K)=0.000197 6; α (L)=1.92×10 ⁻⁵ 6; α (M)=2.70×10 ⁻⁶ 9; α (N+)=1.17×10 ⁻⁷ 4 α (N)=1.17×10 ⁻⁷ 4
		1847.2 5	61 7	4265.00	6+	M1+E2		0.00028 3	$\alpha = 0.00028 \ 3; \ \alpha(\text{K}) = 5.76 \times 10^{-5} \ 18; \ \alpha(\text{L}) = 5.59 \times 10^{-6} \ 18; \alpha(\text{M}) = 7.87 \times 10^{-7} \ 25; \ \alpha(\text{N}+) = 0.000215 \ 24 \alpha(\text{N}) = 3.42 \times 10^{-8} \ 11; \ \alpha(\text{IPF}) = 0.000215 \ 24$
		1946.6 5	29 4	4165.50	5+	E2		0.000346 5	α =0.000346 5; α (K)=5.37×10 ⁻⁵ 8; α (L)=5.21×10 ⁻⁶ 8; α (M)=7.34×10 ⁻⁷ 11; α (N+)=0.000286 4 α (N)=3.18×10 ⁻⁸ 5; α (IPF)=0.000286 4
6181.0	1-	4848.4 14	10 4	1332.514	2^{+}				
		6180.6 7	100 1	0.0	0^{+}	E1 .			α (IPF)=0.00233 4
6229.3	(2^{+})	6229.0 ^J 11	100	0.0	0^{+}	(E2) ^J			α (IPF)=0.00180 3
6239.2		4906.1 ¹ 5	100 ¹	1332.514	2^{+}			5	5
6278.34	(6 ⁻)	1042.0 <i>1</i>	75 33	5236.20	5(+)	(E1)		9.68×10 ⁻³ 14	$\alpha = 9.68 \times 10^{-3} \ 14; \ \alpha(\text{K}) = 8.71 \times 10^{-3} \ 13; \ \alpha(\text{L}) = 8.46 \times 10^{-6} \ 12; \ \alpha(\text{M}) = 1.191 \times 10^{-6} \ 17; \ \alpha(\text{N}+) = 5.14 \times 10^{-8} \ 8 \ \alpha(\text{N}) = 5.14 \times 10^{-8} \ 8 \ 8 \ 10^{-6} $
		1264.0 ^g 1	100 <i>33</i>	5014.45	(5 ⁻)	(M1+E2)		0.000151 11	$ \begin{array}{l} \alpha = 0.000151 \ 11; \ \alpha(\mathrm{K}) = 0.000120 \ 8; \ \alpha(\mathrm{L}) = 1.17 \times 10^{-5} \ 8; \\ \alpha(\mathrm{M}) = 1.65 \times 10^{-6} \ 11; \ \alpha(\mathrm{N} +) = 1.8 \times 10^{-5} \ 3 \\ \alpha(\mathrm{N}) = 7.1 \times 10^{-8} \ 5; \ \alpha(\mathrm{IPF}) = 1.8 \times 10^{-5} \ 3 \end{array} $
6327.21	2^{+}	1568.0 ⁱ 5	14 ⁱ 3	4760.23	1,2				
		2320.7 ⁱ 4	25 ⁱ 4	4006.444	2^{+}				
		3058.0 ⁱ 7	16 ⁱ 4	3269.19	2^{+}				
		4168.32 ⁱ 19	100 ⁱ 8	2158.632	2^{+}				
6362.05		749.7 ⁱ 3	100 ⁱ 12	5612.40					
		3167.7 ⁱ 4	90 <mark>i</mark> 10	3193.87	1^{+}				
6382.4	1	6382.3 ⁱ 5	100 ^{<i>i</i>}	0.0	0^{+}				
6461.10	8+	348.7 2	93	6112.43	7+	M1+E2		0.0037 18	$ \begin{array}{l} \alpha = 0.0037 \ 18; \ \alpha(\mathrm{K}) = 0.0034 \ 16; \ \alpha(\mathrm{L}) = 0.00034 \ 16; \\ \alpha(\mathrm{M}) = 4.7 \times 10^{-5} \ 23; \ \alpha(\mathrm{N} +) = 2.0 \times 10^{-6} \ 9 \\ \alpha(\mathrm{N}) = 2.0 \times 10^{-6} \ 9 \end{array} $
		798.1 2	100 5	5663.03	7^{+}	M1+E2	+0.45 5	0.000335 6	α =0.000335 6; α (K)=0.000301 6; α (L)=2.94×10 ⁻⁵ 6;

 $^{60}_{28}\mathrm{Ni}_{32}$ -29

						Adop	ted Levels, Gam	mas (continued)
							γ ⁽⁶⁰ Ni) (cont	tinued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
6461.10	8+	1312.4 4	27 3	5148.51	6+	E2	0.0001618 <i>23</i>	$\begin{aligned} &\alpha(\mathbf{M}) = 4.15 \times 10^{-6} \ 8; \ \alpha(\mathbf{N}+) = 1.79 \times 10^{-7} \ 3 \\ &\alpha(\mathbf{N}) = 1.79 \times 10^{-7} \ 3 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.019 \ +8 - 19; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 11 \ +6 - 11 \\ &\alpha = 0.0001618 \ 23; \ \alpha(\mathbf{K}) = 0.0001174 \ 17; \ \alpha(\mathbf{L}) = 1.145 \times 10^{-5} \ 16; \\ &\alpha(\mathbf{M}) = 1.612 \times 10^{-6} \ 23 \\ &\alpha(\mathbf{N}) = 6.95 \times 10^{-8} \ 10; \ \alpha(\mathbf{IPF}) = 3.13 \times 10^{-5} \ 5 \end{aligned}$
		1475.0 <i>4</i>	16 <i>1</i>	4986.00	(6 ⁺)	E2	0.000180 <i>3</i>	B(E2)(W.u.)=1.5 +7-15 α =0.000180 3; α (K)=9.20×10 ⁻⁵ 13; α (L)=8.95×10 ⁻⁶ 13; α (M)=1.261×10 ⁻⁶ 18; α (N+)=7.79×10 ⁻⁵ 11 α (N)=5.45×10 ⁻⁸ 8; α (IPF)=7.78×10 ⁻⁵ 11 B(E2)(W.u.)=0.49 +21-49
		2195.9 5	6 1	4265.00	6+	E2	0.000456 7	α =0.000456 7; α (K)=4.32×10 ⁻⁵ 6; α (L)=4.18×10 ⁻⁶ 6; α (M)=5.89×10 ⁻⁷ 9; α (N+)=0.000408 6 α (N)=2.56×10 ⁻⁸ 4; α (IPF)=0.000408 6 B(E2)(W,u)=0.025 +12-25
6465.25	1-	1621.2 ⁱ 5	19 ⁱ 6	4843.93	2+			
		2578.2 ⁱ 5	16 ⁱ 5	3887.36	2+			
		5132.6 ⁱ 5	31 ⁱ 7	1332.514	2^{+}			
		6464.9 ^{<i>i</i>} 3	100 ⁱ 6	0.0	0^+	E1		α (IPF)=0.00240 4 Mult.: From (γ , γ'),(pol γ , γ').
6489.28		3369.4 ⁱ 4	46 ⁱ 8	3119.87	4+			
		3983.6 ⁱ 4	100 ⁱ 12	2505.753	4+			
		4204.0 ⁱ 7	42 ⁱ 12	2284.80	0^{+}			
6515.0	1^{+}	6514.6 ^j 9	100 j	0.0	0^{+}	M1 ^j		α (IPF)=0.001745 25
6516.72		2198.1 ^{<i>i</i>} 4	100 ⁱ 19	4318.58	2+			
		2496.9 ⁱ 3	70 ⁱ 12	4019.886	1^{+}			
6567.33		2547.35 ⁱ 21	100 ⁱ	4019.886	1^{+}			
6587.6	1-	4302.0 ¹ 11	$30^{j} 6$	2284.80	0^{+}	Ĵ.		
		5254.7 <mark>/</mark> 10	19 <mark>1</mark> 6	1332.514	2^{+}	J .		
		6587.6 ^J 8	100 <mark>/</mark> 3	0.0	0^{+}	E1 J		α (IPF)=0.00243 4
6647.17		2607.10 ¹ 22	55 ¹ 7	4039.89	3-			
		2627.4 ¹ 3	39 ¹ 6	4019.886	1^{+}			
		3027.86 ¹ 16	1001 8	3619.46	3+			
		4021.4 ¹ 5	100 ¹ 11	2626.06	3+			
6672.4	(9)	595 ⁿ		6076.6	(8)			
6718.5	1-	6718.1 ^J 10	100 J	0.0	0+	E1J		α (IPF)=0.00246 4
6736.5	(1)	4577.7 []] 13	100 <mark>/</mark> 21	2158.632	2+	J ;		
		6736.1 ^J 16	85 <mark>/</mark> 21	0.0	0+	J		
6756.4		2831.3 ¹ 6	78 ¹ 22	3925.18	2+,3+			
		3487.1 ¹ 4	100 ¹ 22	3269.19	2+			

From ENSDF

						Adop	ted Levels, Gam	nas (continued)	⁶⁰ Ni ₂₈ Ni ₃
							γ (⁶⁰ Ni) (cont	inued)	₃₂ -31
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$lpha^{\dagger}$	Comments	
6761.39	7 ⁽⁺⁾	861.4 4	30 10	5901.69	6-	(E1)	0.0001409 20	α =0.0001409 20; α (K)=0.0001268 18; α (L)=1.233×10 ⁻⁵ 18;	
									rom 1
									ENSD
									Ţ
									⁶⁰ ₂₈ Ni
									₃₂ -31

						Ado	pted Levels, Gar	nmas (continue	<u>d)</u>
							γ ⁽⁶⁰ Ni) (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$lpha^{\dagger}$	Comments
									$\alpha(M)=1.736\times 10^{-6} 25$
6761.39	7 ⁽⁺⁾	1525.0 <i>1</i>	30 10	5236.20	5 ⁽⁺⁾	E2		0.000192 3	$\alpha(N) = 7.48 \times 10^{-8} II \alpha = 0.000192 3; \ \alpha(K) = 8.60 \times 10^{-5} I2; \ \alpha(L) = 8.36 \times 10^{-6} I2; \alpha(M) = 1.178 \times 10^{-6} I7; \ \alpha(N+) = 9.66 \times 10^{-5} I4 \alpha(N) = 5.09 \times 10^{-8} 8; \ \alpha(IPE) = 9.65 \times 10^{-5} I4$
		2498.5 6	100 10	4265.00	6+	(M1+E2)		0.00055 5	$\alpha(N) = 5.09 \times 10^{-6} \ 6, \ \alpha(M + 1) = 9.00 \times 10^{-14} \ \alpha = 0.00055 \ 5; \ \alpha(K) = 3.39 \times 10^{-5} \ 8; \ \alpha(L) = 3.28 \times 10^{-6} \ 8; \ \alpha(M) = 4.62 \times 10^{-7} \ 11; \ \alpha(N+) = 0.00051 \ 5 \ \alpha(N) = 2.01 \times 10^{-8} \ 5; \ \alpha(IPF) = 0.00051 \ 5$
6810.95	9-	1461.5 ^e 2	100 ^e	5348.79	7-	E2(+M3)	-0.02 +30-7	0.000177 12	$\alpha(N)=2.01\times10^{-5} \ 3, \ \alpha(N)=0.00015^{-5} \ \alpha(L)=9.1\times10^{-6} \ 15; \ \alpha(M)=1.29\times10^{-6} \ 21; \ \alpha(N+)=7.3\times10^{-5} \ 5 \ \alpha(N)=5.6\times10^{-8} \ 9; \ \alpha(IPF)=7.3\times10^{-5} \ 5 \ B(E2)(W.u.)=(11 \ 6); \ B(M3)(W.u.)=(1.4\times10^4 \ +434-14) \ \delta; \ other: \ -0.10 \ +20-15 \ from \ {}^{58}Ni(\alpha, 2p\gamma).$
6834.92		3517.3 ⁱ 3	93 ⁱ 12	3317.829	0^{+}				
		3641.1 ⁱ 4	100 ⁱ 14	3193.87	1^{+}				
6835.18		3517.3 ⁱ 3	93 ⁱ 11	3317.829	0^{+}				
		3641.1 ⁱ 4	100 ⁱ 13	3193.87	1^{+}				
6837.2	8-	1487.8	100	5348.79	7-	M1+E2		0.000169 15	$\alpha = 0.000169 \ 15; \ \alpha(\text{K}) = 8.7 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 8.4 \times 10^{-6} \ 4; \\ \alpha(\text{M}) = 1.19 \times 10^{-6} \ 6; \ \alpha(\text{N}+) = 7.3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 7 \ 3 \times 10^{-5} \ 10 \\ \alpha(\text{N}) = 5 \ 14 \times 10^{-8} \ 10^{-6$
6911 93	1+	2593 3 ⁱ 4	15 ^{<i>i</i>} 4	4318 58	2^{+}				u(1)-5.11/10 22, u(11)-7.5/10 10
0711170		3040.5^{i} 4	31 ^{<i>i</i>} 6	3871.050	- 2+				
		5578.7 ⁱ 6	22^{i} 6	1332.514	- 2+				
		6911.7 ^{<i>i</i>} 3	100^{i} 7	0.0	$\frac{2}{0^{+}}$	M1			α (IPF)=0.00182 3 Mult.: From (γ, γ') ,(pol γ, γ').
6950.4	(10)	278 ^h	100	6672.4	(9)				
6996.86		2152.6 ⁱ 3	100 ⁱ 15	4843.93	2+				
		4370.7 ⁱ 5	71 ⁱ 12	2626.06	3+				
7027.83	8+	914.8 <i>3</i>	70 10	6112.43	7+	M1+E2		0.00027 4	α =0.00027 4; α (K)=0.00024 3; α (L)=2.4×10 ⁻⁵ 3; α (M)=3.3×10 ⁻⁶ 4; α (N+)=1.44×10 ⁻⁷ 16 α (N)=1.44×10 ⁻⁷ 16
		1365.0 2	100 10	5663.03	7+	M1+E2		0.000153 12	$\alpha(N) = 1.44 \times 10^{-16} \text{ I } 6^{-16}$ $\alpha = 0.000153 \ 12; \ \alpha(K) = 0.000103 \ 6; \ \alpha(L) = 1.00 \times 10^{-5} \ 6;$ $\alpha(M) = 1.41 \times 10^{-6} \ 8; \ \alpha(N+) = 3.9 \times 10^{-5} \ 6$
		1578.6 4	60 10	5449.5	6+	E2		0.000208 3	$\begin{aligned} \alpha(N) &= 6.1 \times 10^{-6} \ 3; \ \alpha(IPF) = 3.9 \times 10^{-5} \ 6 \\ \alpha &= 0.000208 \ 3; \ \alpha(K) = 8.02 \times 10^{-5} \ 12; \ \alpha(L) = 7.80 \times 10^{-6} \ 11; \\ \alpha(M) &= 1.099 \times 10^{-6} \ 16; \ \alpha(N+) = 0.0001184 \end{aligned}$
		1880.9 <i>5</i>	100 20	5148.51	6+	E2		0.000318 5	$\alpha(N)=4.75\times10^{-8} 7; \ \alpha(IPF)=0.0001184 \ 17$ $\alpha=0.000318 \ 5; \ \alpha(K)=5.72\times10^{-5} \ 8; \ \alpha(L)=5.56\times10^{-6} \ 8;$ $\alpha(M)=7.83\times10^{-7} \ 11; \ \alpha(N+)=0.000254 \ 4$
		2041.9 5	40 20	4986.00	(6+)	E2		0.000387 6	$\alpha(N) = 3.39 \times 10^{-6} 5; \ \alpha(IPF) = 0.000254 4$ $\alpha = 0.000387 6; \ \alpha(K) = 4.92 \times 10^{-5} 7; \ \alpha(L) = 4.77 \times 10^{-6} 7;$

I

						Adopt	ed Levels,	, <mark>Gammas</mark> (conti	nued)
							γ (⁶⁰ Ni) (continued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Iγ	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	$lpha^{\dagger}$	Comments
									$\alpha(M)=6.72\times10^{-7}$ 10; $\alpha(N+)=0.000332$ 5 $\alpha(N)=2.91\times10^{-8}$ 4; $\alpha(IPF)=0.000332$ 5
7038.7	1-	5705.6 ^J 9 7038 7 ^j 10	64J9 100 j 7	1332.514	2^+ 0^+	J E1 <i>j</i>			$\alpha(\text{IPF})=0.00253.4$
7056.27		383 ^h	100 /	6672.4	(9)	DI			
		4430.3 ^{<i>i</i>} 4	100 ⁱ 13	2626.06	3+				
		5723.0 ¹ 5	80 ¹ 13	1332.514	2+				
7101.4	(10)	429^{n}	1001 12	6672.4	(9) 1+ 2+				
/20/.0		5129.0° 3 5875 2 ⁱ 7	52^{i} 13	4077.99	$1^{+},2^{+}$				
7222.80		3603.4^{i} 7	61^{i} 16	3619.46	3^{+}				
		5889.9 5	100 16	1332.514	2^{+}				
7250.0	8+	2986.5 7	100	4265.00	6+	E2		0.000804 12	$\alpha = 0.000804 \ 12; \ \alpha(K) = 2.56 \times 10^{-5} \ 4; \ \alpha(L) = 2.48 \times 10^{-6} \ 4; \alpha(M) = 3.49 \times 10^{-7} \ 5; \ \alpha(N+) = 0.000776 \ 11 \alpha(N) = 1.519 \times 10^{-8} \ 22; \ \alpha(IPF) = 0.000776 \ 11$
7316.13		1643.6 ⁱ 4	68 ⁱ 14	5672.36					
		3296.3 ⁱ 3	100 ⁱ 14	4019.886	1^{+}				
		5983.4 ⁱ 5	63 ⁱ 14	1332.514	2^{+}				
7339.68		1628.9 ¹ 4	85 ¹ 16	5710.79					
7360.07	(8)	2846.9 ⁴ 5	100 ¹ 20	4493.16	$2^+_{7^-}$	$(\mathbf{D} \mid \mathbf{O})$			
7380.3	(8) 8 ⁺	3114.7 7	100	4265.00	6 ⁺	(D+Q) E2		0.000857 12	α =0.000857 <i>12</i> ; α (K)=2.40×10 ⁻⁵ <i>4</i> ; α (L)=2.32×10 ⁻⁶ <i>4</i> ; α (M)=3.26×10 ⁻⁷ <i>5</i> ; α (N+)=0.000830 <i>12</i> α (N)=1.419×10 ⁻⁸ <i>20</i> ; α (IPF)=0.000830 <i>12</i>
7414.16		3302.11 ⁱ 24	100 ⁱ	4111.96	2^{+}				
7433.45	9+	405.7 2	10 2	7027.83	8+	M1+E2		0.0023 10	α =0.0023 <i>10</i> ; α (K)=0.0021 <i>9</i> ; α (L)=0.00021 <i>9</i> ; α (M)=2.9×10 ⁻⁵ <i>12</i> ; α (N+)=1.2×10 ⁻⁶ <i>5</i> α (N)=1.2×10 ⁻⁶ <i>5</i>
		972.3 2	100 10	6461.10	8+	M1+E2	+0.4 2	0.000217 7	$\alpha(N)=1.2\times10^{-5} \ 6; \ \alpha(L)=1.91\times10^{-5} \ 6; \ \alpha(M)=2.69\times10^{-6} \ 9; \ \alpha(N+)=1.16\times10^{-7} \ 4 \ \alpha(N)=1.16\times10^{-7} \ 4$
		1321.1 4	32 8	6112.43	7+	E2		0.0001620 23	α (1)=1.10510 23; α (K)=0.0001157 17; α (L)=1.128×10 ⁻⁵ 16; α (M)=1.589×10 ⁻⁶ 23 (D)= 0.5510 ⁻⁶ 23 (D)= 0.224110 ⁻⁵ 5
		1770.6 5	4 2	5663.03	7+	E2		0.000274 4	$\alpha(N)=6.85\times10^{-7} I0; \ \alpha(IPF)=5.34\times10^{-5} 5; \ \alpha(L)=6.23\times10^{-6} 9; \ \alpha(M)=8.78\times10^{-7} I3; \ \alpha(N+)=0.000203 3; \ \alpha(N)=3.80\times10^{-8} 6; \ \alpha(IPF)=0.000203 3; \ \alpha(N)=3.80\times10^{-8} 6; \ \alpha(IPF)=0.000203; \ \alpha(N)=3.80\times10^{-8} 6; \ \alpha(IPF)=0.00020; \\alpha(N)=3.80\times10^{-8} 6; \ \alpha(IPF)=0.00020; \\alpha(N)=3.80\times10^{-8} 6; \\alpha(IPF)=0.00020; \\alpha(N)=3.80\times10^{-8} 6; \\alpha(IPF)=0.00020; \\alpha(N)=3.80\times10^{-8} 6; \\alpha(N)=3.80\times10^{-8} 6; \\alpha(IPF)=0.00020; \\alpha(N)=3.80\times10^{-8} 6; \\alpha(IPF)=0.00020; \\alpha(N)=3.80\times10^{-8} 6; \\alpha(N)=3.80\times10^{-8} 6; \\alpha(N)=3.80\times10^{-8} 6; \\alpha(N)=3.80\times10^{-8} $
7465.66	(7 ⁻)	2451.5 6	100	5014.45	(5 ⁻)	E2		0.000571 8	$\alpha = 0.000571 \ 8; \ \alpha(\text{M}) = 3.56 \times 10^{-5} \ 5; \ \alpha(\text{L}) = 3.45 \times 10^{-6} \ 5; \alpha(\text{M}) = 4.86 \times 10^{-7} \ 7; \ \alpha(\text{N}+) = 0.000532 \ 8 \alpha(\text{N}) = 2.11 \times 10^{-8} \ 3; \ \alpha(\text{IPF}) = 0.000532 \ 8$

н

$\gamma(^{60}\text{Ni})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
7473 49	1+	2938 6^{i} 4	80^{i} 17	4534 14	2+			
7115.19	1	$7473.0^{i} 8$	$100^i 20$	0.0	0^{+}	M1		$\alpha(\text{IPF})=0.00193 3$ Mult : from $(\gamma \gamma')$ (pol $\gamma \gamma'$)
7495 2		6162 5 ⁱ 6	100.0 ⁱ	1332 514	2+			Matter from (7,7), por 7,7).
7531.4	8+	1418 9 4	75 25	6112.43	2 7+	M1+F2	0.000158.73	$\alpha = 0.000158 \ 13^{\circ} \ \alpha(K) = 9.5 \times 10^{-5} \ 5^{\circ} \ \alpha(L) = 9.3 \times 10^{-6} \ 5^{\circ} \ \alpha(M) = 1.30 \times 10^{-6}$
7551.1	0	1110.77	15 25	0112.15	1	1411 122	0.000150 15	$\alpha = 0.000150 \ 15, \ \alpha(R) = 9.5 \times 10^{-5} \ 5, \ \alpha(R) = 9.5 \times 10^{-5} \ 8$ $\alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(IPF) = 5.2 \times 10^{-5} \ 8$
		3266.9 8	100 25	4265.00	6+	E2	0.000919 13	α =0.000919 13; α (K)=2.22×10 ⁻⁵ 4; α (L)=2.15×10 ⁻⁶ 3; α (M)=3.02×10 ⁻⁷ 5; α (N+)=0.000894 13 α (N)=1.315×10 ⁻⁸ 19: α (IPF)=0.000894 13
7552.0		5303 3 ⁱ 3	100.0 ⁱ	2158 632	2^{+}			<i>u</i> (1)=1.515×10 17, <i>u</i> (111)=0.000074 15
7559.5	1-	7559 0 <i>i 8</i>	100.0	0.0	0^{+}	F1 <i>İ</i>		α (IPF)-0.00262 Λ
7627.4	1	677	100*	6950.4	(10)	LI		<i>u</i> (III)=0.00202 7
7647.4	1-	7646.9 7	100	0.0	0^{+}	E1		α (IPF)=0.00264 4
7657.6	1^{+}	7657.1 ^j 8	100 ^j	0.0	0^{+}	M1 ^j		α(IPF)=0.00196 3
7684.1		6351.2 ⁱ 4	100.0 ⁱ	1332.514	2^{+}			
7690.0	1-	3354.5 ⁱ 4	100 ⁱ 11	4335.52	2			
		6358.8 ^j 16	2 j 1	1332.514	2+	j		
		7689.5 ⁱ 5	90 ⁱ 13	0.0	0^{+}	E1		α (IPF)=0.00265 4
								Mult.: from (γ, γ') , (pol γ, γ').
7691.4	(9 ⁻)	2500 ^h		5191.7				
7732.5	8+	2586.2 6	75 25	5148.51	6+	E2	0.000632 9	$\alpha = 0.000632 \ 9; \ \alpha(K) = 3.25 \times 10^{-5} \ 5; \ \alpha(L) = 3.15 \times 10^{-6} \ 5; \ \alpha(M) = 4.44 \times 10^{-7} \ 7; \ \alpha(N+) = 0.000595 \ 9 \ \alpha(N) = 1.93 \times 10^{-8} \ 3; \ \alpha(IPF) = 0.000595 \ 9$
		3465.8 8	100 25	4265.00	6+	E2	0.000995 14	α =0.000995 <i>14</i> ; α (K)=2.02×10 ⁻⁵ <i>3</i> ; α (L)=1.96×10 ⁻⁶ <i>3</i> ; α (M)=2.76×10 ⁻⁷ <i>4</i> ; α (N+)=0.000972 <i>14</i> α (N)=1.199×10 ⁻⁸ <i>17</i> : α (IPF)=0.000972 <i>14</i>
7747.6	1-	5461.9 <i>j</i> 11	20^{j} 4	2284.80	0^{+}	j		
	-	5590.1 <i>^j</i> 10	16.7^{j} 19	2158.632	2+	j		
		$6413.8^{j}.9$	50^{j} 6	1332 514	2+	j		
		$7747 3^{j} 8$	$100^{j} 8$	0.0	$\tilde{0}^{+}$	E1 ^j		$\alpha(\text{IPF})=0.00266.4$
7760.33	8-	294.7 2	20 10	7465.66	(7 ⁻)	(M1+E2)	0.006 4	α =0.006 4; α (K)=0.006 4; α (L)=0.0006 4; α (M)=8.E-5 5; α (N+)=3.4×10 ⁻⁶ 18
								$\alpha(N)=3.4\times10^{-6}$ 18
		948.5 <i>3</i>	20 10	6810.95	9-	M1+E2	0.00025 3	$\alpha = 0.00025 \ 3; \ \alpha(\text{K}) = 0.000223 \ 24; \ \alpha(\text{L}) = 2.18 \times 10^{-5} \ 24; \ \alpha(\text{M}) = 3.1 \times 10^{-6} \ 4; \\ \alpha(\text{N}+) = 1.32 \times 10^{-7} \ 14 \\ \alpha(\text{N}) = 1.32 \times 10^{-7} \ 14$
		1648.0 4	40 10	6112.43	7+	E1	0.000419 6	$\alpha = 0.000419 \ 6; \ \alpha(\text{M}) = 3.94 \times 10^{-5} \ 6; \ \alpha(\text{L}) = 3.82 \times 10^{-6} \ 6; \ \alpha(\text{M}) = 5.37 \times 10^{-7} \ 8; \ \alpha(\text{N}+) = 0.000375 \ 6$
		1860.4 5	10 10	5901.69	6-	E2	0.000310 5	$\alpha(N)=2.33\times10^{-6} 4; \ \alpha(IPF)=0.000375 6$ $\alpha=0.000310 5; \ \alpha(K)=5.84\times10^{-5} 9; \ \alpha(L)=5.67\times10^{-6} 8; \ \alpha(M)=7.99\times10^{-7}$

34

⁶⁰₂₈Ni₃₂-34

						Adopte	ed Levels, C	Gammas (continu	ued)
							γ (⁶⁰ Ni)	(continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
7760.33	8-	2411.4 6	100 10	5348.79	7-	M1+E2		0.00051 4	<i>12</i> ; α (N+)=0.000245 <i>4</i> α (N)=3.46×10 ⁻⁸ <i>5</i> ; α (IPF)=0.000245 <i>4</i> α =0.00051 <i>4</i> ; α (K)=3.60×10 ⁻⁵ <i>9</i> ; α (L)=3.48×10 ⁻⁶ <i>9</i> ; α (M)=4.91×10 ⁻⁷ <i>12</i> ; α (N+)=0.00047 <i>4</i> α (N)=2.13×10 ⁻⁸ <i>5</i> ; α (IPF)=0.00047 <i>4</i>
7761.8	1^{+}	1399.4 ⁱ 4	37 ⁱ 12	6362.05					
		4492.3 ¹ 6	81 ¹ 15	3269.19	2^{+}				
		7761.6 ⁱ 8	100 ^{<i>i</i>} 23	0.0	0^{+}	M1			$\alpha(\text{IPF})=0.00198 \ 3$ Mult.: from (γ, γ') ,(pol γ, γ').
7798.9		1472.6 ¹ 6	1.0×10^{21} 3	6327.21	2^{+}				
		5640.4 ⁱ 7	95 ⁱ 24	2158.632	2^{+}				
7813.5		1141 ^h		6672.4	(9)				
7818.02		4693.6 ⁱ 5	100.0 ^{<i>i</i>}	3123.698	2+				
7850.3	1^{+}	7849.7 ^j 10	100 ^j	0.0	0^+	М1 ^j			α (IPF)=0.00200 3
7880.4	1^{+}	7879.8 ^j 12	100 ^j	0.0	0^+	М1 ^j			α (IPF)=0.00200 3
7926.7	1^{+}	7926.1 ^j 17	100 ^j	0.0	0^+	М1 ^j			α (IPF)=0.00201 3
7950.93	1^{+}	3632.4 ⁱ 6	89 ⁱ 23	4318.58	2+				
		4080.0 ⁱ 7	100 ^{<i>i</i>} 23	3871.050	2^{+}				
		7951.4 ⁱ 8	93 ⁱ 23	0.0	0^+	M1			α (IPF)=0.00201 <i>3</i> Mult.: from (γ , γ'),(pol γ , γ').
7980.81	9+	547.2 4	77	7433.45	9+	D			- -
		1519.9 4	100 36	6461.10	8+	M1+E2		0.000176 15	$\alpha = 0.000176 \ 15; \ \alpha(K) = 8.3 \times 10^{-5} \ 4; \ \alpha(L) = 8.1 \times 10^{-6} \ 4; \alpha(M) = 1.14 \times 10^{-6} \ 5; \ \alpha(N+) = 8.3 \times 10^{-5} \ 12 \alpha(N) = 4.94 \times 10^{-8} \ 21; \ \alpha(IPF) = 8.3 \times 10^{-5} \ 12$
		2317.5 3	71 21	5663.03	7+	E2		0.000511 8	$\alpha = 0.000511 \ 8; \ \alpha(\text{K}) = 3.93 \times 10^{-5} \ 6; \ \alpha(\text{L}) = 3.80 \times 10^{-6} \ 6; \ \alpha(\text{M}) = 5.36 \times 10^{-7} \ 8; \ \alpha(\text{N}+) = 0.000467 \ 7 \ \alpha(\text{M}) = 2.33 \times 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 0.000467 \ 7 \ \alpha(\text{M}) = 10^{-8} \ 4; \ \alpha(\text{PE}) = 10^{-8} \ 4; \ \alpha(PE$
8042.6	1+	8042 0 <i>j</i> 16	100 <i>j</i>	0.0	0^{+}	м1 <i>ј</i>			u(ii)-2.55×10 +, u(ii i)=0.000+077
8044.26	9-	283.9 2	27 4	7760.33	8-	M1+E2		0.007 4	α =0.007 4; α (K)=0.007 4; α (L)=0.0007 4; α (M)=9.E-5 6; α (N+)=3.8×10 ⁻⁶ 21
		352.9 2	44 6	7691.4	(9 ⁻)	M1+E2		0.0036 17	$\begin{array}{l} \alpha(N) = 5.8 \times 10^{-6} \ 21 \\ \alpha = 0.0036 \ 17; \ \alpha(K) = 0.0032 \ 15; \ \alpha(L) = 0.00032 \ 16; \\ \alpha(M) = 4.5 \times 10^{-5} \ 22; \ \alpha(N+) = 1.9 \times 10^{-6} \ 9 \\ \alpha(N) = 0.0032 \ 10^{-6} \ 0 \end{array}$
		683.3.2	2.1.2	7360.97	(8)	(D+O)			$u(1) = 1.9 \times 10^{-5} 9$
		1207.0 3	100 10	6837.2	8-	M1+E2	+0.37 4	0.0001471 22	α =0.0001471 22; α (K)=0.0001257 18; α (L)=1.223×10 ⁻⁵ 18; α (M)=1.724×10 ⁻⁶ 25 α (N)=7.47×10 ⁻⁸ 11; α (IPF)=7.37×10 ⁻⁶ 13 B(M1)(W n)=0.10 + U = 10; B(E2)(W n)=18 + 10 - 18
		1233.0 <i>3</i>	23 4	6810.95	9-	D			$D_{111}(11.0.) = 0.10 \pm 11 = 10, D(D2)(10.0.) = 10 \pm 17 = 10$
		1583.3 4	13 2	6461.10	8+	E1		0.000370 6	$\alpha = 0.000370 \ 6; \ \alpha(K) = 4.20 \times 10^{-5} \ 6; \ \alpha(L) = 4.07 \times 10^{-6} \ 6;$

 $^{60}_{28}\mathrm{Ni}_{32}$ -35

From ENSDF

I

Adopted Levels, Gammas (continued) γ (⁶⁰ Ni) (continued)								
8044.26	9-	2696.1 6	60 4	5348.79	7-	E2	0.000680 10	$\begin{aligned} \alpha(M) &= 5.73 \times 10^{-7} \ 8; \ \alpha(N+) = 0.000324 \ 5 \\ \alpha(N) &= 2.48 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.000323 \ 5 \\ B(E1)(W.u.) &= 0.00013 \ +14 - 13 \\ \alpha &= 0.000680 \ 10; \ \alpha(K) = 3.03 \times 10^{-5} \ 5; \ \alpha(L) = 2.94 \times 10^{-6} \ 5; \ \alpha(M) = 4.14 \times 10^{-7} \\ 6; \ \alpha(N+) = 0.000646 \ 9 \\ \alpha(N) &= 1.80 \times 10^{-8} \ 3; \ \alpha(IPF) = 0.000646 \ 9 \\ B(E2)(W.u.) &= 1.6 \ 16 \end{aligned}$
8074.4	8+	3807.8 9	100	4265.00	6+	E2	0.001123 16	$\alpha = 0.001123 \ 16; \ \alpha(\text{K}) = 1.752 \times 10^{-5} \ 25; \ \alpha(\text{L}) = 1.692 \times 10^{-6} \ 24; \\ \alpha(\text{M}) = 2.38 \times 10^{-7} \ 4; \ \alpha(\text{N}+) = 0.001104 \\ \alpha(\text{N}) = 1.037 \times 10^{-8} \ 15; \ \alpha(\text{IPF}) = 0.001104 \ 16$
8086.0	1-	5800.8 ^j 8 6752.3 ^j 13	$16.0^{j} 25$ $7.4^{j} 25$	2284.80 1332.514	0+ 2+	j j		
8111.8	1+	8085.7 ^J 7 8111.2 <i>12</i> 8126.0 7	100 ⁷ 25 100	0.0 0.0	0^+ 0^+ 0^+	E1 ^J M1		
8120.0 8180.1	1	8120.07	100 100 <i>i</i>	0.0	0+	$\frac{E}{i}$		
0109.1 0261.5	1 1-	8188.3°	100 ⁵	0.0	0+	, F1 <i>İ</i>		
8272.09	1 10 ⁻	1435.0 <i>4</i>	18 2	6837.2	8 ⁻	E1 E2	0.0001726 25	α =0.0001726 25; α (K)=9.73×10 ⁻⁵ 14; α (L)=9.48×10 ⁻⁶ 14; α (M)=1.335×10 ⁻⁶ 19; α (N+)=6.44×10 ⁻⁵ α (N)=5.76×10 ⁻⁸ 8; α (IPE)=6.44×10 ⁻⁵ 10
		1461.6 <i>4</i>	100 15	6810.95	9-	M1+E2	0.000164 14	$\alpha(N)=5.70\times10^{-6} \ 6; \ \alpha(M)=1.23\times10^{-6} \ 6; \ \alpha(N)=1.23\times10^{-6} \ 6; \ \alpha(N+)=6.4\times10^{-5} \ 9 \ \alpha(N)=5.33\times10^{-8} \ 24; \ \alpha(IPF)=6.4\times10^{-5} \ 9$
8286.3	(1^{+})	2613.9 ⁱ 3	100 ⁱ 16	5672.36				
		5659.9 ⁱ 8	58 ⁱ 16	2626.06	3+			
8294.0	1-	6135.5 ^j 11	54 ^j 8	2158.632	2^{+}	j		
		8293.0 ^j 10	100 ^j 7	0.0	0^+	E1 ^j		
8351.8	1^{+}	8351.2 ^j 13	100 ^{<i>J</i>}	0.0	0^+	M1 ^j		
8359.3	1^{+}	8358.7 ^j 15	100 ^J	0.0	0^+	M1 ^j		
8389.9	9-	3039.2 7	100	5348.79	7-	E2	0.000826 12	$\alpha = 0.000826 \ 12; \ \alpha(\text{K}) = 2.49 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.41 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.40 \times 10^{-7} \ 5; \ \alpha(\text{N}+) = 0.000799 \ 12 \ \alpha(\text{N}) = 1.476 \times 10^{-8} \ 21; \ \alpha(\text{IPF}) = 0.000799 \ 12$
8407	1-	8406 4	100	0.0	0^+	E1		
8426.69	9-	3077.8 1	100	5348.79	7-	E2	0.000842 12	$\alpha = 0.000842 \ 12; \ \alpha(K) = 2.44 \times 10^{-5} \ 4; \ \alpha(L) = 2.36 \times 10^{-6} \ 4; \ \alpha(M) = 3.33 \times 10^{-7} \\ 5; \ \alpha(N+) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000815 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 12 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 12 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 12 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 12 \ 12 \ 12 \\ \alpha(N) = 1.447 \times 10^{-8} \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 1$
8451.5	1	8450,9 ^j 16	100 <i>j</i>	0.0	0^{+}	j		a(1) 1.11/10 21, a(11)-0.00001312
8464.0	1-	8463.4 ^j 13	100^{j}	0.0	0^{+}	E1 ^j		
8485.50	9-	1648.2 <i>4</i>	86 14	6837.2	8-	M1+E2	0.000211 20	$ \begin{array}{l} \alpha = 0.000211 \ 20; \ \alpha(\mathrm{K}) = 7.1 \times 10^{-5} \ 3; \ \alpha(\mathrm{L}) = 6.9 \times 10^{-6} \ 3; \ \alpha(\mathrm{M}) = 9.7 \times 10^{-7} \ 4; \\ \alpha(\mathrm{N}+) = 0.000132 \ 17 \\ \alpha(\mathrm{N}) = 4.23 \times 10^{-8} \ 16; \ \alpha(\mathrm{IPF}) = 0.000132 \ 17 \end{array} $

 ${}^{60}_{28}\mathrm{Ni}_{32}$ -36

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -36

	Adopted Levels, Gammas (continued)												
							γ ⁽⁶⁰ Ni) (c	continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$lpha^{\dagger}$	Comments				
8485.50	9-	3136.9 7	100 14	5348.79	7-	E2		0.000866 13	<i>13</i> ; α (N+)=0.0001253 <i>18</i> α (N)=3.97×10 ⁻⁸ <i>6</i> ; α (IPF)=0.0001253 <i>18</i> α =0.000866 <i>13</i> ; α (K)=2.37×10 ⁻⁵ <i>4</i> ; α (L)=2.29×10 ⁻⁶ <i>4</i> ; α (M)=3.23×10 ⁻⁷ <i>5</i> ; α (N+)=0.000839 <i>12</i> α (N)=1.403×10 ⁻⁸ <i>20</i> ; α (IPF)=0.000839 <i>12</i>				
8504.7		4617.2^{i} 4 8504.2 ⁱ 9	$100^{i} 13$ $42^{i} 9$	3887.36 0.0	2+ 0+								
8515.2 8521.11	1 ⁻ 10 ⁻	8514.6 ^j 9 249.0 <i>1</i>	100 <i>j</i> 2.3 6	0.0 8272.09	0+ 10 ⁻	E1 ^j M1		0.00449 7	α =0.00449 7; α (K)=0.00403 6; α (L)=0.000401 6; α (M)=5.65×10 ⁻⁵ 8; α (N+)=2.41×10 ⁻⁶ 4 α (N)=2.41×10 ⁻⁶ 4				
		476.7 2	100 3	8044.26	9-	M1(+E2)		0.0014 5	B(M1)(W.u.)=0.040 +20-40 α =0.0014 5; α (K)=0.0013 5; α (L)=0.00013 5; α (M)=1.8×10 ⁻⁵ 6; α (N+)=7.7×10 ⁻⁷ 25 α (N)=7 7×10 ⁻⁷ 25				
		1710.1 4	60 <i>4</i>	6810.95	9-	M1+E2	+0.34 5	0.000214 4	$\alpha(1) \mu(1) \mu(1) \mu(2) \alpha(1) = 6.48 \times 10^{-5} 10; \alpha(L) = 6.28 \times 10^{-6} 9; \\ \alpha(M) = 8.85 \times 10^{-7} 13; \alpha(N+) = 0.0001422 23 \\ \alpha(N) = 3.85 \times 10^{-8} 6; \alpha(IPF) = 0.0001422 23 \\ B(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(M1)(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(W\mu) = 0.0029 + 12 - 29; B(E2)(W\mu) = 0.21 + 11 - 21 \\ R(W\mu) = 0.0029 + 12 - 20 + 10 \\ R(W\mu) = 0.0029 + 10 + 10 + 10 + 10 \\ R(W\mu) = 0.0029 + 10 + 10 + 10 + 10 + 10 + 10 \\ R(W\mu) = 0.0029 + 10 + 10 + 10 + 10 + 10 + 10 \\ R(W\mu) = 0.0029 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1$				
8565.60		4487.56 ⁱ 25 4678 3 ⁱ 5	$100^{i} 9$	4077.99 3887 36	1 ⁺ ,2 ⁺ 2 ⁺								
8638.5		2572.2^{i} 4 5452.1 ⁱ 5	61^{i} 15 100^{i} 18	6066.72 3185.98	2 (3 ⁺)								
8655.4	1-	8654.7 ^j 9	100 j	0.0	0^{+}	j							
8656.8	1^{+}	7324.2 ^j 14	75 ^j 13	1332.514	2+	j							
		8655.9 ^j 9	100 ^j 20	0.0	0^{+}	j							
8666.21		5046.4 ⁱ 7	89 ⁱ 17	3619.46	3+								
		5472.8 ⁱ 5	100 ⁱ 14	3193.87	1+								
8688.4	1+	8687.7 ^j 13	100 <i>j</i>	0.0	0^{+}	M1 ^j							
8688.92	10+	1255.4 4	100 18	7433.45	9 ⁺	M1+E2	+0.5 3	0.000145 5	α =0.000145 5; α (K)=0.000118 4; α (L)=1.14×10 ⁻⁵ 4; α (M)=1.61×10 ⁻⁶ 5; α (N+)=1.46×10 ⁻⁵ 11 α (N)=6.98×10 ⁻⁸ 19: α (IPF)=1.45×10 ⁻⁵ 11				
		1661.9 4	35 6	7027.83	8+	E2		0.000235 4	$\alpha = 0.000235 \ 4; \ \alpha(\text{K}) = 7.25 \times 10^{-5} \ 11; \ \alpha(\text{L}) = 7.05 \times 10^{-6} \ 10; \\ \alpha(\text{M}) = 9.92 \times 10^{-7} \ 14; \ \alpha(\text{N}+) = 0.0001545 \ 2 \\ \alpha(\text{N}) = 4.29 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 0.0001544 \ 22$				
		2227.2 5	47 12	6461.10	8+	E2		0.000470 7	$\alpha = 0.000470 \ 7; \ \alpha(K) = 4.21 \times 10^{-5} \ 6; \ \alpha(L) = 4.08 \times 10^{-6} \ 6; \alpha(M) = 5.75 \times 10^{-7} \ 8; \ \alpha(N+) = 0.000423 \ 6 \alpha(N) = 2.49 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.000423 \ 6 $				
8747.0	1-	8746.3 <mark>1</mark> 12	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>							
8768	1+	8767 4	100	0.0	0^{+}	M1							
8778.6	1^{+}	8777.9 ^j 10	100 <i>j</i>	0.0	0^{+}	M1 ^{<i>j</i>}							

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -38

L

	Adopted Levels, Gammas (continued)												
							γ (⁶⁰ N	Ni) (continued)					
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\delta^{@}$	$lpha^{\dagger}$	Comments				
8781.6	1-	8780.9 ^j 10	100 ^j	0.0	0^{+}	E1 <i>j</i>							
8793.6	1^{+}	7459.5 ^j 11	100 ^j 20	1332.514	2^{+}	j							
		8795.2 ^j 16	82 <mark>j</mark> 19	0.0	0^{+}	M1 ^j							
8846.5	1^{+}	8845.8 ^j 14	100 j	0.0	0^{+}	M1 ^j							
8871.7	1^{+}	8871.0 ^j 16	100 j	0.0	0^{+}	M1 ^j							
8890.5	1^{+}	8889.8 ^j 12	100 ^j	0.0	0^{+}	M1 ^j							
8924.1	1-	8923.4 <mark>/</mark> 10	100 ^j	0.0	0^{+}	E1 j							
9010.5	1^{-}	9009.8 ^j 19	100 ^j	0.0	0^{+}	E1 j							
9045.20		5173.6 ⁱ 3	100 ⁱ	3871.050	2+								
9053.3	1-	9052.6 ^j 24	100 ^j	0.0	0^+	E1 j							
9068.9	1^{+}	9068.2 ^j 13	100 ^j	0.0	0^+	M1 ^j							
9076.66		5759.1 ⁱ 7	100 ⁱ 21	3317.829	0^{+}								
		5952.4 ⁱ 5	100 ⁱ 21	3123.698	2^{+}								
9092.3	1-	7761.2 19	25 8	1332.514	2^+	E1			α (IPF)=0.00266 4				
9123 01	10-	9091.2 8	100 25	0.0	10^{-1}	EI D							
7125.01	10	637.5 2	100 6	8485.50	9 ⁻	M1+E2		0.00065 15	α =0.00065 <i>15</i> ; α (K)=0.00059 <i>13</i> ; α (L)=5.8×10 ⁻⁵ <i>13</i> ; α (M)=8.1×10 ⁻⁶ <i>18</i> ; α (N+)=3.5×10 ⁻⁷ 8 α (N)=3.5×10 ⁻⁷ 8				
		2311.8 6	28 5	6810.95	9-	M1+E2		0.00047 4	$\alpha = 0.00047 \ 4; \ \alpha(K) = 3.87 \times 10^{-5} \ 10; \ \alpha(L) = 3.75 \times 10^{-6} \ 10; \alpha(M) = 5.28 \times 10^{-7} \ 13; \ \alpha(N+) = 0.00043 \ 4 \alpha(N) = 2.29 \times 10^{-8} \ 6; \ \alpha(IPF) = 0.00043 \ 4$				
9132.2	1-	9131.5 ^j 15	100 ^j	0.0	0^{+}	E1 j							
9132.27	11-	611.5 2	100 3	8521.11	10-	M1+E2	+0.08 7	0.000561 10	$\alpha = 0.000561 \ 10; \ \alpha(K) = 0.000504 \ 9; \ \alpha(L) = 4.94 \times 10^{-5} \ 9; \\ \alpha(M) = 6.96 \times 10^{-6} \ 12; \ \alpha(N+) = 3.00 \times 10^{-7} \ 5 \\ \alpha(N) = 3.00 \times 10^{-7} \ 5 \\ B(M1)(W.u.) = 0.52 \ +23 - 29; \ B(E2)(W.u.) = 2.E + 1 \ +3 - 2 \\ \end{array}$				
		1088.2 3	2.8 4	8044.26	9-	E2		0.000198 3	$ \begin{array}{l} \alpha = 0.000198 \ 3; \ \alpha(\mathrm{K}) = 0.0001780 \ 25; \ \alpha(\mathrm{L}) = 1.741 \times 10^{-5} \ 25; \\ \alpha(\mathrm{M}) = 2.45 \times 10^{-6} \ 4; \ \alpha(\mathrm{N}+) = 1.054 \times 10^{-7} \\ \alpha(\mathrm{N}) = 1.054 \times 10^{-7} \ 15 \\ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 4.0 \ + 19 - 24 \end{array} $				
9149	1^{-}	9148.7 <mark>/</mark> 30	100 ^j	0.0	0^{+}	E1 j							
9256.0	1-	9255.2 ^j 25	100 <mark>/</mark>	0.0	0^+	E1 <i>j</i>							
9264.30	11-	874.1 <i>3</i>	99	8389.9	9-	E2		0.000337 5	α =0.000337 5; α (K)=0.000303 5; α (L)=2.97×10 ⁻⁵ 5; α (M)=4.18×10 ⁻⁶ 6; α (N+)=1.79×10 ⁻⁷ 3 α (N)=1.79×10 ⁻⁷ 3				
		2452.2 6	100 9	6810.95	9-	E2		0.000571 8	$ \begin{array}{l} \alpha = 0.000571 \ 8; \ \alpha(\text{K}) = 3.56 \times 10^{-5} \ 5; \ \alpha(\text{L}) = 3.45 \times 10^{-6} \ 5; \\ \alpha(\text{M}) = 4.86 \times 10^{-7} \ 7; \ \alpha(\text{N}+) = 0.000532 \ 8 \\ \alpha(\text{N}) = 2.11 \times 10^{-8} \ 3; \ \alpha(\text{IPF}) = 0.000532 \ 8 \end{array} $				
9266.5	1-	9265.7 ^j 24	100 j	0.0	0^{+}	E1 j							

⁶⁰₂₈Ni₃₂-39

L

						Ado	pted Levels	s, Gammas (cont	inued)
							γ (⁶⁰ N	i) (continued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
9274.7 9301.2	1 1 ⁺	9273.9 ^j 15 9300.4 ^j 15	100 ^j 100 ^j	0.0 0.0	$0^+ 0^+$	ј M1 ^j			

 $^{60}_{28}\mathrm{Ni}_{32}$ -40

L

$\gamma(^{60}\text{Ni})$ (continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9410.7 1 ⁻ 9409.9 ^j 17 100 ^j 0.0 0 ⁺ E1 ^j 9426.2 10 ⁺ 1992.9 5 100 7433.45 9 ⁺ M1+E2 0.00034 3 $a^{20,00034} 3; a(K)=5.02\times10^{-5} 14; a(L)=4.87\times10^{-6} 14; a(M)=6.86\times10^{-7}$ 20; $a(N+)=0.00028 3$ $a(N)=2.98\times10^{-8} 9; a(IPF)=0.00028 3$ 9453.1 1 ⁺ 9452.3 ^j 16 100 ^j 0.0 0 ⁺ M1 ^j 9463.9 1 ⁻ 7303.2 ^j 16 1.0\times10^{2j} 3 2158.632 2 ⁺ i 9464.5 ^j 15 61 ^j 20 0.0 0 ⁺ E1 ^j 9504.9 1 ⁻ 9504.1 ^j 17 100 ^j 0.0 0 ⁺ E1 ^j 959.9 1 ⁻ 9504.1 ^j 17 100 ^j 0.0 0 ⁺ E1 ^j 9622.5 10 ⁻ 2785.2 7 100 6837.2 8 ⁻ E2 0.000718 10 $a^{-0.000718} 10; a(K)=2.87\times10^{-5} 4; a(L)=2.78\times10^{-6} 4; a(M)=3.92\times10^{-7} 6; a(N+)=0.000686 10$ 9640.2 1 ⁻ 9639.4 ^j 21 100 ^j 0.0 0 ⁺ E1 ^j 9655.67 10 ⁺ 1590.9 4 33 7 8074.4 8 ⁺ E2 0.000211 3 $a^{-0.000211} 3; a(K)=7.90\times10^{-5} 11; a(L)=7.68\times10^{-6} 11; a(M)=7.43\times10^{-7} 11; a(M)=1.082\times10^{-6} 6; a(M)=3.27\times10^{-6} 8; a(M)=7.43\times10^{-7} 11; a(M)=1.082\times10^{-6} 16; a(M)=3.27\times10^{-6} 8; a(M)=7.43\times10^{-7} 11; a(M)=3.22\times10^{-6} 5; a(M)=7.43\times10^{-7} 7; 11; a(M)=7.90\times10^{-8} 5; a(M)=7.43\times10^{-7} 7; 11; a(M)=7.90\times10^{-8} 5; a(M)=7.43\times10^{-7} 7; 11; a(M)=7.90\times10^{-8} 5; a(M)=7.43\times10^{-7} 7; 11; a(M)=7.40\times10^{-6} 7; a(M)=6.20\times10^{-6} 6; a(M)=7.43\times10^{-7} 7; 11; a(M)=7.90\times10^{-8} 5; a(M)=7.43\times10^{-7} 7; 11; a(M)=$
9426.2 10^{+} 1992.9 5 100 7433.45 9^{+} M1+E2 $0.0034.3$ $a=0.00034.3; a(K)=5.02\times10^{-5} I4; a(L)=4.87\times10^{-6} I4; a(M)=6.86\times10^{-7}$ 20; $a(N+)=0.00028.3$ $a(N)=2.98\times10^{-8} 9; a(IPF)=0.00028.3$ 9453.1 1^{+} 9452.3 j 16 $1.0\times10^{2} j$ 3 2158.632 2^{+} j 9464.5 j 15 $61j$ 20 0.0 0^{+} E1 j 9468 1^{+} 9466.8 j 35 100^{j} 0.0 0^{+} E1 j 9504.9 1^{-} 9504.1 j 7 100^{j} 0.0 0^{+} E1 j 9522.5 10^{-} 2785.2 7 100 6837.2 8^{-} E2 $0.000718 I0$ $a=0.000718 I0; a(K)=2.87\times10^{-5} 4; a(L)=2.78\times10^{-6} 4; a(M)=3.92\times10^{-7}$ 6; a(N+)=0.000686 I0 9640.2 1^{-} 9639.4 j 21 100^{j} 0.0 0^{+} E1 j 9659.3 1^{-} 8326.0 $I6$ 11 4 1332.514 2^{+} 9658.5 9 100 23 0.0 0^{+} E1 9659.5 10^{-} 1550.9 4 33 7 8074.4 8^{+} E2 $0.000211.3; a(K)=7.90\times10^{-5} II; a(L)=7.68\times10^{-6} II; a(M)=7.43\times10^{-7}$ $a(M)=1.082\times10^{-6} I_{0}; a(M)=5.27\times10^{-6} I; a(M)=7.43\times10^{-7}$ $a(M)=1.082\times10^{-6} I_{0}; a(M)=5.27\times10^{-6} I; a(M)=7.43\times10^{-7}$ $II; a(M)=1.040\times10^{-5} I; a(L)=7.68\times10^{-6} II; a(M)=7.43\times10^{-7}$ $II; a(M)=1.082\times10^{-6} I; a(M)=5.27\times10^{-6} I; a(M)=7.43\times10^{-7}$ $II; a(N)=3.22\times10^{-8} 5; a(I)=5.27\times10^{-6} I; a(M)=6.20\times10^{-7} 9;$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9453.1 1 ⁺ 9452.3 ^j 16 100 ^j 0.0 0 ⁺ M1 ^j 9463.9 1 ⁻ 7303.2 ^j 16 1.0×10 ² j 3 2158.632 2 ⁺ j 9464.5 ^j 15 61 ^j 20 0.0 0 ⁺ E1 ^j 9468 1 ⁺ 9466.8 ^j 35 100 ^j 0.0 0 ⁺ E1 ^j 9504.9 1 ⁻ 9504.1 ^j 17 100 ^j 0.0 0 ⁺ E1 ^j 9599.0 1 ⁻ 9598.2 ^j 15 100 ^j 0.0 0 ⁺ E1 ^j 9622.5 10 ⁻ 2785.2 7 100 6837.2 8 ⁻ E2 0.000718 10; α (K)=2.87×10 ⁻⁵ 4; α (L)=2.78×10 ⁻⁶ 4; α (M)=3.92×10 ⁻⁷ 6; α (N+)=0.000686 10 α (N)=1.703×10 ⁻⁸ 24; α (IPF)=0.000686 10 9640.2 1 ⁻ 9639.4 ^j 21 100 ^j 0.0 0 ⁺ E1 ^j 9659.3 1 ⁻ 8326.0 16 11 4 1332.514 2 ⁺ 9658.5 9 100 23 0.0 0 ⁺ E1 9665.67 10 ⁺ 1590.9 4 33 7 8074.4 8 ⁺ E2 0.000211 3 α =0.000211 3; α (K)=7.90×10 ⁻⁵ 11; α (L)=7.68×10 ⁻⁶ 11; α (M)=1.082×10 ⁻⁶ 16; α (N+)=0.0001237 α (N)=4.68×10 ⁻⁸ 7; α (IPF)=0.0001236 18 1934.0 5 27 7 7732.5 8 ⁺ E2 0.000340 5 α =0.000340 5; α (K)=5.43×10 ⁻⁵ 8; α (L)=5.27×10 ⁻⁶ 8; α (M)=7.43×10 ⁻⁷ 11; α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4 α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4 α (N)=6.20×10 ⁻⁷ 9;
9463.9 1 ⁻ 7303.2 ^j 16 1.0×10^{2j} 3 2158.632 2 ⁺ ^j 9464.5 ^j 15 61 ^j 20 0.0 0 ⁺ E1 ^j 9468 1 ⁺ 9466.8 ^j 35 100 ^j 0.0 0 ⁺ E1 ^j 9504.9 1 ⁻ 9598.2 ^j 15 100 ^j 0.0 0 ⁺ E1 ^j 9622.5 10 ⁻ 2785.2 7 100 6837.2 8 ⁻ E2 0.000718 10 α =0.000718 10; $\alpha(K)$ =2.87×10 ⁻⁵ 4; $\alpha(L)$ =2.78×10 ⁻⁶ 4; $\alpha(M)$ =3.92×10 ⁻⁷ 6; $\alpha(N+)$ =0.000686 10 9640.2 1 ⁻ 9639.4 ^j 21 100 ^j 0.0 0 ⁺ E1 ^j 9659.3 1 ⁻ 8326.0 16 11 4 1332.514 2 ⁺ 9658.5 9 100 23 0.0 0 ⁺ E1 9665.67 10 ⁺ 1590.9 4 33 7 8074.4 8 ⁺ E2 0.000211 3 α =0.000211 3; $\alpha(K)$ =7.90×10 ⁻⁵ 11; $\alpha(L)$ =7.68×10 ⁻⁶ 11; $\alpha(M)$ =1.082×10 ⁻⁶ 16; $\alpha(N+)$ =0.0001237 $\alpha(N)$ =4.68×10 ⁻⁸ 7; $\alpha(I)$ F=0.0001236 18 1934.0 5 27 7 7732.5 8 ⁺ E2 0.000340 5 α =0.000340 5; $\alpha(K)$ =5.43×10 ⁻⁵ 8; $\alpha(L)$ =5.27×10 ⁻⁶ 8; $\alpha(M)$ =7.43×10 ⁻⁷ 1; $\alpha(N)$ =3.22×10 ⁻⁸ 5; $\alpha(I)$ F=0.000280 4 $\alpha(N)$ =3.22×10 ⁻⁸ 5; $\alpha(I)$ F=0.000280 4 $\alpha(N)$ =3.22×10 ⁻⁶ 5; $\alpha(L)$ =4.40×10 ⁻⁶ 7; $\alpha(M)$ =6.20×10 ⁻⁷ 9;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9468 1 ⁺ 9466.8 ^j 35 100 ^j 0.0 0 ⁺ M1 ^j 9504.9 1 ⁻ 9504.1 ^j 17 100 ^j 0.0 0 ⁺ E1 ^j 9599.0 1 ⁻ 9598.2 ^j 15 100 ^j 0.0 0 ⁺ E1 ^j 9622.5 10 ⁻ 2785.2 7 100 6837.2 8 ⁻ E2 0.000718 10 α =0.000718 10; α (K)=2.87×10 ⁻⁵ 4; α (L)=2.78×10 ⁻⁶ 4; α (M)=3.92×10 ⁻⁷ 6; α (N+)=0.000686 10 α (N)=1.703×10 ⁻⁸ 24; α (IPF)=0.000686 10 9640.2 1 ⁻ 9639.4 ^j 21 100 ^j 0.0 0 ⁺ E1 ^j 9659.3 1 ⁻ 8326.0 16 11 4 1332.514 2 ⁺ 9658.5 9 100 23 0.0 0 ⁺ E1 9665.67 10 ⁺ 1590.9 4 33 7 8074.4 8 ⁺ E2 0.000211 3 α =0.000211 3; α (K)=7.90×10 ⁻⁵ 11; α (L)=7.68×10 ⁻⁶ 11; α (M)=1.082×10 ⁻⁶ 16; α (N+)=0.0001237 α (N)=4.68×10 ⁻⁸ 7; α (IPF)=0.0001236 18 1934.0 5 27 7 7732.5 8 ⁺ E2 0.000340 5 α =0.000340 5; α (K)=5.43×10 ⁻⁵ 8; α (L)=5.27×10 ⁻⁶ 8; α (M)=7.43×10 ⁻⁷ 11; α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4 α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9622.5 10^{-} 2785.2 7 100 6837.2 8^{-} E2 0.000718 10 $\alpha = 0.000718$ 10; $\alpha(K) = 2.87 \times 10^{-5}$ 4; $\alpha(L) = 2.78 \times 10^{-6}$ 4; $\alpha(M) = 3.92 \times 10^{-7}$ 6; $\alpha(N+) = 0.000686$ 10 9640.2 1^{-} 9639.4 ^j 21 100^{j} 0.0 0^{+} E1 ^j 9659.3 1^{-} 8326.0 16 114 1332.514 2^{+} 9658.5 9 100 23 0.0 0^{+} E1 9665.67 10^{+} 1590.9 4 33 7 8074.4 8^{+} E2 0.000211 3 $\alpha = 0.000211$ 3; $\alpha(K) = 7.90 \times 10^{-5}$ 11; $\alpha(L) = 7.68 \times 10^{-6}$ 11; $\alpha(M) = 1.082 \times 10^{-6}$ 16; $\alpha(N+) = 0.0001237$ $\alpha(N) = 4.68 \times 10^{-8}$ 7; $\alpha(IPF) = 0.0001236$ 18 1934.0 5 27 7 7732.5 8^{+} E2 0.000340 5 $\alpha = 0.000340$ 5; $\alpha(K) = 5.43 \times 10^{-5}$ 8; $\alpha(L) = 5.27 \times 10^{-6}$ 8; $\alpha(M) = 7.43 \times 10^{-7}$ $11; \alpha(N+) = 0.000280$ 4 $\alpha(N) = 3.22 \times 10^{-8}$ 5; $\alpha(IPF) = 0.000280$ 4 $\alpha(N) = 3.22 \times 10^{-8}$ 5; $\alpha(IPF) = 0.000280$ 4 $\alpha(N) = 4.54 \times 10^{-5}$ 7; $\alpha(L) = 4.40 \times 10^{-6}$ 7; $\alpha(M) = 6.20 \times 10^{-7}$ 9;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9640.2 1 ⁻ 9639.4 ^j 21 100 ^j 0.0 0 ⁺ E1 ^j 9659.3 1 ⁻ 8326.0 16 11 4 1332.514 2 ⁺ 9658.5 9 100 23 0.0 0 ⁺ E1 9665.67 10 ⁺ 1590.9 4 33 7 8074.4 8 ⁺ E2 0.000211 3 α =0.000211 3; α (K)=7.90×10 ⁻⁵ 11; α (L)=7.68×10 ⁻⁶ 11; α (M)=1.082×10 ⁻⁶ 16; α (N+)=0.0001237 α (N)=4.68×10 ⁻⁸ 7; α (IPF)=0.0001236 18 1934.0 5 27 7 7732.5 8 ⁺ E2 0.000340 5 α =0.000340 5; α (K)=5.43×10 ⁻⁵ 8; α (L)=5.27×10 ⁻⁶ 8; α (M)=7.43×10 ⁻⁷ 11; α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4 α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4 α (N)=3.22×10 ⁻⁸ 5; α (I)=4.40×10 ⁻⁶ 7; α (M)=6.20×10 ⁻⁷ 9;
9659.3 1 ⁻ 8326.0 16 11 4 1332.514 2 ⁺ 9658.5 9 100 23 0.0 0 ⁺ E1 9665.67 10 ⁺ 1590.9 4 33 7 8074.4 8 ⁺ E2 0.000211 3 α =0.000211 3; α (K)=7.90×10 ⁻⁵ 11; α (L)=7.68×10 ⁻⁶ 11; α (M)=1.082×10 ⁻⁶ 16; α (N+)=0.0001237 α (N)=4.68×10 ⁻⁸ 7; α (IPF)=0.0001236 18 1934.0 5 27 7 7732.5 8 ⁺ E2 0.000340 5 α =0.000340 5; α (K)=5.43×10 ⁻⁵ 8; α (L)=5.27×10 ⁻⁶ 8; α (M)=7.43×10 ⁻⁷ 11; α (N+)=0.000280 4 α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4 α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4
9658.5 9 9665.67 10^{+} 1590.9 4 100 23 100 23 100 23 100 0 ⁺ E1 9665.67 10^{+} 1590.9 4 102 3 107 10 ⁺ 1590.9 4 1087 10 ⁺ 1590.9 4 1087 10 ⁺ 1082×10 ⁻⁶ 10; $\alpha(K)=7.90\times10^{-5}$ 11; $\alpha(L)=7.68\times10^{-6}$ 11; $\alpha(M)=1.082\times10^{-6}$ 16; $\alpha(N+)=0.0001237$ $\alpha(N)=4.68\times10^{-8}$ 7; $\alpha(IPF)=0.0001236$ 18 1934.0 5 1934.0 5 27 7 7732.5 8 ⁺ E2 0.000340 5 $\alpha=0.000340$ 5; $\alpha(K)=5.43\times10^{-5}$ 8; $\alpha(L)=5.27\times10^{-6}$ 8; $\alpha(M)=7.43\times10^{-7}$ 11; $\alpha(N+)=0.000280$ 4 $\alpha(N)=3.22\times10^{-8}$ 5; $\alpha(IPF)=0.000280$ 4
9665.67 10^{+} 1590.9 4 33 7 8074.4 8^{+} E2 0.000211 3 $\alpha = 0.000211$ 3; $\alpha(K) = 7.90 \times 10^{-5}$ 11; $\alpha(L) = 7.68 \times 10^{-6}$ 11; $\alpha(M) = 1.082 \times 10^{-6}$ 16; $\alpha(N+) = 0.0001237$ $\alpha(N) = 4.68 \times 10^{-8}$ 7; $\alpha(IPF) = 0.0001236$ 18 1934.0 5 27 7 7732.5 8^{+} E2 0.000340 5 $\alpha = 0.000340$ 5; $\alpha(K) = 5.43 \times 10^{-5}$ 8; $\alpha(L) = 5.27 \times 10^{-6}$ 8; $\alpha(M) = 7.43 \times 10^{-7}$ 11; $\alpha(N+) = 0.000280$ 4 $\alpha(N) = 3.22 \times 10^{-8}$ 5; $\alpha(IPF) = 0.000280$ 4 $\alpha(N) = 3.22 \times 10^{-8}$ 5; $\alpha(IPF) = 0.000280$ 4 $\alpha(N) = 3.22 \times 10^{-8}$ 5; $\alpha(IPF) = 0.000280$ 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2134.4.5 27.7 7531.4 8 ⁺ E2 0.000428.6 $\alpha = 0.000428.6; \alpha(K) = 4.54 \times 10^{-5}.7; \alpha(L) = 4.40 \times 10^{-6}.7; \alpha(M) = 6.20 \times 10^{-7}.9;$
$\alpha(N+)=0.000378~6$
$\alpha(N)=2.69\times10^{-8}$ 4; $\alpha(IPF)=0.000378$ 6
2233.0 5 20 7 7433.45 9 ⁺ M1+E2 0.00044 4 $\alpha = 0.00044 4$; $\alpha(K) = 4.11 \times 10^{-5} 11$; $\alpha(L) = 3.98 \times 10^{-6} 10$; $\alpha(M) = 5.60 \times 10^{-7} 15$; $\alpha(N+) = 0.00039 4$
α (N)=2.43×10 ⁻⁸ 6; α (IPF)=0.00039 4
2284.9 6 20 7 7380.3 8 ⁺ E2 0.000496 7 $\alpha = 0.000496$ 7; $\alpha(K) = 4.03 \times 10^{-5}$ 6; $\alpha(L) = 3.90 \times 10^{-6}$ 6; $\alpha(M) = 5.49 \times 10^{-7}$ 8; $\alpha(N+) = 0.000451$ 7
$\alpha(N)=2.38\times10^{-8}$ 4; $\alpha(IPF)=0.000451$ 7
2416.3 6 47 7 7250.0 8 ⁺ E2 0.000555 8 $\alpha = 0.000555 8; \alpha(K) = 3.65 \times 10^{-5} 6; \alpha(L) = 3.54 \times 10^{-6} 5; \alpha(M) = 4.98 \times 10^{-7} 7; \alpha(N+) = 0.000515 8$
$\alpha(N)=2.16\times10^{-8}$ 3; $\alpha(IPF)=0.000515$ 8
2854.4 7 100 13 6810.95 9 ⁻ E1 0.001180 17 $\alpha = 0.001180 17; \alpha(K) = 1.777 \times 10^{-5} 25; \alpha(L) = 1.715 \times 10^{-6} 24;$
$\alpha(M) = 2.41 \times 10^{-7} 4; \alpha(M+) = 0.001160$
$\alpha(1N) = 1.049 \times 10^{-5} I_{3}, \alpha(1FF) = 0.001100 I/$ 3204 6 7 13 7 6461 10 8 ⁺ F2 0 000893 <i>I</i> ₃ $\alpha = 0.000893 I_{3} \cdot \alpha(K) = 2.09 \times 10^{-5} I_{3} \cdot \alpha(L) = 2.01 \times 10^{-6} I_{3} \cdot \alpha(M) = 3.12 \times 10^{-7}$

						Ado	pted Levels, Gan	nmas (continued)
							γ ⁽⁶⁰ Ni) (co	ntinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
					<u> </u>			5; α(N+)=0.000868 13
								$\alpha(N)=1.356\times 10^{-8}$ 19; $\alpha(IPF)=0.000868$ 13
9701.4	1-	9700.6 []] 15	100 <mark>/</mark>	0.0	0^{+}	E1 <mark>J</mark>		
9714.9	(10+)	1287.9 4	100	8426.69	9-	(E1)	0.0001757 25	$\alpha = 0.0001757 \ 25; \ \alpha(K) = 5.93 \times 10^{-5} \ 9; \ \alpha(L) = 5.75 \times 10^{-6} \ 8; \ \alpha(M) = 8.10 \times 10^{-7} \ 12; \ \alpha(N+) = 0.0001098 \ 1 \ (DE) \ 0.0001009 \ 1 \ (DE) \ 0.0000000000000000000000000000000000$
9718.27	11-	454.0 2	99	9264.30	11-	M1	0.001084 16	$\alpha(N)=3.50\times10^{-5}$ 5; $\alpha(IPF)=0.0001098$ 16 $\alpha=0.001084$ 16; $\alpha(K)=0.000974$ 14; $\alpha(L)=9.59\times10^{-5}$ 14; $\alpha(M)=1.351\times10^{-5}$
								$19; \alpha(N+)=5.81\times10^{-7}$ $\alpha(N)=5.81\times10^{-7} 9$
		1196.8 <i>3</i>	65 6	8521.11	10-	M1+E2	0.000157 12	α =0.000157 <i>12</i> ; α (K)=0.000135 <i>10</i> ; α (L)=1.31×10 ⁻⁵ <i>10</i> ; α (M)=1.85×10 ⁻⁶ <i>13</i> ; α (N+)=7.2×10 ⁻⁶ <i>13</i>
		1447 1 4	41.6	8272 00	10-	M1±E2	0.000162.14	$\alpha(N) = 8.0 \times 10^{\circ} 6; \ \alpha(IPF) = 7.2 \times 10^{\circ} 13$ $\alpha = 0.000162 \ 14; \ \alpha(K) = 9.2 \times 10^{-5} 5; \ \alpha(I) = 8.9 \times 10^{-6} 5; \ \alpha(M) = 1.25 \times 10^{-6} 6;$
		177/,17	410	0272.09	10	W11+L2	0.000102 14	$\alpha(N+)=6.0\times10^{-5} 9$
								$\alpha(N) = 5.43 \times 10^{-8} 25; \ \alpha(IPF) = 6.0 \times 10^{-5} 9$
		2905.9 7	100 6	6810.95	9-	E2	0.000770 11	$ \begin{array}{l} \alpha = 0.000770 \ 11; \ \alpha(\mathrm{K}) = 2.68 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.59 \times 10^{-6} \ 4; \ \alpha(\mathrm{M}) = 3.65 \times 10^{-7} \ 6; \\ \alpha(\mathrm{N}+) = 0.000740 \ 11 \\ \alpha(\mathrm{N}) = 1.588 \times 10^{-8} \ 23; \ \alpha(\mathrm{IPF}) = 0.000740 \ 11 \end{array} $
9721.0	1-	9720.2 ^j 18	100 <i>j</i>	0.0	0^{+}	E1 j		
9751.5	1-	9750.6 ^j 23	100 j	0.0	0^{+}	E1 j		
9760.42	11-	1239.0 <i>3</i>	44 5	8521.11	10-	M1+E2	0.000152 11	$\alpha = 0.000152 \ 11; \ \alpha(K) = 0.000125 \ 8; \ \alpha(L) = 1.22 \times 10^{-5} \ 8; \ \alpha(M) = 1.72 \times 10^{-6} \ 12; \ \alpha(N+) = 1.33 \times 10^{-5} \ 23 \ \alpha(N) = 7.4 \times 10^{-8} \ 5; \ \alpha(RE) = 1.23 \times 10^{-5} \ 22$
		2948.8 7	100 9	6810.95	9-	E2	0.000789 11	$ \begin{array}{l} \alpha(\mathrm{N}) = 7.4 \times 10^{-5} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
			,			,		α (N)=1.550×10 ⁻⁸ 22; α (IPF)=0.000759 11
9774.8	1-	9773.9 ^J 20	100	0.0	0^{+}	E1		
9807.5	1-	9806.6 ⁷ 19	100	0.0	0^{+}	E1		
9831	1+	9830/4	100	0.0	0^{+}	M1		
9832.0	1-	9831.1 ^J 21	100	0.0	0^{+}	E1		
9871.3	1-	9870.4 ^J 20	100 ^J	0.0	0^{+}	E1 ^J		5 (7
9887.9	10+	2638.4 6	100 50	7250.0	8+	E2	0.000655 10	$\alpha = 0.000655 \ 10; \ \alpha(\text{K}) = 3.15 \times 10^{-3} \ 5; \ \alpha(\text{L}) = 3.04 \times 10^{-6} \ 5; \ \alpha(\text{M}) = 4.29 \times 10^{-7} \ 6; \ \alpha(\text{N}+) = 0.000620 \ 9 \ \alpha(\text{N}) = 1.86 \times 10^{-8} \ 3; \ \alpha(\text{IPE}) = 0.000620 \ 9$
		3079.0 7	100 50	6810.95	9-	E1	0.001289 18	$\alpha(\mathbf{x}_{1}) = 1.50 \times 10^{-5} \ 3, \ \alpha(\mathbf{M} +) = 0.00020^{-5} \ 23; \ \alpha(\mathbf{L}) = 1.550 \times 10^{-6} \ 22; \\ \alpha(\mathbf{M}) = 2.18 \times 10^{-7} \ 3; \ \alpha(\mathbf{N} +) = 0.001271 \\ \alpha(\mathbf{N}) = 9.49 \times 10^{-9} \ 14; \ \alpha(\mathbf{IPF}) = 0.001271 \ 18$
9893.5	1-	9892.6 ^j 17	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>		

0.000293 5

42

9953.7

9960.14 11-

100ⁱ

158

4019.886 1+

9132.27 11⁻ M1

5933.3ⁱ 7

827.8 6

 $^{60}_{28}\mathrm{Ni}_{32}\text{-}42$

From ENSDF

	Adopted Levels, Gammas (continued)												
							γ(⁶⁰ Ni) (continued)					
E _i (level)	\mathbf{J}_i^{π}	Eγ [‡]	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments				
9960.14	11-	836.4 <i>3</i>	100 8	9123.01	10-	M1+E2		0.00033 5	$\alpha = 0.00033 5; \alpha(K) = 0.00030 4; \alpha(L) = 2.9 \times 10^{-5} 4; \alpha(M) = 4.1 \times 10^{-6} 6; \alpha(N+) = 1.77 \times 10^{-7} 24 \alpha(N) = 1.77 \times 10^{-7} 24$				
		1438.6 <i>4</i>	38 8	8521.11	10-	M1+E2		0.000160 13	$ \begin{array}{l} \alpha = 0.000160 \ 13; \ \alpha(\mathrm{K}) = 9.3 \times 10^{-5} \ 5; \ \alpha(\mathrm{L}) = 9.0 \times 10^{-6} \ 5; \\ \alpha(\mathrm{M}) = 1.27 \times 10^{-6} \ 7; \ \alpha(\mathrm{N}+) = 5.7 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 5.5 \times 10^{-8} \ 3; \ \alpha(\mathrm{IPF}) = 5.7 \times 10^{-5} \ 9 \end{array} $				
9989.27	(12 ⁻)	856.9 <i>3</i>	100 5	9132.27	11-	M1(+E2)	+0.13 15	0.000274 6	$\alpha = 0.000274 \ 6; \ \alpha(K) = 0.000247 \ 6; \ \alpha(L) = 2.41 \times 10^{-5} \ 6; \alpha(M) = 3.39 \times 10^{-6} \ 8; \ \alpha(N+) = 1.47 \times 10^{-7} \ 4 \alpha(N) = 1.47 \times 10^{-7} \ 4 B(M1)(W n) = (0.16 \ +6 - 16); \ B(F2)(W n) = (7 + 16 - 7)$				
		1468.3 4	4.2 8	8521.11	10-	E2		0.000179 <i>3</i>	$\alpha = 0.000179 \ 3; \ \alpha(K) = 9.28 \times 10^{-5} \ 13; \ \alpha(L) = 9.04 \times 10^{-6} \ 13; \alpha(M) = 1.273 \times 10^{-6} \ 18; \ \alpha(N+) = 7.55 \times 10^{-5} \ 11 \alpha(N) = 5.50 \times 10^{-8} \ 8; \ \alpha(IPF) = 7.55 \times 10^{-5} \ 11 B(E2)(W.u.) = 1.1 + 5 - 11$				
10029.02 10054.23	(11 ⁻)	5184.9 5 789.4 <i>3</i>	100 33 <i>33</i>	4843.93 9264.30	2+ 11 ⁻	(M1)		0.000324 5	$\alpha = 0.000324 5; \alpha(K) = 0.000291 4; \alpha(L) = 2.84 \times 10^{-5} 4;$				
									$\alpha(M)=4.01\times10^{-6} 6; \alpha(N+)=1.733\times10^{-7} 25$ $\alpha(N)=1.733\times10^{-7} 25$				
		3243.4 7	100 33	6810.95	9-	(E2)		0.000909 13	α =0.000909 <i>13</i> ; α (K)=2.25×10 ⁻⁵ <i>4</i> ; α (L)=2.17×10 ⁻⁶ <i>3</i> ; α (M)=3.06×10 ⁻⁷ <i>5</i> ; α (N+)=0.000884 <i>13</i>				
10158.6	(12 ⁻)	894.1 <i>3</i>	100	9264.30	11-	(M1+E2)		0.00028 4	$\alpha(N)=1.331\times10^{-6} I9; \ \alpha(IPF)=0.000884 I3$ $\alpha=0.00028 4; \ \alpha(K)=0.00026 3; \ \alpha(L)=2.5\times10^{-5} 3;$ $\alpha(M)=3.5\times10^{-6} 5; \ \alpha(N+)=1.51\times10^{-7} I8$ $\alpha(N)=1.51\times10^{-7} I8$				
10241.7	(11 ⁻)	3428.9 8	100	6810.95	9-	(E2)		0.000981 14	$\begin{array}{l} \alpha(\mathbf{n}) = 1.516^{-10} & 10^{-10} \\ \alpha = 0.000981 & 14; & \alpha(\mathbf{N}) = 2.06 \times 10^{-5} & 3; & \alpha(\mathbf{L}) = 1.99 \times 10^{-6} & 3; \\ \alpha(\mathbf{M}) = 2.80 \times 10^{-7} & 4; & \alpha(\mathbf{N} +) = 0.000959 & 14 \\ \alpha(\mathbf{N}) = 1.210 \times 10^{-8} & 17; & \alpha(\mathbf{D} \mathbf{E}) = 0.000959 & 14 \\ \end{array}$				
10697.3	12-	936.7 <i>3</i>	100 25	9760.42	11-	M1+E2		0.00026 3	$\alpha(N)=1.219\times10^{-17}, \alpha(H^{2})=0.000939 14^{-17} \alpha=0.00026 3; \alpha(K)=0.00023 3; \alpha(L)=2.2\times10^{-5} 3; \\ \alpha(M)=3.2\times10^{-6} 4; \alpha(N+)=1.36\times10^{-7} 15^{-17} 15^{-$				
		979.1 <i>3</i>	75 25	9718.27	11-	M1+E2		0.000231 24	$\alpha(N) = 1.30 \times 10^{-7} I_{2}^{15}$ $\alpha = 0.000231 \ 24; \ \alpha(K) = 0.000208 \ 21; \ \alpha(L) = 2.03 \times 10^{-5} \ 21;$ $\alpha(M) = 2.9 \times 10^{-6} \ 3; \ \alpha(N+) = 1.23 \times 10^{-7} \ 12$ $\alpha(N) = 1.23 \times 10^{-7} \ 12$				
10788.66	12-	734.1 2	40 20	10054.23	(11 ⁻)	M1+E2		0.00046 8	$\alpha(N) = 1.25 \times 10^{-7} I2$ $\alpha = 0.00046 \ 8; \ \alpha(K) = 0.00041 \ 7; \ \alpha(L) = 4.0 \times 10^{-5} \ 7;$ $\alpha(M) = 5.7 \times 10^{-6} \ 10; \ \alpha(N+) = 2.4 \times 10^{-7} \ 4$ $\alpha(N) = 2.4 \times 10^{-7} \ 4$				
		828.5 <i>3</i>	100 20	9960.14	11-	M1+E2		0.00034 5	$\alpha(1)=2.1\times10^{-7} + \alpha = 0.00031 + 5; \ \alpha(L)=3.0\times10^{-5} + 5; \ \alpha(M)=4.2\times10^{-6} + 6; \ \alpha(N+)=1.81\times10^{-7} + 25 = 0.00031 + 10^{-7} + 25$				
		1028.0 9	80 <i>20</i>	9760.42	11-	M1+E2		0.000207 19	$\alpha(\mathbf{x}) = 1.51 \times 10^{-5} \ 2.5$ $\alpha = 0.000207 \ 19; \ \alpha(\mathbf{K}) = 0.000186 \ 17; \ \alpha(\mathbf{L}) = 1.82 \times 10^{-5} \ 18;$ $\alpha(\mathbf{M}) = 2.57 \times 10^{-6} \ 24; \ \alpha(\mathbf{N}+) = 1.11 \times 10^{-7} \ 1$ $\alpha(\mathbf{N}) = 1.11 \times 10^{-7} \ 10$				

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -44

 $^{60}_{28}\mathrm{Ni}_{32}$ -44

$\gamma(^{60}\text{Ni})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$lpha^{\dagger}$	Comments
10788.66	12-	1657.5 4	60 20	9132.27 11	M1+E2	0.000214 20	α =0.000214 20; α (K)=7.0×10 ⁻⁵ 3; α (L)=6.8×10 ⁻⁶ 3; α (M)=9.6×10 ⁻⁷ 4; α (N+)=0.000136 17
10825.23	11+	1398.8 9	33 <i>33</i>	9426.2 10	M1+E2	0.000156 13	$\alpha(N)=4.18\times10^{-8} \ 15; \ \alpha(IPF)=0.000136 \ 17$ $\alpha=0.000156 \ 13; \ \alpha(K)=9.8\times10^{-5} \ 5; \ \alpha(L)=9.5\times10^{-6} \ 5; \ \alpha(M)=1.34\times10^{-6} \ 7; \ \alpha(N+)=4.7\times10^{-5} \ 7$
		2135.8 5	100 33	8688.92 10	M1+E2	0.00040 4	$ \alpha(N) = 5.8 \times 10^{-5} 3; \ \alpha(IPF) = 4.7 \times 10^{-5} 7 $ $ \alpha = 0.00040 \ 4; \ \alpha(K) = 4.44 \times 10^{-5} \ 12; \ \alpha(L) = 4.30 \times 10^{-6} \ 12; \ \alpha(M) = 6.06 \times 10^{-7} \ 16; $ $ \alpha(N+) = 0.00035 \ 4 $
		2844.8 7	100 33	7980.81 9+	E2	0.000744 11	$\alpha(N)=2.63\times10^{-8} \ 7; \ \alpha(IPF)=0.00035 \ 4$ $\alpha=0.000744 \ 11; \ \alpha(K)=2.78\times10^{-5} \ 4; \ \alpha(L)=2.69\times10^{-6} \ 4; \ \alpha(M)=3.78\times10^{-7} \ 6; \ \alpha(N+)=0.000713 \ 10$
		3390.8 8	33 <i>33</i>	7433.45 9+	E2	0.000968 14	$ \begin{array}{l} \alpha(\mathrm{N}) = 1.644 \times 10^{-6} \ 23; \ \alpha(\mathrm{IPF}) = 0.000713 \ 10 \\ \alpha = 0.000968 \ 14; \ \alpha(\mathrm{K}) = 2.10 \times 10^{-5} \ 3; \ \alpha(\mathrm{L}) = 2.02 \times 10^{-6} \ 3; \ \alpha(\mathrm{M}) = 2.85 \times 10^{-7} \ 4; \\ \alpha(\mathrm{N}+) = 0.000944 \ 14 \end{array} $
10872.60	11+	1446.6 <i>4</i>	33 <i>33</i>	9426.2 10	M1+E2	0.000162 14	$\begin{aligned} \alpha(N) &= 1.241 \times 10^{-8} \ 18; \ \alpha(IPF) = 0.000944 \ 14 \\ \alpha &= 0.000162 \ 14; \ \alpha(K) = 9.2 \times 10^{-5} \ 5; \ \alpha(L) = 8.9 \times 10^{-6} \ 5; \ \alpha(M) = 1.26 \times 10^{-6} \ 6; \\ \alpha(N+) &= 6.0 \times 10^{-5} \ 9 \end{aligned}$
		2184.4 5	67 <i>33</i>	8688.92 10	M1+E2	0.00042 4	$ \begin{aligned} &\alpha(\mathrm{N}) = 5.44 \times 10^{-8} \ 25; \ \alpha(\mathrm{IPF}) = 6.0 \times 10^{-5} \ 9 \\ &\alpha = 0.00042 \ 4; \ \alpha(\mathrm{K}) = 4.27 \times 10^{-5} \ 11; \ \alpha(\mathrm{L}) = 4.13 \times 10^{-6} \ 11; \ \alpha(\mathrm{M}) = 5.82 \times 10^{-7} \ 15; \\ &\alpha(\mathrm{N}+) = 0.00037 \ 4 \end{aligned} $
		2891.7 7	67 <i>33</i>	7980.81 9+	E2	0.000764 11	$ \begin{aligned} &\alpha(\mathrm{N}) = 2.53 \times 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) = 0.00037 \ 4 \\ &\alpha = 0.000764 \ 11; \ \alpha(\mathrm{K}) = 2.70 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.61 \times 10^{-6} \ 4; \ \alpha(\mathrm{M}) = 3.68 \times 10^{-7} \ 6; \\ &\alpha(\mathrm{N}+) = 0.000734 \ 11 \end{aligned} $
		3439.2 8	100 33	7433.45 9+	E2	0.000985 14	$\alpha(N)=1.601\times10^{-8} 23; \ \alpha(IPF)=0.000734 \ 11 \\ \alpha=0.000985 \ 14; \ \alpha(K)=2.05\times10^{-5} \ 3; \ \alpha(L)=1.98\times10^{-6} \ 3; \ \alpha(M)=2.79\times10^{-7} \ 4; \\ \alpha(N+)=0.000962 \ 14$
10977.68	11+	2289.1 6	<17	8688.92 10	M1+E2	0.00046 4	$\begin{aligned} &\alpha(\text{N}) = 1.213 \times 10^{-8} \ 17; \ \alpha(\text{IPF}) = 0.000962 \ 14 \\ &\alpha = 0.00046 \ 4; \ \alpha(\text{K}) = 3.93 \times 10^{-5} \ 10; \ \alpha(\text{L}) = 3.81 \times 10^{-6} \ 10; \ \alpha(\text{M}) = 5.37 \times 10^{-7} \ 14; \\ &\alpha(\text{N}+) = 0.00042 \ 4 \end{aligned}$
		2705.8 6	17 <i>17</i>	8272.09 10	E1	0.001102 16	$ \begin{aligned} &\alpha(\text{N}) = 2.33 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 0.00042 \ 4 \\ &\alpha = 0.001102 \ 16; \ \alpha(\text{K}) = 1.91 \times 10^{-5} \ 3; \ \alpha(\text{L}) = 1.84 \times 10^{-6} \ 3; \ \alpha(\text{M}) = 2.60 \times 10^{-7} \ 4; \\ &\alpha(\text{N}+) = 0.001081 \ 16 \end{aligned} $
		2996.6 7	100 50	7980.81 9+	E2	0.000809 12	$\begin{aligned} &\alpha(\text{N}) = 1.128 \times 10^{-8} \ 16; \ \alpha(\text{IPF}) = 0.001081 \ 16 \\ &\alpha = 0.000809 \ 12; \ \alpha(\text{K}) = 2.55 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.47 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.47 \times 10^{-7} \ 5; \\ &\alpha(\text{N}+) = 0.000780 \ 11 \end{aligned}$
		3544.2 8	83 17	7433.45 9+	E2	0.001022 15	$ \begin{aligned} &\alpha(\mathrm{N}) = 1.511 \times 10^{-8} \ 22; \ \alpha(\mathrm{IPF}) = 0.000780 \ 11 \\ &\alpha = 0.001022 \ 15; \ \alpha(\mathrm{K}) = 1.96 \times 10^{-5} \ 3; \ \alpha(\mathrm{L}) = 1.89 \times 10^{-6} \ 3; \ \alpha(\mathrm{M}) = 2.66 \times 10^{-7} \ 4; \\ &\alpha(\mathrm{N}+) = 0.001000 \ 14 \end{aligned} $
11030.60	11+	2341.7 6	100 50	8688.92 10	M1+E2	0.00048 4	$\begin{aligned} &\alpha(\mathrm{N})=1.158\times10^{-8} \ 17; \ \alpha(\mathrm{IPF})=0.001000 \ 14 \\ &\alpha=0.00048 \ 4; \ \alpha(\mathrm{K})=3.78\times10^{-5} \ 9; \ \alpha(\mathrm{L})=3.66\times10^{-6} \ 9; \ \alpha(\mathrm{M})=5.16\times10^{-7} \ 13; \\ &\alpha(\mathrm{N}+)=0.00044 \ 4 \\ &\alpha(\mathrm{N})=2.24\times10^{-8} \ 6; \ \alpha(\mathrm{IPF})=0.00044 \ 4 \end{aligned}$

$\gamma(^{60}Ni)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
11030.60	11+	3048.4 7	50 50	7980.81	9+	E2		0.000830 12	$\alpha = 0.000830 \ 12; \ \alpha(K) = 2.48 \times 10^{-5} \ 4; \ \alpha(L) = 2.40 \times 10^{-6} \ 4; \alpha(M) = 3.38 \times 10^{-7} \ 5; \ \alpha(N+) = 0.000802 \ 12 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ $
		3596.7 8	50 50	7433.45	9+	E2		0.001041 15	$\alpha(N)=1.469\times10^{-2} 21; \ \alpha(IPF)=0.000802 12$ $\alpha=0.001041 \ 15; \ \alpha(K)=1.91\times10^{-5} \ 3; \ \alpha(L)=1.85\times10^{-6} \ 3;$ $\alpha(M)=2.60\times10^{-7} \ 4; \ \alpha(N+)=0.001020 \ 15$ $\alpha(N)=1.132\times10^{-8} \ 16; \ \alpha(IPF)=0.001020 \ 15$
11044.14	12+	1156.8 <i>3</i>	12 2	9887.9	10+	E2		0.0001760 25	$\alpha(N) = 1.132 \times 10^{-10}$, $\alpha(N) = 0.001020$ 15 $\alpha = 0.0001760$ 25; $\alpha(K) = 0.0001548$ 22; $\alpha(L) = 1.513 \times 10^{-5}$ 22; $\alpha(M) = 2.13 \times 10^{-6}$ 3 $\alpha(N) = 9.17 \times 10^{-8}$ 13: $\alpha(IPE) = 3.83 \times 10^{-6}$ 6
		1283.0 4	32	9760.42	11-	E1		0.0001728 25	$\alpha(N)=3.17\times10^{-7} I2; \ \alpha(N+)=0.0001064 I6$ $\alpha(N)=3.53\times10^{-8} 5; \ \alpha(IPF)=0.0001064 I6$
		1329.0 4	1.5 15	9714.9	(10 ⁺)	(E2)		0.0001623 23	$\alpha(N) = 5.55 \times 10^{-5} \text{ s}, \ \alpha(N) = 0.0001104 \text{ I}6; \ \alpha(L) = 1.114 \times 10^{-5} \text{ I}6; \ \alpha(M) = 1.569 \times 10^{-6} \text{ 22} \text{ c}(N) = 6.77 \times 10^{-8} \text{ I}0; \ \alpha(\text{IPE}) = 3.53 \times 10^{-5} \text{ 5}.$
		1378.7 4	100 3	9665.67	10+	E2		0.0001655 24	$\alpha(N) = 0.77 \times 10^{-5} 10, \ \alpha(N + 1) = 5.55 \times 10^{-5} 5$ $\alpha = 0.0001655 24; \ \alpha(K) = 0.0001058 15; \ \alpha(L) = 1.030 \times 10^{-5} 15;$ $\alpha(M) = 1.451 \times 10^{-6} 21$ $\alpha(N) = 6.26 \times 10^{-8} 9; \ \alpha(IPE) = 4.79 \times 10^{-5} 7$
		1911.4 5	3 1	9132.27	11-	E1		0.000607 9	$\alpha(N)=0.20\times 10^{-9}, \alpha(N)=4.79\times 10^{-7}, \alpha(L)=3.03\times 10^{-6}, 5; \alpha(M)=4.27\times 10^{-7}, 6; \alpha(N+)=0.000572, 8; \alpha(N)=1.85\times 10^{-8}, 3; \alpha(IPF)=0.000572, 3; \alpha(IPF)=$
11079.1	(12 ⁻)	837.1 3	100 50	10241.7	(11 ⁻)	(M1+E2)		0.00033 5	$\alpha(N) = 1.65 \times 10^{-5} \text{ s}, \alpha(N + 1) = 0.600372 \text{ d}$ $\alpha = 0.00033 \text{ 5}; \alpha(K) = 0.00030 \text{ 4}; \alpha(L) = 2.9 \times 10^{-5} \text{ 4};$ $\alpha(M) = 4.1 \times 10^{-6} \text{ 6}; \alpha(N +) = 1.77 \times 10^{-7} \text{ 24}$ $\alpha(N) = 1.77 \times 10^{-7} \text{ 24}$
		1025.1 3	100 50	10054.23	(11-)	(M1+E2)		0.000209 20	$\alpha(N)=1.11\times10^{-5} \ IS = 0.000188 \ IS; \ \alpha(L)=1.83\times10^{-5} \ IS; \\ \alpha(M)=2.58\times10^{-6} \ 25; \ \alpha(N+)=1.11\times10^{-7} \ I \\ \alpha(N)=1.11\times10^{-7} \ IO = 0.000188 \ IS = 0.000188 \$
11112.8	13-	954.1 <i>3</i>	1.7 <i>17</i>	10158.6	(12 ⁻)	(M1+E2)		0.00024 3	$\alpha(\mathbf{n}) = 1.11 \times 10^{-10} 10^{-10} \\ \alpha = 0.00024 3; \alpha(\mathbf{K}) = 0.000220 24; \alpha(\mathbf{L}) = 2.15 \times 10^{-5} 24; \\ \alpha(\mathbf{M}) = 3.0 \times 10^{-6} 4; \alpha(\mathbf{N}+) = 1.31 \times 10^{-7} 14 \\ \alpha(\mathbf{N}) = 1.31 \times 10^{-7} 14$
		1123.4 3	100 7	9989.27	(12 ⁻)	M1+E2	+0.13 7	0.0001597 24	$\alpha(N) = 1.51 \times 10^{-6} II \alpha(K) = 0.0001426 21; \ \alpha(L) = 1.388 \times 10^{-5} 21; \ \alpha(M) = 1.96 \times 10^{-6} 3$ $\alpha(N) = 8.48 \times 10^{-8} I3; \ \alpha(IPE) = 1.168 \times 10^{-6} 23$
		1981.1 5	72	9132.27	11-	E2		0.000360 5	$\alpha(N)=0.40\times10^{-175}, \alpha(N+1)=1.100\times10^{-125} \text{ (a)} = 25$ $\alpha=0.000360 5; \alpha(K)=5.20\times10^{-5} 8; \alpha(L)=5.04\times10^{-6} 7;$ $\alpha(M)=7.10\times10^{-7} 10; \alpha(N+)=0.000303 5$ $\alpha(N)=3.08\times10^{-8} 5; \alpha(IPF)=0.000303 5$
11120.6	12-	1498.1 <i>4</i>	100	9622.5	10-	E2		0.000185 3	$\alpha(\mathbf{x}) = 0.000185 \ 3; \ \alpha(\mathbf{K}) = 8.91 \times 10^{-5} \ 13; \ \alpha(\mathbf{L}) = 8.67 \times 10^{-6} \ 13; \ \alpha(\mathbf{M}) = 1.222 \times 10^{-6} \ 18; \ \alpha(\mathbf{N}+) = 8.63 \times 10^{-5} \ 13 \ \alpha(\mathbf{N}) = 5.28 \times 10^{-8} \ 8; \ \alpha(\mathbf{IPF}) = 8.62 \times 10^{-5} \ 13$
11224.9	(11+)	2705 2	50 <i>50</i>	8521.11	10-	(E1)		0.001102 16	$\alpha = 0.001102 \ I6; \ \alpha(\text{K}) = 1.91 \times 10^{-5} \ 3; \ \alpha(\text{L}) = 1.84 \times 10^{-6} \ 3; \\ \alpha(\text{M}) = 2.60 \times 10^{-7} \ 4; \ \alpha(\text{N}+) = 0.001080 \ I6 \\ \alpha(\text{N}) = 1.128 \times 10^{-8} \ I6; \ \alpha(\text{IPF}) = 0.001080 \ I6 $

$\gamma(^{60}\text{Ni})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
11224.9	(11+)	3792.5 9	100 50	7433.45	9+	(E2)		0.001118 16	$\alpha = 0.001118 \ 16; \ \alpha(\text{K}) = 1.763 \times 10^{-5} \ 25; \ \alpha(\text{L}) = 1.702 \times 10^{-6} \ 24; \ \alpha(\text{M}) = 2.40 \times 10^{-7} \ 4; \ \alpha(\text{N}+) = 0.001098 \ \alpha(\text{M}) = 0.01108 \ 10^{-8} \ 15^{-6} \ \alpha(\text{M}) = 0.001098 \ 10^{-6} $
11255.23	12+	224.6 1	14 5	11030.60	11+	M1+E2	-0.12 10	0.0061 7	$\alpha(N)=1.044\times10^{-6} 13; \ \alpha(IPF)=0.001098 \ 16$ $\alpha=0.0061 \ 7; \ \alpha(K)=0.0055 \ 6; \ \alpha(L)=0.00055 \ 7;$ $\alpha(M)=7.7\times10^{-5} \ 9; \ \alpha(N+)=3.3\times10^{-6} \ 4$ $\alpha(N)=3 \ 3\times10^{-6} \ 4$
		278.0 2	100 5	10977.68	11+	M1(+E2)	-0.03 5	0.00344 7	$\alpha(N)=5.5\times10^{-4} 4$ $\alpha=0.00344 7; \ \alpha(K)=0.00309 7; \ \alpha(L)=0.000307 7;$ $\alpha(M)=4.32\times10^{-5} 9; \ \alpha(N+)=1.85\times10^{-6} 4$ $\alpha(N)=1.85\times10^{-6} 4$
		382.8 2	33 5	10872.60	11+	M1+E2	-0.05 4	0.00161 3	$\alpha(N)=1.05\times10^{-7} I$ $\alpha=0.00161 \ 3; \ \alpha(K)=0.001447 \ 24; \ \alpha(L)=0.0001430 \ 24;$ $\alpha(M)=2.01\times10^{-5} \ 4; \ \alpha(N+)=8.64\times10^{-7} \ 14$ $\alpha(N)=8.64\times10^{-7} \ 14$
		429.9 2	43 5	10825.23	11+	M1(+E2)	-0.04 4	0.001230 19	α =0.001230 <i>19</i> ; α (K)=0.001105 <i>17</i> ; α (L)=0.0001089 <i>17</i> ; α (M)=1.535×10 ⁻⁵ 24 α (N)=6.59×10 ⁻⁷ <i>10</i>
		1293.4 <i>4</i>	29 5	9960.14	11-	E1		0.000179 3	α =0.000179 3; α (K)=5.89×10 ⁻⁵ 9; α (L)=5.71×10 ⁻⁶ 8; α (M)=8.04×10 ⁻⁷ 12; α (N+)=0.0001135 17 α (N)=3.48×10 ⁻⁸ 5; α (IPF)=0.0001135 17
		1590.3 4	33 5	9665.67	10+	E2		0.000211 3	$\alpha = 0.000211 \ 3; \ \alpha(K) = 7.91 \times 10^{-5} \ 11; \ \alpha(L) = 7.69 \times 10^{-6} \ 11; \alpha(M) = 1.083 \times 10^{-6} \ 16; \ \alpha(N+) = 0.0001234 \alpha(N) = 4.68 \times 10^{-8} \ 7; \ \alpha(IPF) = 0.0001234 \ 18$
		2123.4 5	4.8 5	9132.27	11-	E1		0.000751 11	$\alpha(1)^{-1} \cos(10^{-1}) \cos(10^{-1}) \cos(10^{-1}) \cos(10^{-1}) \cos(10^{-1}) \cos(10^{-1}) \cos(10^{-1}) \cos(10^{-1}) \cos(10^{-1}) \cos(10^{-1}) \sin(10^{-1})
(11387.700)	$(1^{-},2^{-})$	1358.67 18	0.126 19	10029.02					a(1) 1.000,(10 20, a(11) 0.000,22 11
(())	1434.0 3	0.084 19	9953.7					
		2040.85 19	0.223 23	9346.82					
		2311.00 18	0.223 23	9076.66					
		2341.9 4	0.107 19	9045.20					
		2721.59 25	0.177 23	8666.21					
		2749.5 4	0.121 23	8638.5					
		2822.3 3	0.186 23	8565.60					
		2885.0 4	0.17223	8304.7	(1^{+})				
		3436.9.3	0.070 19	8280.5 7950.93	(1)				
		3569.53 13	0.409 2.3	7818.02					
		3589.0 3	0.24 4	7798.9					
		3625.6 4	0.16 3	7761.8	1^{+}				
		3697.7 6	0.15 3	7690.0	1-				
		3703.4 8	0.18 5	7684.1					
		3836.1 5	0.15 3	7552.0					
		3892.4 5	0.20 3	7495.2					

$\gamma(^{60}\text{Ni})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Iγ	E_f	\mathbf{J}_{f}^{π}
(11387.700)	$(1^{-},2^{-})$	3913.7 <i>3</i>	0.19 3	7473.49	1+
(3973.4 5	0.19 3	7414.16	
		4048.2 4	0.22 3	7339.68	
		4071.49 22	0.34 4	7316.13	
		4164.75 11	0.90 4	7222.80	
		4180.5 7	0.084 18	7207.6	
		4331.24 15	0.53 <i>3</i>	7056.27	
		4390.4 <i>3</i>	0.19 2	6996.86	
		4475.58 10	0.70 <i>3</i>	6911.93	1+
		4553.0 <i>3</i>	0.33 <i>3</i>	6834.92	
		4631.2 5	0.17 3	6756.4	
		4740.48 12	1.05 5	6647.17	
		4819.9 6	0.15 3	6567.33	
		4871.7 8	0.11 3	6516.72	
		4898.4 <i>4</i>	0.30 3	6489.28	
		4922.34 25	0.72 5	6465.25	1-
		5005.5 7	0.14 3	6382.4	1
		5025.43 25	0.43 4	6362.05	
		5059.8 6	0.19 3	6327.21	2+
		5148.1 <i>3</i>	0.29 2	6239.2	
		5320.69 18	0.44 3	6066.72	
		5419.5 6	0.12 2	5967.8	
		5468.5 6	0.13 2	5918.54	
		5485.02 8	1.75 4	5902.44	
		5509.46 11	1.04 4	5878.05	
		5527.4 5	0.16 2	5859.9	
		56/6.64 4	4.35 8	5/10.79	
		5/14.96 18	0.74 4	56/2.36	
		5775.08 0	3.32 /	5012.40	
		5911.3 8	0.074 23	54/6.04	a +
		5940.5 3	0.34 3	5200 55	2.
		6260 10 20	0.29 3	5107.16	
		6200.19.20	0.55 5	5065.02	(1-)
		6424 01 10	2.397	4052.26	(1)
		6459 42 18	1.04 3	4955.50	
		0430.42 10 6543 44 18	0.403	4920.90	2^+
		6608 20 15	136.6	1770 12	2
		6627 12 10	0.59 4	4760.23	12
		6809 91 9	1 55 6	4577 45	$2^{+,2}$
		6839 38 12	563	4547.96	1+ 2+
		6894 23 11	1 28 5	4493 16	2+,2
		7051 67 12	1.02.4	4335 52	$\frac{1}{2}$
		7068.67 8	1.93 6	4318.58	$\bar{2}^{+}$
		1008.07 8	1.95 0	4310.38	2

	Adopted Levels, Gammas (continued)													
						γ (⁶⁰ Ni)	(continued)						
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments					
(11387.700)	(1 ⁻ ,2 ⁻)	7275.9 9	0.09 2	4111.96	2^+ 1+ 2+									
		7367 31 5	912	4019 886	1 ,2 1+									
		7380.77 4	11.3 3	4006.444	2+									
		7499.4 4	0.35 3	3887.36	2+									
		7516.17 4	9.5 2	3871.050	2^{+}									
		7652.88 8	2.00 5	3734.44	2+									
		7799.40 6	3.20 7	3587.72	0^{+}									
		7993.95 10	1.44 5	3393.14	2+									
		8069.26 4	14.8 3	3317.829	0^{+}									
		8117.6 9	0.20 6	3269.19	2+									
		8193.24 4	8.8 2	3193.87	(2^+)									
		8200.88 17	0.904	3103.90	(3^{+})									
		8203.33 J 9102 10 A	1.4 2	2284.80	$^{2}_{0^{+}}$									
		9228 19 9	532	2158 632	0 2+									
		10054.14 7	38.2 7	1332.514	$\frac{2}{2^{+}}$									
		11386.50 9	100 4	0.0	$\bar{0}^{+}$									
11443.40	13-	654.9 2	29 7	10788.66	12-	M1+E2		0.00061 13	α =0.00061 <i>13</i> ; α (K)=0.00055 <i>12</i> ; α (L)=5.4×10 ⁻⁵ <i>12</i> ; α (M)=7.6×10 ⁻⁶ <i>16</i> ; α (N+)=3.2×10 ⁻⁷ <i>7</i>					
									$\alpha(N) = 3.2 \times 10^{-7} 7$					
		1683.2 4	100 7	9760.42	11-	E2		0.000242 4	$\alpha = 0.000242 \ 4; \ \alpha(K) = 7.07 \times 10^{-3} \ 10; \ \alpha(L) = 6.87 \times 10^{-6} \ 10; \alpha(M) = 9.68 \times 10^{-7} \ 14; \ \alpha(N+) = 0.0001639 \ 2$					
									$\alpha(N)=4.19\times10^{-8} 6; \alpha(IPF)=0.0001638 23$					
		1724.9 4	797	9718.27	11-	E2		0.000257 4	$\alpha = 0.000257 \ 4; \ \alpha(K) = 6.74 \times 10^{-5} \ 10; \ \alpha(L) = 6.55 \times 10^{-6} \ 10;$					
									$\alpha(M) = 9.23 \times 10^{-7}$ 13; $\alpha(N+) = 0.000182$ 3					
									$\alpha(N)=4.00\times10^{-8}$ 6; $\alpha(IPF)=0.000182$ 3					
11493.6	(12^{+})	2361.4 9	100	9132.27	11-	(E1)		0.000901 13	$\alpha = 0.000901 \ 13; \ \alpha(K) = 2.31 \times 10^{-5} \ 4; \ \alpha(L) = 2.23 \times 10^{-6} \ 4;$					
									$\alpha(M)=3.14\times10^{-7}$ 5; $\alpha(N+)=0.000876$ 13					
									$\alpha(N)=1.362\times10^{-8}$ 19; $\alpha(IPF)=0.000876$ 13					
11553.3	13-	764.2 <i>3</i>	100	10788.66	12^{-}	M1+E2		0.00041 7	$\alpha = 0.00041$ 7; $\alpha(K) = 0.00037$ 6; $\alpha(L) = 3.6 \times 10^{-5}$ 6;					
									$\alpha(M)=5.1\times10^{-6}$ 9; $\alpha(N+)=2.2\times10^{-7}$ 4					
									$\alpha(N) = 2.2 \times 10^{-7} 4$					
11785.6	(12^{+})	560.8 2	50 25	11224.9	(11^{+})	M1+E2		0.00092 25	α =0.00092 25; α (K)=0.00082 22; α (L)=8.1×10 ⁻⁵ 22;					
									$\alpha(M)=1.1\times10^{-5}$ 3; $\alpha(N+)=4.9\times10^{-7}$ 13					
									$\alpha(N) = 4.9 \times 10^{-7} \ 13$					
		2654.2 6	100 25	9132.27	11-	(E1)		0.001073 15	α =0.001073 <i>15</i> ; α (K)=1.96×10 ⁻⁵ <i>3</i> ; α (L)=1.89×10 ⁻⁶ <i>3</i> ;					
									$\alpha(M)=2.66\times10^{-7}$ 4; $\alpha(N+)=0.001051$ 15					
									$\alpha(N)=1.158\times 10^{-8}$ 17; $\alpha(IPF)=0.001051$ 15					
11851.17	13+	596.0 2	100 5	11255.23	12^{+}	M1(+E2)	-0.03 4	0.000591 9	α =0.000591 9; α (K)=0.000531 8; α (L)=5.21×10 ⁻⁵ 8;					
									$\alpha(M)=7.34\times10^{-6}$ <i>11</i> ; $\alpha(N+)=3.17\times10^{-7}$ <i>5</i> $\alpha(N)=3.17\times10^{-7}$ <i>5</i>					

 $^{60}_{28}\mathrm{Ni}_{32}$ -49

 $^{60}_{28}\mathrm{Ni}_{32}$ -49

L

From ENSDF

Adopted Levels, Gammas (continued)												
							γ (⁶⁰ Ni) (co	ontinued)				
E _i (level)	J_i^{π}	Eγ‡	I_{γ}	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments			
11851.17	13+	872.6 3	4.5 15	10977.68	11+	E2		0.000338 5	α =0.000338 5; α (K)=0.000304 5; α (L)=2.99×10 ⁻⁵ 5; α (M)=4.20×10 ⁻⁶ 6; α (N+)=1.80×10 ⁻⁷ 3 α (N)=1.80×10 ⁻⁷ 3			
		1862.9 5	4.5 15	9989.27	(12 ⁻)	E1		0.000573 8	$\alpha(N)=1.30\times 10^{-5} \text{ s}; \alpha(L)=3.15\times 10^{-6} \text{ s}; \alpha(M)=4.44\times 10^{-7} \text{ 7}; \alpha(N+)=0.000537 \text{ 8}; \alpha(N)=1.93\times 10^{-8} \text{ s}; \alpha(IPF)=0.000536 \text{ 8}; \alpha(IPF)=0.000536 \text{ s}; \alpha(IPF)$			
11878.0 12273.7	(13) 14 ⁻	1180.7 <i>3</i> 1160.8 <i>3</i>	100 100 <i>12</i>	10697.3 11112.8	12 ⁻ 13 ⁻	(D+Q) M1+E2	+0.11 6	0.0001515 22	$\alpha = 0.0001515\ 22;\ \alpha(K) = 0.0001336\ 19;$ $\alpha(L) = 1.300 \times 10^{-5}\ 19;\ \alpha(M) = 1.83 \times 10^{-6}\ 3$ $\alpha(N) = 7.95 \times 10^{-8}\ 12:\ \alpha(IPE) = 2.94 \times 10^{-6}\ 5$			
		2284.6 6	15 4	9989.27	(12 ⁻)	E2		0.000496 7	$\alpha = 0.000496 \ 7; \ \alpha(K) = 4.03 \times 10^{-5} \ 6; \ \alpha(L) = 3.90 \times 10^{-6} \ 6; \alpha(M) = 5.50 \times 10^{-7} \ 8; \ \alpha(N+) = 0.000451 \ 7 \alpha(N) = 2.39 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.000451 \ 7 $			
12486.2	(13 ⁺)	700.8 2	100 25	11785.6	(12 ⁺)	M1+E2		0.00051 10	$\alpha(n) = 2.5 \times 10^{-5} \ 9; \ \alpha(M) = 0.00046 \ 9; \ \alpha(L) = 4.5 \times 10^{-5} \ 9; \ \alpha(M) = 6.4 \times 10^{-6} \ 12; \ \alpha(N+) = 2.7 \times 10^{-7} \ 5 \ \alpha(N) = 2.7 \times 10^{-7} \ 5$			
		2495.3 6	75 25	9989.27	(12 ⁻)	(E1)		0.000981 14	$\alpha(N) = 2.000981 \ I4; \ \alpha(K) = 2.13 \times 10^{-5} \ 3; \ \alpha(L) = 2.06 \times 10^{-6} \\ 3; \ \alpha(M) = 2.90 \times 10^{-7} \ 4; \ \alpha(N+) = 0.000958 \ I4 \\ \alpha(N) = 1.261 \times 10^{-8} \ I8; \ \alpha(IPE) = 0.000958 \ I4$			
12578.4	14+	727.1 2	100 6	11851.17	13+	M1(+E2)	+0.03 5	0.000385 6	$\alpha(N) = 1207(10^{-1} \text{ f}), \alpha(N) = 0.000346 \text{ f}; \alpha(L) = 3.38 \times 10^{-5} \text{ f}; \alpha(M) = 4.77 \times 10^{-6} \text{ f}; \alpha(N+) = 2.06 \times 10^{-7} \text{ J} $			
		1025.1 <i>3</i>	4 2	11553.3	13-	E1		9.99×10 ⁻⁵ 14	$\alpha(1)=2.60\times10^{-5} I4; \ \alpha(K)=8.99\times10^{-5} I3; \ \alpha(L)=8.73\times10^{-6} I3; \ \alpha(M)=1.229\times10^{-6} I8; \ \alpha(N+)=5.31\times10^{-8} 8$			
		1323.9 4	62	11255.23	12+	E2		0.0001621 23	$\alpha(N)=5.51\times10^{-5} \text{ or } (K)=0.0001152 \ 17;$ $\alpha(L)=1.123\times10^{-5} \ 16; \ \alpha(M)=1.582\times10^{-6} \ 23$ $\alpha(N)=6.82\times10^{-8} \ 10; \ \alpha(\text{IPE})=3.40\times10^{-5} \ 5$			
12742.1	13+	1956.0 <i>12</i>	100 50	10788.66	12-	E1		0.000638 9	$\alpha(N) = 0.00638 \ 9; \ \alpha(K) = 3.03 \times 10^{-5} \ 5; \ \alpha(L) = 2.93 \times 10^{-6} \ 5; \ \alpha(M) = 4.12 \times 10^{-7} \ 6; \ \alpha(N+) = 0.000604 \ 9 \ \alpha(N) = 1.79 \times 10^{-8} \ 3; \ \alpha(IPE) = 0.000604 \ 9$			
		2753.2 7	50 <i>50</i>	9989.27	(12 ⁻)	E1		0.001128 16	$\alpha(N)=1.10\times10^{-5}, \alpha(N)=0.000004^{-5}$ $\alpha=0.001128 \ I6; \ \alpha(K)=1.87\times10^{-5} \ 3; \ \alpha(L)=1.80\times10^{-6}$ $3; \ \alpha(M)=2.54\times10^{-7} \ 4; \ \alpha(N+)=0.001107 \ I6$ $\alpha(N)=1.102\times10^{-8} \ I6; \ \alpha(IPE)=0.001107 \ I6$			
12774.7	14+	1281.1 4	1 1	11493.6	(12+)	(E2)		0.0001616 23	$\alpha(L) = 1.206 \times 10^{-5} \ 17; \ \alpha(M) = 0.00110^{-1} \ 10^{-6} \ 24$ $\alpha(L) = 1.206 \times 10^{-5} \ 17; \ \alpha(M) = 1.698 \times 10^{-6} \ 24$ $\alpha(N) = 7.32 \times 10^{-8} \ 11; \ \alpha(IPF) = 2.41 \times 10^{-5} \ 4$			
		1730.4 4	100 5	11044.14	12+	E2		0.000259 4	$\alpha = 0.000259 \ 4; \ \alpha(\text{K}) = 6.70 \times 10^{-5} \ 10; \ \alpha(\text{L}) = 6.51 \times 10^{-6} \ 10; \ \alpha(\text{M}) = 9.17 \times 10^{-7} \ 13; \ \alpha(\text{N}+) = 0.000185 \ 3 \ \alpha(\text{N}) = 3.97 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 0.000185 \ 3 \ \beta(\text{IPF}) = 0.000185 $			

50

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -50

$\gamma(^{60}Ni)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
13037.5	14-	1916.9 5	100	11120.6	12-	E2	0.000333 5	α =0.000333 5; α (K)=5.52×10 ⁻⁵ 8; α (L)=5.36×10 ⁻⁶ 8; α (M)=7.55×10 ⁻⁷ 11; α (N+)=0.000272 4 α (N)=3.27×10 ⁻⁸ 5; α (IEE)=0.000272 4
13246.3	13+	2202.3 5	100 50	11044.14	12+	M1+E2	0.00042 4	$\begin{array}{c} \alpha(N) = 5.27 \times 10^{-5} \ \ \beta, \ \alpha(HF) = 0.0002724 \\ \alpha = 0.000424; \ \alpha(K) = 4.21 \times 10^{-5} \ 11; \ \alpha(L) = 4.08 \times 10^{-6} \ 11; \ \alpha(M) = 5.74 \times 10^{-7} \\ 15; \ \alpha(N+) = 0.000384 \\ \alpha$
		2456.4 6	100 50	10788.66	12-	E1	0.000958 14	$\alpha(N) = 2.49 \times 10^{-6} \ 7; \ \alpha(IPF) = 0.00038 \ 4$ $\alpha = 0.000958 \ 14; \ \alpha(K) = 2.18 \times 10^{-5} \ 3; \ \alpha(L) = 2.11 \times 10^{-6} \ 3; \ \alpha(M) = 2.97 \times 10^{-7} \ 5; \ \alpha(N+) = 0.000934 \ 13$
13282.3	(14+)	1839.1 5	100 20	11443.40	13-	(E1)	0.000556 8	$\alpha(N)=1.288\times10^{-6} 18; \ \alpha(IPF)=0.000934 13$ $\alpha=0.000556 8; \ \alpha(K)=3.32\times10^{-5} 5; \ \alpha(L)=3.22\times10^{-6} 5; \ \alpha(M)=4.53\times10^{-7} 7;$ $\alpha(N+)=0.000519 8$ $\alpha(N)=1.96\times10^{-8} 3; \ \alpha(IPF)=0.000519 8$
		2238.1 9	40 20	11044.14	12+	(E2)	0.000475 7	α =0.000475 7; α (K)=4.17×10 ⁻⁵ 6; α (L)=4.05×10 ⁻⁶ 6; α (M)=5.70×10 ⁻⁷ 8; α (N+)=0.000428 6 α (N)=2.47×10 ⁻⁸ 4: α (IPF)=0.000428 6
13353.0	(14 ⁺)	866.8 <i>3</i>	100	12486.2	(13+)	M1+E2	0.00031 4	$\alpha(N)=2.7\times10^{-7} 21$ $\alpha(N+)=1.63\times10^{-7} 21$
13615.4	15-	2061.2 5	13 7	11553.3	13-	E2	0.000395 6	$\alpha(N)=1.65\times10^{-21}$ $\alpha=0.000395\ 6;\ \alpha(K)=4.84\times10^{-5}\ 7;\ \alpha(L)=4.69\times10^{-6}\ 7;\ \alpha(M)=6.61\times10^{-7}$ $10;\ \alpha(N+)=0.000342\ 5$ $\alpha(D)=2.87\times10^{-8}\ 4;\ \alpha(DE)=0.000242\ 5$
		2172.9 5	100 7	11443.40	13-	E2	0.000445 7	$\alpha(N) = 2.87 \times 10^{-6} 4; \ \alpha(IPF) = 0.000342.5$ $\alpha = 0.000445.7; \ \alpha(K) = 4.40 \times 10^{-5}.7; \ \alpha(L) = 4.26 \times 10^{-6}.6; \ \alpha(M) = 6.01 \times 10^{-7}.9; \ \alpha(N+) = 0.000397.6$
13662.2	15+	1083.9 <i>3</i>	100 8	12578.4	14+	M1+E2	0.000185 16	$\alpha(N)=2.61\times10^{-6} 4; \ \alpha(IPF)=0.0003976$ $\alpha=0.000185 \ 16; \ \alpha(K)=0.000166 \ 14; \ \alpha(L)=1.62\times10^{-5} \ 14; \ \alpha(M)=2.28\times10^{-6}$ $20; \ \alpha(N+)=9.9\times10^{-8} \ 8$
		1811.0 5	11 <i>3</i>	11851.17	13+	E2	0.000290 4	α = 0.000290 4; α (K)=6.15×10 ⁻⁵ 9; α (L)=5.97×10 ⁻⁶ 9; α (M)=8.41×10 ⁻⁷ 12; α (N+)=0.000222 4 α (D)=2.64×10 ⁻⁸ 6; α (DE)=0.000222 4
13810.0	(15-)	1536.2 4	100 33	12333	8-	(M1+E2)	0.000180 16	$\alpha(N) = 5.64 \times 10^{-6}$ 6, $\alpha(HP) = 0.0002224$ $\alpha = 0.000180$ 16; $\alpha(K) = 8.1 \times 10^{-5}$ 4; $\alpha(L) = 7.9 \times 10^{-6}$ 4; $\alpha(M) = 1.12 \times 10^{-6}$ 5; $\alpha(N+) = 8.9 \times 10^{-5}$ 12
		2697.2 6	67 <i>33</i>	11112.8	13-	(E2)	0.000680 10	$\alpha(N) = 4.83 \times 10^{-8} \ 20; \ \alpha(IPF) = 8.9 \times 10^{-5} \ 12$ $\alpha = 0.000680 \ 10; \ \alpha(K) = 3.03 \times 10^{-5} \ 5; \ \alpha(L) = 2.93 \times 10^{-6} \ 5; \ \alpha(M) = 4.13 \times 10^{-7}$ $6; \ \alpha(N+) = 0.000646 \ 9$
14201.0	(15+)	848.0 <i>3</i>	100	13353.0	(14+)	M1+E2	0.00032 5	$\alpha(N)=1.80\times10^{-5} 3; \alpha(IPF)=0.000646 9$ $\alpha=0.00032 5; \alpha(K)=0.00029 4; \alpha(L)=2.8\times10^{-5} 4; \alpha(M)=4.0\times10^{-6} 6;$ $\alpha(N+)=1.71\times10^{-7} 23$
14463.7	15+	1217.1 3	56 12	13246.3	13+	E2	0.0001653 24	$\alpha(N)=1.71\times10^{-7} 23$ $\alpha=0.0001653 24; \ \alpha(K)=0.0001383 20; \ \alpha(L)=1.350\times10^{-5} 19;$ $\alpha(M)=1.90\times10^{-6} 3$ $\alpha(N)=8.19\times10^{-8} 12; \ \alpha(IPF)=1.153\times10^{-5} 17$

Adopted Levels, Gammas (continued)									
γ ⁽⁶⁰ Ni) (continued)									
E_i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
14463.7	15+	1604.3 4	38 6	12859.3	13+	E2		0.000216 3	$\alpha = 0.000216 \ 3; \ \alpha(K) = 7.77 \times 10^{-5} \ 11; \ \alpha(L) = 7.56 \times 10^{-6} \ 11; \\ \alpha(M) = 1.064 \times 10^{-6} \ 15; \ \alpha(N+) = 0.0001294 \\ \alpha(N) = 4.60 \times 10^{-8} \ 7; \ \alpha(IPF) = 0.0001293 \ 19$
		1688.8 <i>4</i>	50 6	12774.7	14+	M1(+E2)		0.000224 21	$\alpha = 0.000224 \ 21; \ \alpha(K) = 6.80 \times 10^{-5} \ 25; \ \alpha(L) = 6.61 \times 10^{-6} \ 24; \alpha(M) = 9.3 \times 10^{-7} \ 4; \ \alpha(N+) = 0.000148 \ 18 \alpha(N) = 4.04 \times 10^{-8} \ 14; \ \alpha(IPF) = 0.000148 \ 18$
		1722.0 4	100 6	12742.1	13+	E2		0.000256 4	$\alpha = 0.000256 \ 4; \ \alpha(K) = 6.77 \times 10^{-5} \ 10; \ \alpha(L) = 6.57 \times 10^{-6} \ 10; \alpha(M) = 9.26 \times 10^{-7} \ 13; \ \alpha(N+) = 0.000181 \ 3 \alpha(N) = 4.01 \times 10^{-8} \ 6; \ \alpha(IPF) = 0.000181 \ 3$
		2189.9 5	13 6	12333	8-	E1		0.000795 12	$\alpha = 0.000795 \ 12; \ \alpha(K) = 2.57 \times 10^{-5} \ 4; \ \alpha(L) = 2.48 \times 10^{-6} \ 4; \alpha(M) = 3.49 \times 10^{-7} \ 5; \ \alpha(N+) = 0.000766 \ 11 \alpha(N) = 1.516 \times 10^{-8} \ 22; \ \alpha(IPF) = 0.000766 \ 11$
14645.5	16+	1870.8 <i>5</i>	100	12774.7	14+	E2		0.000314 5	$\alpha = 0.000314 \ 5; \ \alpha(K) = 5.78 \times 10^{-5} \ 8; \ \alpha(L) = 5.61 \times 10^{-6} \ 8; \alpha(M) = 7.90 \times 10^{-7} \ 11; \ \alpha(N+) = 0.000250 \ 4 \alpha(N) = 3.42 \times 10^{-8} \ 5; \ \alpha(IPF) = 0.000250 \ 4$
14803.2	16+	1141.1 <i>3</i>	100 7	13662.2	15+	M1(+E2)	-0.01 10	0.0001552 22	$\alpha = 0.0001552 \ 22; \ \alpha(K) = 0.0001379 \ 20; \ \alpha(L) = 1.342 \times 10^{-5} \ 19; \ \alpha(M) = 1.89 \times 10^{-6} \ 3 \ \alpha(N) = 8 \ 20 \times 10^{-8} \ 12; \ \alpha(IPF) = 1.84 \times 10^{-6} \ 3$
		2224.5 5	29 7	12578.4	14+	E2		0.000469 7	$\alpha(1) = 0.20116 + 12, \alpha(11) + 16 + 116 + $
14933.9	16+	1651.7 4	27 7	13282.3	(14+)	(E2)		0.000231 4	$\alpha(N) = 2.50 \times 10^{-6} I, \alpha(N) = 0.000122 0$ $\alpha = 0.000231 4; \alpha(K) = 7.34 \times 10^{-5} II; \alpha(L) = 7.13 \times 10^{-6} I0;$ $\alpha(M) = 1.005 \times 10^{-6} I4; \alpha(N+) = 0.0001500$ $\alpha(N) = 4.35 \times 10^{-8} 6; \alpha(IPF) = 0.0001499 2I$
		2158.9 5	100 13	12774.7	14+	E2		0.000439 7	$\alpha(N) = 4.35 \times 10^{-6} 6; \alpha(M) = 0.000149921$ $\alpha = 0.0004397; \alpha(K) = 4.45 \times 10^{-5} 7; \alpha(L) = 4.31 \times 10^{-6} 6; \alpha(M) = 6.08 \times 10^{-7} 9; \alpha(N+) = 0.000390 6$ $\alpha(N) = 2.64 \times 10^{-8} 4; \alpha(IPE) = 0.000390 6$
15164.8	(16 ⁺)	963.8 <i>3</i>	100	14201.0	(15 ⁺)	(M1+E2)		0.000239 25	$\alpha(N)=2.04\times10^{-4}, \alpha(N+1)=0.0003900^{-6}$ $\alpha=0.000239\ 25; \alpha(K)=0.000215\ 23; \alpha(L)=2.10\times10^{-5}\ 23;$ $\alpha(M)=3.0\times10^{-6}\ 4; \alpha(N+)=1.28\times10^{-7}\ 13$ $\alpha(N)=1\ 28\times10^{-7}\ 13$
15281.5	(16 ⁻)	2243.9 5	100	13037.5	14-	(E2)		0.000477 7	$\alpha(N) = 1.20 \times 10^{-110} = 1.5$ $\alpha = 0.000477 \ 7; \ \alpha(K) = 4.16 \times 10^{-5} \ 6; \ \alpha(L) = 4.03 \times 10^{-6} \ 6;$ $\alpha(M) = 5.67 \times 10^{-7} \ 8; \ \alpha(N+) = 0.000431 \ 6$ $\alpha(N) = 2.46 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.000431 \ 6$
16026.6	17+	1381.2 4	3 1	14645.5	16+	M1+E2		0.000154 12	$\alpha = 0.000154 \ I2; \ \alpha(K) = 0.000100 \ 6; \ \alpha(L) = 9.8 \times 10^{-6} \ 6; \\ \alpha(M) = 1.38 \times 10^{-6} \ 8; \ \alpha(N+) = 4.2 \times 10^{-5} \ 7 \\ \alpha(N) = 6.0 \times 10^{-8} \ 3; \ \alpha(IPF) = 4.2 \times 10^{-5} \ 7 \\ \end{array}$
		1562.9 4	100 5	14463.7	15+	E2		0.000203 3	α =0.000203 3; α (K)=8.18×10 ⁻⁵ 12; α (L)=7.96×10 ⁻⁶ 12; α (M)=1.121×10 ⁻⁶ 16; α (N+)=0.0001119 α (N)=4.85×10 ⁻⁸ 7; α (IPF)=0.0001118 16
16098.1	(17+)	1294.8 <i>1</i>	100	14803.2	16+	(M1+E2)		0.000151 11	$\alpha = 0.000151 \ II; \ \alpha(\mathbf{K}) = 0.000114 \ 7; \ \alpha(\mathbf{L}) = 1.11 \times 10^{-5} \ 7; \alpha(\mathbf{M}) = 1.57 \times 10^{-6} \ I0; \ \alpha(\mathbf{N}+) = 2.4 \times 10^{-5} \ 4 \alpha(\mathbf{N}) = 6.8 \times 10^{-8} \ 4; \ \alpha(\mathbf{IPF}) = 2.3 \times 10^{-5} \ 4$

52

 $^{60}_{28}\mathrm{Ni}_{32}$ -52

L

$\gamma(^{60}Ni)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$lpha^\dagger$	Comments
16194.4	17-	2578.9 6	100	13615.4 15-	E2	0.000628 9	α =0.000628 9; α (K)=3.27×10 ⁻⁵ 5; α (L)=3.16×10 ⁻⁶ 5; α (M)=4.46×10 ⁻⁷ 7; α (N+)=0.000592 9 α (N)=1.94×10 ⁻⁸ 3; α (IPF)=0.000592 9
16242.0?	(17 ⁺)	1077 ^k 1		15164.8 (16 ⁺)	(M1+E2)	0.000187 16	$\alpha = 0.000187 \ I6; \ \alpha(\text{K}) = 0.000168 \ I4; \ \alpha(\text{L}) = 1.64 \times 10^{-5} \ I5; \ \alpha(\text{M}) = 2.32 \times 10^{-6} \ 20; \\ \alpha(\text{N}+) = 1.00 \times 10^{-7} \ 9 \\ \alpha(\text{N}) = 1.00 \times 10^{-7} \ 9 \ 10^{-7} \ 9 \ 10^{-7} \ 9 \ 10^{-7} \ 9 \ 10^{-7} \$
16842.4	18+	2196.9 5	100	14645.5 16+	E2	0.000456 7	$\alpha(N) = 1.00 \times 10^{-9} \text{ g}$ $\alpha = 0.000456 \ 7; \ \alpha(K) = 4.31 \times 10^{-5} \ 6; \ \alpha(L) = 4.18 \times 10^{-6} \ 6; \ \alpha(M) = 5.89 \times 10^{-7} \ 9;$ $\alpha(N+) = 0.000408 \ 6$ $\alpha(N+) = 0.000408 \ 6$
17235.8	18+	2301.9 6	100	14933.9 16+	E2	0.000504 7	$\alpha(N)=2.56\times10^{-5} 4; \ \alpha(IPF)=0.000408 \ 6$ $\alpha=0.000504 \ 7; \ \alpha(K)=3.97\times10^{-5} \ 6; \ \alpha(L)=3.85\times10^{-6} \ 6; \ \alpha(M)=5.42\times10^{-7} \ 8; \ \alpha(N+)=0.000459 \ 7$
17911.6	19+	1884.9 <i>5</i>	100	16026.6 17+	E2	0.000320 5	$ \begin{aligned} \alpha(N) &= 2.35 \times 10^{-6} \ 4; \ \alpha(IPF) = 0.000459 \ 7 \\ \alpha &= 0.000320 \ 5; \ \alpha(K) = 5.70 \times 10^{-5} \ 8; \ \alpha(L) = 5.53 \times 10^{-6} \ 8; \ \alpha(M) = 7.79 \times 10^{-7} \ 11; \\ \alpha(N+) &= 0.000256 \ 4 \end{aligned} $
18131.4	(18-)	2849.9 7	100	15281.5 (16 ⁻)	(E2)	0.000746 11	$ \begin{array}{l} \alpha(\mathrm{N}) = 3.38 \times 10^{-8} \ 5; \ \alpha(\mathrm{IPF}) = 0.000256 \ 4 \\ \alpha = 0.000746 \ 11; \ \alpha(\mathrm{K}) = 2.77 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.68 \times 10^{-6} \ 4; \ \alpha(\mathrm{M}) = 3.77 \times 10^{-7} \ 6; \\ \alpha(\mathrm{N}+) = 0.000715 \ 10 \end{array} $
19238.4	(19 ⁻)	3043.9 7	100	16194.4 17-	(E2)	0.000828 12	$ \begin{array}{l} \alpha(\mathrm{N}) = 1.639 \times 10^{-8} \ 23; \ \alpha(\mathrm{IPF}) = 0.000715 \ 10 \\ \alpha = 0.000828 \ 12; \ \alpha(\mathrm{K}) = 2.49 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.40 \times 10^{-6} \ 4; \ \alpha(\mathrm{M}) = 3.39 \times 10^{-7} \ 5; \\ \alpha(\mathrm{N}+) = 0.000801 \ 12 \end{array} $
19504.4	20+	2661.9 6	100	16842.4 18+	E2	0.000665 10	$\begin{aligned} &\alpha(\text{N})=1.473\times10^{-8}\ 21;\ \alpha(\text{IPF})=0.000801\ 12\\ &\alpha=0.000665\ 10;\ \alpha(\text{K})=3.10\times10^{-5}\ 5;\ \alpha(\text{L})=3.00\times10^{-6}\ 5;\ \alpha(\text{M})=4.23\times10^{-7}\ 6;\\ &\alpha(\text{N}+)=0.000630\ 9 \end{aligned}$
20017.9	(20+)	2782.0 7	100	17235.8 18+	(E2)	0.000717 10	$ \begin{aligned} &\alpha(\mathrm{N}) = 1.84 \times 10^{-8} \ 3; \ \alpha(\mathrm{IPF}) = 0.000630 \ 9 \\ &\alpha = 0.000717 \ 10; \ \alpha(\mathrm{K}) = 2.88 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.79 \times 10^{-6} \ 4; \ \alpha(\mathrm{M}) = 3.93 \times 10^{-7} \ 6; \\ &\alpha(\mathrm{N}+) = 0.000685 \ 10 \end{aligned} $
20177.5	21+	2265.9 6	100	17911.6 19+	E2	0.000487 7	$ \begin{array}{l} \alpha(\mathrm{N}) = 1.706 \times 10^{-8} \ 24; \ \alpha(\mathrm{IPF}) = 0.000685 \ 10 \\ \alpha = 0.000487 \ 7; \ \alpha(\mathrm{K}) = 4.08 \times 10^{-5} \ 6; \ \alpha(\mathrm{L}) = 3.96 \times 10^{-6} \ 6; \ \alpha(\mathrm{M}) = 5.58 \times 10^{-7} \ 8; \\ \alpha(\mathrm{N}+) = 0.000442 \ 7 \end{array} $
22863.5	(22+)	3359.0 8	100	19504.4 20+	(E2)	0.000955 14	$ \begin{array}{l} \alpha(\mathrm{N}) = 2.42 \times 10^{-8} \ 4; \ \alpha(\mathrm{IPF}) = 0.000442 \ 7 \\ \alpha = 0.000955 \ 14; \ \alpha(\mathrm{K}) = 2.13 \times 10^{-5} \ 3; \ \alpha(\mathrm{L}) = 2.05 \times 10^{-6} \ 3; \ \alpha(\mathrm{M}) = 2.89 \times 10^{-7} \ 4; \\ \alpha(\mathrm{N}+) = 0.000932 \ 13 \end{array} $
22996.5	23+	2818.9 7	100	20177.5 21+	E2	0.000733 11	$ \begin{aligned} &\alpha(\mathrm{N}) = 1.259 \times 10^{-8} \ 18; \ \alpha(\mathrm{IPF}) = 0.000932 \ 13 \\ &\alpha = 0.000733 \ 11; \ \alpha(\mathrm{K}) = 2.82 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.73 \times 10^{-6} \ 4; \ \alpha(\mathrm{M}) = 3.84 \times 10^{-7} \ 6; \\ &\alpha(\mathrm{N}+) = 0.000701 \ 10 \\ &\alpha(\mathrm{N}) = 1.669 \times 10^{-8} \ 24; \ \alpha(\mathrm{IPF}) = 0.000701 \ 10 \end{aligned} $

53

[†] Additional information 3. [‡] From (³⁶Ar,4py), unless given otherwise. For additional γ 's from unbound states, see ⁵⁹Co(p, γ). [#] Multipolarity from $\gamma(\theta)$ in ⁵⁶Fe(⁷Li,2np γ); character (E or M) from RUL or ΔJ^{π} , except as noted.

$\gamma(^{60}\text{Ni})$ (continued)

[@] From ⁵⁶Fe(⁷Li,2np γ), except as noted. [&] From ⁵⁹Co(p, γ).

^{*a*} From ⁶⁰Cu ε decay.

^b From ⁶⁰Co $β^-$ decay (1925.28 d).

^{*c*} From ⁶⁰Ni(p,p' γ).

^{*d*} From ${}^{60}\text{Ni}(p,p'\gamma)$.

^{*e*} From 56 Fe(7 Li,2np γ).

^f From ⁵⁹Co(³He, $d\gamma$). E γ deduced from level separation and not included in energy fit.

^g From ⁵⁹Co(³He,d γ). E γ deduced from level separation and not included in energy fit.

^{*h*} From ²⁸Si(35 Cl,3p). ^{*i*} From ⁵⁹Ni(n, γ) E=thermal.

^{*j*} From (γ, γ') , (pol γ, γ').

k Placement of transition in the level scheme is uncertain.

Legend

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{60}_{28}{
m Ni}_{32}$

Level Scheme (continued)

Level Scheme (continued)

 $^{60}_{28}{
m Ni}_{32}$

Level Scheme (continued)

⁶⁰₂₈Ni₃₂

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 ${}^{60}_{28}\rm{Ni}_{32}$

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁶⁰₂₈Ni₃₂

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{60}_{28}{
m Ni}_{32}$

Level Scheme (continued)

Level Scheme (continued)

 $^{60}_{28}{
m Ni}_{32}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

 $^{60}_{28}{
m Ni}_{32}$

Level Scheme (continued)

 $^{60}_{28}{
m Ni}_{32}$

 $^{60}_{28}{
m Ni}_{32}$

Level Scheme (continued)

 $^{60}_{28}{
m Ni}_{32}$

From ENSDF

⁶⁰₂₈Ni₃₂

 $^{60}_{28}{
m Ni}_{32}$

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{60}_{28}\rm{Ni}_{32}$

 $^{60}_{28}\mathrm{Ni}_{32}$ -77

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -77

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{60}_{28}{
m Ni}_{32}$

Adopted Levels, Gammas

 $^{60}_{28}{
m Ni}_{32}$

Adopted Levels, Gammas (continued)

Adopted Levels, Gammas (continued)

