Compiled (unevaluated) dataset form 2013Sc20: Phys Rev C 88, 044304 (2013) Compiled by F.G. Kondev (ANL) and B. Singh (McMaster); Nov 2, 2013.

Edited by B. Singh (McMaster) Nov 13, 2013; e-mail reply of Nov 13, 2013 from M. Scheck incorporated; level energies changed to those listed in the paper, rather than from least-squares fit.

Edited by B. Singh (McMaster) Nov 27, 2013; e-mail reply of Nov 14, 2013 from M. Scheck, supplied numerical data for figure 3 in paper; numerical values of angular correlation included.

Bremsstrahlung measurements using the S-DALINAC accelerator in Darmstadt at E γ (max)=6.0, 8.0 and 9.9 MeV. Target=99.8% enriched in ⁶⁰Ni. Three HPGe detectors, embedded in a lead shielding, each equipped with BGO anti-Compton shielding. Relative γ -ray efficiency, up to 10 MeV, was simulated using the GEANT4 toolkit. Second experiment utilized the High Intensity γ -ray Source (HI γ S) (100% linearly polarized photons) at TUNL. Measured E γ , $\gamma\gamma(\theta)$, polarization, (γ,γ') cross sections and branching ratios. Deduced levels, J, π , T_{1/2}, partial widths.

B(L x ray)up and $I_{s,f}$ cross-section values are from 2013Sc20.

⁶⁰Ni Levels

B(E1)(\uparrow) values here are in e²b, and B(E2)(\uparrow) values in e²b²; 2013Sc20 list these in units of e²fm² and e²fm⁴, respectively. B(M1)(\uparrow) values are in μ_N^2 .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	$\Gamma_0 (eV)^{\&}$	Comments
0.0	$0^{+\#}$			
1332.7 ^{<i>a</i>} 2	2+ #	>347 fs	<1.32×10 ⁻³	$T_{1/2}$: >347 fs <i>12</i> . B(E2) \uparrow <0.195 6. Eq. (0.00132 eV 4
2157.7 ^b 10	2+ #	>6.7 fs	<0.0010	$T_{1/2}$: >6.7 fs 33. B(E2) \uparrow <0.137 52. $\Gamma_0 < 0.0010$ eV 4.
2284.87 14	0^{+}	>1.5 ps		$E(\text{level}), J^{\pi}, T_{1/2}$: from Adopted Levels for ⁶⁰ Ni in ENSDF database.
3123.4 ^b 8	2+ #	>3.6 fs	<0.011	$T_{1/2}$: >3.6 fs 28. B(E2) \uparrow <0.024 17. Γ_0 <0.011 eV 8.
3193.6 7	1+	>3.1 fs	0.024×10 ⁻³ 8	$T_{1/2}: >3.1 \text{ fs } 12.$ B(M1) \uparrow <0.190 67. E(level): level not observed in the 6.0-MeV data.
3268.9 ^b 11	2+ #	>7.42 fs	<0.009	T _{1/2} : >7.42 fs 21. B(E2) \uparrow <0.0157 53. Γ_0 <0.009 eV 2.
3393.3 10	2+ #	>2.4 fs	<0.0010	$T_{1/2}$: >2.4 fs 42. B(E2) \uparrow <0.014 19. Γ_0 <0.0010 eV 14.
3797.9 10	1	118 fs 15	0.0039 10	$B(E1)\uparrow=0.203\times10^{-5}$ 26 or $B(M1)\uparrow=0.018$ 3.
3908 <i>3</i>	1	27 fs 5	0.017 1	E(level): 3908.1 3 in table IV of 2013Sc20 seems a misprint. B(E1) \uparrow =0.82×10 ⁻⁵ 15 or B(M1) \uparrow =0.074 14.
4006.7 ^{<i>a</i>} 8	2+ #	22 fs 4	0.0078 15	B(E2)↑=0.0047 7.
4020.6 3	1^{+}	13 fs 6	0.020 8	B(M1)↑=0.079 <i>18</i> .
4844.5 ^a 7	2+	6.9 fs 21	0.226 71	B(E2)↑=0.0052 <i>12</i> .
5064.5 6	1	2.98 fs 28	0.124 10	$B(E1)\uparrow=2.7\times10^{-5} \ 3 \text{ or } B(M1)\uparrow=0.247 \ 18.$
5931.4 11	1	21 fs 6	0.021 5	$B(E1)\uparrow=0.285\times10^{-5}$ 70 or $B(M1)\uparrow=0.0258$ 63.
6180.6 6	1-	1.80 fs 28	0.234 34	$B(E1)\uparrow=2.84\times10^{-5}$ 41.
6229.0 11	(2 ⁺)	20 fs 4	0.023 5	B(E2) \uparrow =0.0015 3. J ^{π} : assignment is tentative.
6382.2 10	1	12 fs 3	0.037 10	$B(E1)\uparrow=0.40\times10^{-5}$ 11 or $B(M1)\uparrow=0.037$ 10.
6465.2 6	1-	1.7 fs 5	0.167 39	$B(E1)\uparrow=1.77\times10^{-5}$ 42.
6514.6 9	1^{+}	3.0 fs 5	0.150 23	$B(M1)\uparrow=0.140\ 21.$
6587.6 6	1-	1.25 fs 28	0.248 43	$B(E1)\uparrow=2.48\times10^{-5}$ 43.

⁶⁰Ni Levels (continued)

E(level) [†]	J π ‡	T _{1/2} @	$\Gamma_0 (eV)^{\&}$	Comments
6718.1 10	1-	6.7 fs 13	0.069 14	$B(E1)\uparrow=0.65\times10^{-5}$ 13.
6736.8 10	(1)	6 fs 3	0.036 21	$E(\text{level}) I^{\pi}$: level seen only in 8.0-MeV data: spin assignment is tentative.
	(-)			$B(E1)^{+}=0.34 \times 10^{-5}$ 20 or $B(M1)^{+}=0.031$ 18.
6913.7 7	1^{+}	1.46 fs 28	0.288 47	$B(M1)\uparrow=0.226$ 37.
7038.7 7	1-	1.3 fs 4	0.212 54	$B(E1)^{+}=1.75\times10^{-5}$ 44.
7473.7 9	1^{+}	2.1 fs 3	0.214 36	$B(M1)\uparrow=0.133\ 23.$
				Additional information 1.
7559.08	1-	6.5 fs 22	0.070 24	$B(E1)\uparrow=0.47\times10^{-5}$ 16.
7646.9 7	1-	0.27 fs 3	1.67 20	$B(E1)\uparrow = 10.7 \times 10^{-5}$ 13.
7657.1 8	1^{+}	0.97 fs 14	0.475 70	$B(M1)\uparrow=0.274 \ 40.$
7690.9 6	1-	0.208 fs 28	2.13 26	$B(E1)\uparrow = 13.4 \times 10^{-5}$ 16.
7746.9 5	1-	0.55 fs 21	0.46 12	$B(E1)\uparrow = 2.83 \times 10^{-5}$ 75.
7761.6 8	1^{+}	1.7 fs 4	0.276 69	$B(M1)\uparrow=0.153\ 38.$
7849.7 10	1^{+}	1.66 fs 28	0.280 46	$B(M1)\uparrow = 0.150\ 25.$
7879.8 12	1^{+}	2.6 fs 6	0.176 36	B(M1)↑=0.093 <i>19</i> .
7926.1 17	1^{+}	8.2 fs 36	0.055 24	$B(M1)\uparrow=0.029 \ 13.$
7951.2 8	1^{+}	0.76 fs 14	0.590 86	E(level): uncertainty of 0.2 keV in table III of 2013Sc20 seems a misprint.
				$B(M1)\uparrow=0.304$ 44.
8042.0 16	1^{+}	7.7 fs 28	0.059 21	$B(M1)\uparrow=0.029 \ 11.$
8085.5 <i>5</i>	1-	0.201 fs 35	1.85 27	$B(E1)\uparrow = 10.0 \times 10^{-5}$ 15.
8111.2 12	1^{+}	3.0 fs 7	0.154 35	B(M1)↑=0.075 <i>17</i> .
8126.0 7	1-	0.45 fs 6	1.02 13	$B(E1)\uparrow=5.45\times10^{-5}$ 70.
8188.5 8	1	1.04 fs 21	0.436 68	$T_{1/2}$, Γ_0 (eV): for $J^{\pi} = 1^-$. For $J^{\pi} = 1^+$, values are: $T_{1/2} = 1.66$ fs 35, $\Gamma_0 = 0.273$ eV 51.
				$B(E1)\uparrow=2.27\times10^{-5}$ 36 or $B(M1)\uparrow=0.129$ 24.
8260.9 8	1-	0.40 fs 6	1.13 15	$B(E1)\uparrow = 5.75 \times 10^{-5}$ 77.
8293.7 7	1-	0.76 fs 28	0.384 95	$B(E1)\uparrow = 1.93 \times 10^{-5} 48.$
8351.2 <i>13</i>	1^{+}	2.4 fs 6	0.192 45	$B(M1)\uparrow = 0.085 \ 20.$
8358.7 15	1^{+}	3.4 fs 11	0.135 43	$B(M1)\uparrow=0.060$ 19.
8406 ^C 4	1-	6.3 fs 37	0.072 43	$B(E1)\uparrow=0.35\times10^{-5} 21.$
8450.9 16	1	2.3 fs 6	0.203 45	$T_{1/2}$, Γ_0 (eV): for $J^{\pi}=1^-$. For $J^{\pi}=1^+$, values are: $T_{1/2}=4.6$ fs 16, $\Gamma_0=0.100$ eV 35.
				$B(E1)\uparrow=0.96\times10^{-5}$ 22 or $B(M1)\uparrow=0.043$ 15.
8463.4 13	1-	2.7 fs 7	0.169.42	$B(E1)\uparrow = 0.80\times 10^{-5} 20$
8514.6.9	1-	0.69 fs 14	0.64 10	$B(E1)\uparrow = 2.96 \times 10^{-5} 48.$
8654.7.9	1-	1.32 fs 28	0.348.69	$B(E1)^{+}=1.54 \times 10^{-5} 31$
8655.9 7	1+	0.7 fs 6	0.36 23	$B(M1)\uparrow = 0.145 92.$
8687.7 13	1^{+}	2.6 fs 7	0.176 44	$B(M1)\uparrow=0.069\ 17.$
8746.3 12	1-	0.90 fs 21	0.49 11	$B(E1)\uparrow = 2.11 \times 10^{-5} 46.$
8767 4	1^{+}	8 fs 8	0.059 59	$B(M1)\uparrow=0.023\ 23.$
8777.9 10	1^{+}	1.25 fs 35	0.361 93	B(M1)↑=0.138 <i>36</i> .
8780.9 10	1-	1.25 fs 35	0.367 94	$B(E1)\uparrow=1.55\times10^{-5}$ 40.
8795.2 9	1^{+}	1.11 fs 35	0.71 44	$B(M1)\uparrow=0.27$ 17.
8845.8 14	1+	1.5 fs 4	0.308 76	B(M1)↑=0.115 29.
8871.0 <i>16</i>	1+	1.6 fs 4	0.290 76	$B(M1)\uparrow=0.108\ 28.$
8889.8 12	1+	0.83 fs 21	0.56 11	$B(M1)\uparrow=0.207\ 41.$
8923.4 10	1-	0.36 fs 6	1.28 23	$B(E1)\uparrow=5.14\times10^{-5}$ 94.
9009.8 19	1-	2.1 fs 7	0.210 67	$B(E1)\uparrow=0.82\times10^{-5}$ 26.
9052.6 24	1-	2.9 fs 12	0.158 65	$B(E1)\uparrow=0.61\times10^{-5}$ 25.
9068.2 13	1+	1.04 fs 28	0.43 10	$B(M1)\uparrow=0.150\ 36.$
9092.7 8	1-	0.132 fs 28	2.74 47	$B(E1)\uparrow=10.4\times10^{-5}$ 18.
9131.5 <i>15</i>	1-	0.90 fs 21	0.52 11	$B(E1)\uparrow=1.95\times10^{-5}$ 42.
9148.7 <i>30</i>	1-	0.69 fs 35	0.63 28	$B(E1)\uparrow=2.4\times10^{-5}$ 11.
9255.2 25	1-	1.5 fs 7	0.29 13	$B(E1)\uparrow=1.06\times10^{-5}$ 47.
9265.7 24	1-	1.4 fs 7	0.33 16	$B(E1)\uparrow=1.19\times10^{-5}$ 56.
				Continued on next page (footnotes at end of table)

⁶⁰Ni Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{(a)}$	$\Gamma_0 (eV)^{\&}$	Comments
9273.9 15	1	2.6 fs 19	0.17 13	$T_{1/2}$, Γ_0 (eV): for $J^{\pi}=1^-$. For $J^{\pi}=1^+$, values are: $T_{1/2}=1.2$ fs 6, $\Gamma_0=0.38$ eV 17.
				$B(E1)\uparrow=0.63\times10^{-5} 45 \text{ or } B(M1)\uparrow=0.124 55.$
9300.4 15	1^{+}	0.55 fs 21	0.84 34	$B(M1)\uparrow=0.27 11.$
9307.5 14	1-	0.49 fs 21	0.96 36	$B(E1)\uparrow=3.4\times10^{-5}$ 13.
9351.8 <i>21</i>	1-	1.9 fs 8	0.24 11	$B(E1)\uparrow=0.85\times10^{-5}$ 39.
9394.7 15	1-	0.83 fs 35	0.56 21	$B(E1)\uparrow=1.93\times10^{-5}$ 73.
9409.9 17	1-	1.2 fs 5	0.39 16	$B(E1)\uparrow=1.34\times10^{-5}$ 56.
9452.3 16	1^{+}	1.0 fs 4	0.47 18	$B(M1)\uparrow=0.143\ 54.$
9464.5 11	1-	0.21 fs 21	0.80 64	$B(E1)\uparrow=2.7\times10^{-5}$ 22.
9466.8 35	1^{+}	1.9 fs 12	0.23 15	B(M1)↑=0.071 <i>46</i> .
9504.1 17	1-	10 fs 4	0.48 20	$B(E1)\uparrow=1.60\times10^{-5}$ 66.
9598.2 <i>15</i>	1-	0.62 fs 28	0.71 26	$B(E1)\uparrow=2.31\times10^{-5}$ 85.
9639.4 ^C 21	1-	3.0 fs 26	0.15 13	E(level): from E γ . E(level)=9640.0 21 listed in table II of 2013Sc20.
				$B(E1)\uparrow=0.48\times10^{-5}$ 40.
9658.5 8	1-	0.049 fs 14	8.7 24	$B(E1)\uparrow=27.6\times10^{-5}$ 76.
9700.6 ^c 15	1-	0.8 fs 5	0.54 30	$B(E1)\uparrow=1.69\times10^{-5}$ 94.
9720.2 [°] 18	1^{-}	1.2 fs 8	0.36 22	$B(E1)\uparrow=1.11\times10^{-5}$ 68.
9750.6 ^c 23	1^{-}	4.2 fs 35	0.111 95	$B(E1)\uparrow=0.34\times10^{-5}$ 29.
9773.9 ^c 20	1-	1.9 fs 14	0.24 17	$B(E1)\uparrow=0.73\times10^{-5}$ 52.
9806.6 ^C 19	1-	1.6 fs 10	0.29 19	$B(E1)\uparrow=0.87\times10^{-5}$ 58.
9830 ^c 4	1^{+}	1.3 fs 6	0.35 16	B(M1)↑=0.097 44.
9831.1 ^c 21	1-	1.3 fs 6	0.35 16	$B(E1)\uparrow=1.07\times10^{-5}$ 49.
9870.4 ^C 20	1-	0.8 fs 6	0.61 43	$B(E1)\uparrow = 1.8 \times 10^{-5}$ 13.
9892.6 ^c 17	1-	0.49 fs 28	0.97 60	$B(E1)\uparrow=2.9\times10^{-5}$ 18.

[†] From 2013Sc20, unless otherwise stated.

[‡] From 2013Sc20, based on the deduced transition multipolarities, unless otherwise stated.

[#] From Adopted Levels of ⁶⁰Ni in ENSDF database.

^(a) From 2013Sc20, based on the partial γ -ray width to the ground state, Γ_0 , and the corresponding branching ratios, unless otherwise stated.

[&] Partial γ -ray width to the ground state.

^{*a*} Level observed only in the 6.0-MeV data.

^b Level observed only in the 10.0-MeV data.

 c Level observed only in the HI γS experiment.

 $\gamma(^{60}{\rm Ni})$

Expected W(90°)/W(130°) ratios from $\gamma\gamma(\theta)$ are: 0.708 for 0⁺ -> 1 -> 0⁺ cascade, 0.85-0.92 for 0⁺ -> 1 -> 2⁺, 2.25 for 0⁺ -> 2⁺ -> 0⁺, 0.85 for 0⁺ -> 2⁺ -> 2⁺, M1 for 2⁺ to 2⁺, and 1.36 for 0⁺ -> 2⁺ -> 2⁺, E2 for 2⁺ to 2⁺.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
1332.7	2+	1332.7 2	100	0.0	0^{+}	E2	$I_{s,f}$ <8.6 eVb 8. W(90°)/W(130°)=1.03 6.
2157.7	2+	2157.7 10	15 ^{&} 2	0.0	0^+	E2	$I_{s,f}$ <6.4 eVb 17. W(90°)/W(130°)=1.08 45.
2284.87	0^+	952.4 ^a 2 2284.87 ^a		1332.7 0.0	2^+ 0^+	E0	

γ (⁶⁰Ni) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} [‡]	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
3123.4	2+	1790.9 9	86 ^{&} 4	1332.7	2+		$I_{s,f} < 19.4 \text{ eVb } 43.$ W(90°)/W(130°)=1.05 <i>30</i> .
		3124.1 ^{<i>a</i>} 3	9 <mark>&</mark> 1	0.0	0^+	[E2]	
3193.6	1+	1861.2 11	38 ^{&} 1	1332.7	2+		$I_{s,f} < 11.1 \text{ eVb } 36.$ W(90°)/W(130°)=1.04 63.
		3193.3 10	16 ^{&} 1	0.0	0^+	M1	$I_{s,f}$ <4.4 eVb 14. W(90°)/W(130°)=0.60 33.
3268.9	2+	1936.4 11	43 ^{&} 2	1332.7	2+		$I_{s,f}$ <7.4 eVb 27. W(90°)/W(130°)=1.10 74.
		3269.4 ^{<i>a</i>} 3	15 <mark>&</mark> 1	0.0	0^+	[E2]	
3393.3	2+	2059.8 10	84 ^{&} 6	1332.7	2+		$I_{s,f} < 14.5 \text{ eVb } 37.$ W(90°)/W(130°)=1.03 40.
		3393.4 ^{<i>a</i>} 8	6 ^{&} 2	0.0	0^+	[E2]	
3797.9	1	3797.9 10	100	0.0	0^+		$I_{s,f}=3.1 \text{ eVb } 4.$ W(90°)/W(130°)=0.79 6.
3908	1	5908 5	100	0.0	0		$W(90^{\circ})/W(130^{\circ})=0.93$ 8.
4006.7	2+	4006.7 11	38 ^{&} 2	0.0	0^+	E2	$I_{s,f}=4.2 \text{ eVb } 4.$ W(90°)/W(130°)=2.18 40.
4020.6	1+	4020.6 3	55 3	0.0	0+	M1	E_{γ} , I_{γ} : from Adopted Gammas of ⁶⁰ Ni in ENSDF database. $I_{s,f}$ =8.2 eVb 7. $W(90^{\circ})/W(130^{\circ})$ =0.76 6.
4844.5	2^{+}	4844.5 7	33 ^{&} 2	0.0	0^+	E2	I _{s,f} =6.1 eVb 8.
5064.5	1	3732.1 9	19 <i>3</i>	1332.7	2+		$W(90^{\circ})/W(130^{\circ})=2.31\ 96.$ $I_{s,f}=9.2\ eVb\ 21.$ $W(90^{\circ})/W(130^{\circ})=0.79\ 10$
		5065.4 7	81 2	0.0	0^+		$I_{s,f}$ =43.5 eVb 25. W(90°)/W(130°)=0.71 7.
5931.4	1	5930.8 11	100	0.0	0^+		E_{γ} : contaminated by a transition in ¹¹ B. I _{s,f} =6.8 eVb 17.
6180.6	1-	4848.4 14	94	1332.7	2+		$W(90^{\circ})/W(130^{\circ})=0.84$ 44. I _{s,f} =6.5 eVb 27. $W(90^{\circ})/W(130^{\circ})=1.00.65$
		6180.6 7	91 <i>1</i>	0.0	0^+	E1	$I_{s,f}$ =64.1 eVb 84. W(90°)/W(130°)=0.70 40.
6229.0	(2 ⁺)	6229.0 11	100	0.0	0^+	(E2)	$I_{s,f}=11.4 \text{ eVb } 24.$ W(90°)/W(130°)=2.16 68.
6382.2	1	6382.2 [@] 10	100	0.0	0^+		I _{s,f} =10.4 eVb 27. W(90°)/W(130°)=0.63 20.
6465.2	1-	4180.5 14	23 7	2284.87	0^+		$I_{s,t}=10.4 \text{ eVb } 38.$ W(90°)/W(130°)=0.91 50.
		5131.6 10	17 4	1332.7	2+		$I_{s,f}=7.8 \text{ eVb } 22.$ W(90°)/W(130°)=0.74 21. E _y : alternatively, 5131.6y can be placed from a 7415-keV
		6465.2 9	60 4	0.0	0^+	E1	$I_{s,f}=27.8 \text{ eVb } 46.$ $W(90^\circ)/W(130^\circ)=0.63.8$
6514.6	1+	6514.6 9	100	0.0	0^+	M1	$I_{s,f}$ =40.6 eVb 62. W(90°)/W(130°)=0.59 6.
6587.6	1-	4302.0 11	20 4	2284.87	0+		$I_{s,f}$ =13.1 eVb 28. W(90°)/W(130°)=0.64 24.
		5254.7 10	13 4	1332.7	2+		E_{γ} : seen only at 8.0-MeV measurement. I _{s,f} =8.8 eVb 21. W(90°)/W(130°)=0.77 17.

γ (⁶⁰Ni) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
6587.6	1-	6587.6 8	67 2	0.0	0^+	E1	$I_{s,f}=43.8 \text{ eVb } 63.$
6718.1	1-	6718.1 <i>10</i>	100	0.0	0^+	E1	$I_{s,f} = 17.6 \text{ eVb } 35.$
6736.8	(1)	4577.7 13	54 11	2157.7	2+		$W(90^{-1})/W(130^{-1})=0.36$ 11. I _{s,f} =5.0 eVb 19.
		6736.1 <i>16</i>	46 11	0.0	0^+		$W(90^{\circ})/W(130^{\circ})=1.3$ <i>11</i> . I _{s,f} =4.2 eVb 15.
6913.7	1+	5581.0 <i>18</i>	73	1332.7	2+		$W(90^{\circ})/W(130^{\circ})=1.03\ 62.$ I _{s,f} =5.1 eVb 21.
		6913.7 8	93 1	0.0	0^{+}	M1	$W(90^{\circ})/W(130^{\circ})=0.77$ 30. I _{s.f} =64.4 eVb 97.
7038.7	1-	5705.6 9	39.5	1332.7	2+		$W(90^{\circ})/W(130^{\circ})=0.80 \ 8.$ L _e = 19.5 eVb 36.
	-	7038 7 10	61 /	0.0	0+	F1	$W(90^{\circ})/W(130^{\circ})=0.72$ 15.
7472 7	1+	7030.7 10	100	0.0	0	M	$W(90^{\circ})/W(130^{\circ})=0.71$ 11.
/4/3./	1	/4/3./9	100	0.0	0.	MII	$I_{s,t} = 44.2 \text{ eVb } /5.$ W(90°)/W(130°)=0.60 9.
7559.0	1-	7559.0 8	100	0.0	0^{+}	E1	I _{s,f} =14.2 eVb 48. W(90°)/W(130°)=0.57 <i>35</i> .
7646.9	1-	7646.9 7	100	0.0	0^+	E1	$I_{s,f}=330 \text{ eVb } 39.$ W(90°)/W(130°)=0.70 3.
7657.1	1^{+}	7657.1 8	100	0.0	0^+	M1	$I_{s,f}=93 \text{ eVb } 14.$ W(00°)W(130°)=0.89.9
7690.9	1-	6358.8 16	2 1	1332.7	2^+		$W_{(50)} = 9.7 \text{ eVb } 30.$
		7690.9 7	98 <i>1</i>	0.0	0^+	E1	W(90) / W(150) = 0.7739. I _{s.f} =406 eVb 48.
7746.9	1-	5461.9 <i>11</i>	11 2	2284.87	0^+		$W(90^{\circ})/W(130^{\circ})=0.71$ 3. $I_{s,f}=9.5 \text{ eVb } 21.$ $W(90^{\circ})/W(130^{\circ})=0.61$ 17
		5590.1 ^b 10	91	2157.7	2^{+}		$I_{s,f} = 7.5 \text{ eVb } 20.$
		6413.8 9	27 3	1332.7	2+		$W(90^{\circ})/W(130^{\circ})=0.93$ 40. $I_{s,f}=23.4 \text{ eVb } 44.$ $W(90^{\circ})/W(130^{\circ})=0.83$ 12
		7747.3 ^b 8	54 4	0.0	0^+	E1	$I_{s,f}=47.9 \text{ eVb } 91.$ $W(90^{\circ})/W(130^{\circ})=0.71 11$
7761.6	1 ⁺	7761.6 8	100	0.0	0^+	M1	E_{γ} : doublet. I _{s.f} =53 eVb 13.
7849.7	1^{+}	7849.7 10	100	0.0	0^{+}	M1	$W(90^{\circ})/W(130^{\circ})=0.81$ 19. I _{s,f} =52.4 eVb 87.
7879.8	1^{+}	7879.8 12	100	0.0	0^+	M1	$W(90^{-})/W(130^{-})=0.59^{-}9.$ I _{s,f} =32.7 eVb 67.
7926.1	1^{+}	7926.1 17	100	0.0	0^+	M1	$W(90^{\circ})/W(130^{\circ})=0.61$ <i>TS</i> . I _{s,f} =10.1 eVb 45.
7951.2	1+	7951.2 8	100	0.0	0^{+}	M1	$W(90^{\circ})/W(130^{\circ})=0.45 \ 37.$ I _{s,f} =108 eVb 16. $W(00^{\circ})/W(130^{\circ})=0.73 \ 8.$
8042.0	1^{+}	8042.0 16	100	0.0	0^+	M1	$W_{(50)} / W_{(150)} = 0.75 8.$
8085.5	1-	5800.8 8	13 2	2284.87	0^+		$W(90^{\circ})/W(130^{\circ})=0.26\ 23.$ $I_{s,f}=43.6\ eVb\ 74.$ $W(90^{\circ})/W(130^{\circ})=0.57\ 10$
		6752.3 13	62	1332.7	2+		$I_{s,f}=19.4 \text{ eVb } 52.$ $W(90^{\circ})/W(130^{\circ})=0.98 \ 40.$
		8085.7 7	81 2	0.0	0^+	E1	$I_{s,f}=263 \text{ eVb } 32.$ W(90°)/W(130°)=0.71 3.

γ (⁶⁰Ni) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
8111.2	1^{+}	8111.2 12	100	0.0	0^+	M1	$I_{s,f}=27.0 \text{ eVb } 61.$ W(90°)/W(130°)=0 72 22
8126.0	1-	8126.0 7	100	0.0	0^+	E1	$I_{s,f} = 178 \text{ eVb } 23.$ $W(90^\circ)/W(130^\circ) = 0.71.4$
8188.5	1	8188.5 [@] 7	100	0.0	0^+		$I_{s,f}=75 \text{ eVb } 12 \text{ for E1}, 46.9 \text{ eVb } 88 \text{ for M1}.$
8260.9	1-	8260.9 8	100	0.0	0^+	E1	$W_{(90)} / W_{(150)} = 0.72$ 13. $I_{s,f} = 191 \text{ eVb } 25.$
8293.7	1-	6135.5 11	35 5	2157.7	2+		$W_{(90)} / W_{(150)} = 0.05 \ \delta.$ $I_{s,f} = 22.8 \ eVb \ 49.$
		8293.0 10	65 4	0.0	0^+	E1	$W_{(90)} / W_{(150)} = 0.70 $ J9. $I_{s,f} = 41.6 $ eVb 76. $W_{(090)} W_{(120)} = 0.75 $ J5.
8351.2	1^{+}	8351.2 13	100	0.0	0^+	M1	$W_{(90)} / W_{(150)} = 0.75$ 15. $I_{s,f} = 31.7 \text{ eVb } 74.$
8358.7	1^{+}	8358.7 15	100	0.0	0^+	M1	$W(90^{\circ})/W(130^{\circ})=0.64~21.$ $I_{s,f}=22.3 \text{ eVb } 71.$
8406	1-	8406 <i>4</i>	100	0.0	0^{+}	E1	$W(90^{-})/W(130^{-})=0.35/22.$ Is f=24 eVb 14.
8450.9	1	8450.9 [@] 16	100	0.0	0+		$I_{s,i}^{s,i}=32.7 \text{ eVb } 73 \text{ for E1, 16.1 eVb } 57 \text{ for M1.}$
8463.4	1-	8463.4 13	100	0.0	0^+	E1	$V_{(50)} = 27.3 \text{ eVb } 67.$ $V_{(50)} = 0.77 \text{ eVb } 70.28$
8514.6	1-	8514.6 9	100	0.0	0^+	E1	$I_{s,f}=101 \text{ eVb } 16.$ $W(90^\circ)/W(130^\circ)=0.75 II$
8654.7	1-	8654.7 [@] 9	100	0.0	0^{+}		$I_{s,f}=54 \text{ eVb } 11.$
8655.9	1+	7324.2 14	43 7	1332.7	2+		$I_{s,f}=24.2 \text{ eVb } 66.$ W(90°)/W(130°)=0.60 25.
		8655.9 [@] 9	57 11	0.0	0^+		$I_{s,f}=32 \text{ eVb } 14.$ W(90°)/W(130°)=0.62 54.
8687.7	1^{+}	8687.7 13	100	0.0	0^+	M1	$I_{s,f}=26.8 \text{ eVb } 67.$ W(90°)/W(130°)=0.49 18.
8746.3	1-	8746.3 12	100	0.0	0^+	E1	$I_{s,f}=74 \text{ eVb } 16.$ W(90°)/W(130°)=0 30 20
8767	1^{+}	8767 4	100	0.0	0^+	M1	$I_{s,t} = 8.8 \text{ eVb } 88.$ F. L.: from HL/S experiment
8777.9	1+	8777.9 [@] 10	100	0.0	0^+	M1	$I_{s,f}=54 \text{ eVb } 14.$ W(90°)/W(130°)=0.61.23
8780.9	1-	8780.9 [@] 10	100	0.0	0^+	E1	$I_{s,f} = 55 \text{ eVb } 14.$
8795.2	I.	7459.5 11	55 11	1332.7	2+		$I_{s,f}$ =58 eVb 12. W(90°)/W(130°)=0.80 <i>19</i> .
		8795.2 ^b 16	45 10	0.0	0^+	M1	$I_{s,f}=48 \text{ eVb } 19.$ W(90°)/W(130°)=0 51 27
8845.8	1^{+}	8845.8 14	100	0.0	0^+	M1	$I_{s,f}=45 \text{ eVb } 12.$ $W(00^\circ)W(130^\circ)=0.68.24$
8871.0	1^{+}	8871.0 16	100	0.0	0^+	M1	$V_{s,f} = 43 \text{ eVb } 11.$ $V_{s(0)} = 0.0024.$
8889.8	1^{+}	8889.8 12	100	0.0	0^+	M1	$I_{s,f}=82 \text{ eVb } 16.$
8923.4	1-	8923.4 10	100	0.0	0^+	E1	$V_{(50)} = 185 \text{ eVb } 34.$ $V_{(00)} = 100 \text{ eVb } 34.$
9009.8	1-	9009.8 19	100	0.0	0^+	E1	$W_{(20)} / W_{(130)} = 0.52$ 19. $I_{s,f} = 29.8 \text{ eVb } 96.$
9052.6	1-	9052.6 24	100	0.0	0^+	E1	$W_{(20)} / W_{(150)} = 0.02 34.$ $I_{s,f} = 22.2 \text{ eVb } 92.$
9068.2	1+	9068.2 13	100	0.0	0^+	M1	$W(90) //W(130^{\circ}) = 0.89 / 2.$ $I_{s,f} = 61 \text{ eVb } 15.$ $W(90^{\circ}) //W(130^{\circ}) = 0.7525.$

γ (⁶⁰Ni) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
9092.7	1-	7761.2 19	20 6	1332.7 2+	E1	$I_{s,f}$ =76 eVb 25. W(90°)/W(130°)=0.94 52.
		9091.2 8	80 2	$0.0 \ 0^+$	E1	I_{γ} : doublet. $I_{s,f}=306 \text{ eVb } 44.$ $W(90^{\circ})/W(130^{\circ})=0.68.7$
9131.5	1-	9131.5 <i>15</i>	100	0.0 0+	E1	$I_{s,f}=72 \text{ eVb } 16.$ $W(90^\circ)/W(130^\circ)=0.48 \ 20.$
9148.7	1-	9148.7 ^b 30	100	$0.0 \ 0^+$	E1	$I_{s,f}=87 \text{ eVb } 38.$ W(90°)/W(130°)=0.68.40.
9255.2	1-	9255.2 25	100	$0.0 \ 0^+$	E1	$I_{s,f}=40 \text{ eVb } 18.$ W(90°)/W(130°)=0.58 45.
9265.7	1-	9265.7 24	100	0.0 0+	E1	I _{s,f} =44 eVb 21. W(90°)/W(130°)=0.71 <i>57</i> .
9273.9	1	9273.9 [@] 15	100	0.0 0+		$I_{s,f}=23 \text{ eVb } 17 \text{ for } J^{\pi}=1^{-}, 51 \text{ eVb } 23 \text{ for } J^{\pi}=1^{+}.$ W(90°)/W(130°)=0.63 80.
9300.4	1^{+}	9300.4 15	100	$0.0 \ 0^+$	M1	$I_{s,f}=111 \text{ eVb } 45.$ W(90°)/W(130°)=0.83 42.
9307.5	1-	9307.5 14	100	$0.0 \ 0^+$	E1	$I_{s,f}=128 \text{ eVb } 48.$ W(90°)/W(130°)=0.77 34.
9351.8	1-	9351.8 21	100	0.0 0+	E1	$I_{s,f}=32 \text{ eVb } 15.$ W(90°)/W(130°)=0.54 <i>34.</i>
9394.7	1-	9394.7 15	100	0.0 0+	E1	$I_{s,f}$ =73 eVb 28. W(90°)/W(130°)=0.65 28.
9409.9	1-	9409.9 17	100	0.0 0+	E1	$I_{s,f}=51 \text{ eVb } 21.$ W(90°)/W(130°)=0.69 37.
9452.3	1+	9452.3 16	100	0.0 0+	M1	$I_{s,f}=60 \text{ eVb } 23.$ W(90°)/W(130°)=0.58 25.
9464.5	1-	7303.2 16	62 18	2157.7 2+		I _{s,f} =64 eVb 19. W(90°)/W(130°)=1.04 50. E _{γ} : assignment to this level is tentative and it is based on better energy-difference agreement.
		9464.5 [@] 15	38 12	$0.0 0^+$	E1	$I_{ef} = 39 \text{ eVb } 19.$
9466.8	1+	9466.8 [@] 35	100	0.0 0+	M1	$I_{s,f}=30 \text{ eVb } 19.$ W(90°)/W(130°)=0.9.10
9504.1	1-	9504.1 17	100	0.0 0+	E1	$I_{s,f}=61 \text{ eVb } 25.$ W(90°)/W(130°)=1.06 76.
9598.2	1-	9598.2 15	100	$0.0 \ 0^+$	E1	$I_{s,f}=89 \text{ eVb } 33.$ W(90°)/W(130°)=0.86 <i>34</i> .
9639.4	1-	9639.4 21	100	0.0 0+	E1	 E_γ: uncertainty of 0.2 keV in table II of 2013Sc20 seems a misprint. I_s ==18 eVb 16.
9658.5	1-	8326.0 16	10 3	1332.7 2+		$I_{s,f}^{-1}=111 \text{ eVb } 33.$ W(90°)/W(130°)=0.78 38.
		9658.5 9	90 2	0.0 0+	E1	$I_{s,f}=963 \text{ eVb } 240.$ W(90°)/W(130°)=0.70 8.
9700.6	1-	9700.6 15	100	$0.0 \ 0^+$	E1	$I_{s,f}$ =66 eVb 37.
9720.2	1-	9720.2 18	100	$0.0 \ 0^+$	E1	$I_{s,f}$ =44 eVb 27.
9750.6	1-	9750.6 23	100	$0.0 \ 0^+$	E1	$I_{s,f}$ =13 eVb 12.
9773.9	1-	9773.9 20	100	$0.0 \ 0^{+}$	E1	$I_{s,f}$ =29 eVb 20.
9806.6	1-	9806.6 19	100	$0.0 \ 0^+$	E1	$I_{s,f}$ =35 eVb 23.
9830	1+	9830 4	100	0.0 0+	M1	$I_{s,f}=42 \text{ eVb } 19.$ E_{γ},I_{γ} : from HI γ S experiment.
9831.1	1-	9831.1 <i>21</i>	100	$0.0 \ 0^{+}$	E1	$I_{s,f} = 42 \text{ eVb } 19.$
9870.4	1-	9870.4 20	100	$0.0 \ 0^+$	E1	$I_{s,f}$ =72 eVb 51.
9892.6	1-	9892.6 17	100	$0.0 \ 0^+$	E1	I _{s,f} =114 eVb 71.

$\gamma(^{60}Ni)$ (continued)

- [†] From 2013Sc20. Gamma-ray energies listed in 2013Sc20 are mostly recoil corrected, according to e-mail reply of Nov 13, 2013 from M. Scheck which states "Concerning the recoils I corrected them for the levels which I had in the Darmstadt spectra. There I had fixed the calibration to the ¹¹B lines and needed to recalculate the energies. For the lines only seen in the Duke Spectra it shouldn't matter there I assumed quite large errors of 4 keV, since I've made an internal calibration to the peaks from Darmstadt which by themselves have already large errors".
- [‡] Intensities are branching ratios from Γ_f/Γ values given in 2013Sc20, normalized to 100.
- [#] Multipolarity are deduced using the gamma-ray polarization and angular-correlation analyses. Angular asymmetry ratios for 90° and 130° are plotted in Figure 3 of 2013Sc20, but not tabulated in the paper.
- [@] HIγS experiment indicates a M1/E1 doublet.
- [&] From Adopted Gammas for ⁶⁰Ni in ENSDF database.
- ^a From Adopted Gammas for ⁶⁰Ni in ENSDF database; not observed in the present data.
- ^b Contaminated by a single-escape peak.

Level Scheme

Intensities: % photon branching from each level

9

Level Scheme (continued)

Intensities: % photon branching from each level

 $^{60}_{28}{
m Ni}_{32}$

Level Scheme (continued)

Intensities: % photon branching from each level

 $^{60}_{28}\rm{Ni}_{32}$