⁵⁹Co(p,γ) **1975Er05**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012

E(p)=1.365-2.150 MeV. Measured excit, $E\gamma$, $I\gamma$. Ge(Li) and NaI detectors (1975Er05).

E(p)=1.5-2.5 MeV. Measured excit, Ey. Ge(Li) and NaI detectors (1971De25).

Others: 1957Bu64, 1967Ar01, 1978Yo01, 2010Vo01.

See 1971Di04 for study of GDR splitting.

See 1971De25 for decay of E(p)=2150, 2206, 2448 resonances.

See 1978Tu02 for measurements with polarized protons, E(p)=5.8-16.5 MeV.

All data are from 1975Er05, except as noted.

⁶⁰Ni Levels

E(level) [‡]	J^{π}	Comments
0.0	0^{+}	
1332.498 20	2+	
2158.57 4	2+	
2505.72 3	4+	
2625.94 8	3+	
3119.78 9	4+	
3185.95 8	3+	
3269.74 10	2+	
3392.58 9	2+	
3619.38 <i>13</i>		
3670.69 8	4+	
3730.66 6		
3924.71 10	$2^+, 3^+$	
4039.66 15	3-	
4078.1 4	$1^+, 2^+$	
4165.34 10	5+	
4294.4 3		
4407.39 14		
4761.1 6	(1,2)	
4800.3 4		
4847.2.6		
4985.61 10		
5445.0 11		
5552.0 11		
10088 2 4		$F(1_{2}) = F(p) - 1470$
10988.2 4		E(evel), E(p)=1473. E(evel), E(n)=1540
11138 6 3		E(level), E(p)=1632
11149 4 3		E(evel), E(p)=1643
11158 5 4		$E(eve), E(p)=1612, E(S)=1652, E(S)=0.5^{+} g(S)^{2}$
11207 5 3		E(eve), E(p)=1002, RS(=0, 5 - g.s.).
11207.5 5		$E(ava), E(p)=1721$ [AS(60 Co 58, 2 ⁺ laval)?
11220.5 5		E(ve), E(y) = 1/21, 1AS(-60, 37, 2, 1+ ve)
11429.0 5		E(level): $E(p)=1923$, IAS($(CO 2/7, 4 - level)$;
11446.5 4		E(level): $E(p)=1943$, $IAS(\sim Co 288, 3 \cdot level)/$
11599.6 3		$E(\text{level}): E(p)=2101, \text{IAS}(^{66}\text{Co} 435, 5^{+} \text{level})?$
11647"		E(level): E(p)=2150.
11702"		E(level): E(p)=2206, IAS(00 Co 542 level)?
11732 [@]		E(level): $E(p)=2236$, IAS(⁶⁰ Co 542 level)?
11770 [@]		E(level): E(p)=2275, IAS(⁶⁰ Co 614 level)?

Continued on next page (footnotes at end of table)

E(p)=1.6-3.1 MeV. Measured excit, E γ . NaI detectors (1976Ah08).

59 Co(p, γ) 1975Er05 (continued)

⁶⁰Ni Levels (continued)

E(level)[‡]

Comments

11875 [@]	E(level): E(p)=2381, IAS(⁶⁰ Co 738 level)?
11932 [@]	E(level): E(p)=2439, IAS(⁶⁰ Co 785 level)?
11940 [#]	E(level): $E(p)=2448$, IAS(⁶⁰ Co 1006 level)?
12130 [@]	E(level): E(p)=2641, IAS(⁶⁰ Co 1006 level)?
12355? [@]	E(level): E(p)=2870.
12465 [@]	E(level): E(p)=2981.
12489 [@]	E(level): E(p)=3006.
12513 [@]	E(level): E(p)=3030.

[†] From Adopted Levels data set.
[‡] For proton capture states, E=E(p)(c.m.)+S(p).
[#] From 1971De25.
[@] From 1976Ah08.

$\gamma(^{60}\text{Ni})$

E_{γ}^{\dagger}	I_{γ}	E_i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
467.60 20	61 2	2625.94	3+	2158.57	2+
493.90 20	8 2	3119.78	4+	2625.94	3+
^x 611.40 20					
^x 676.55 20					
680.30 15	31 5	3185.95	3+	2505.72	4^{+}
^x 720.81 15					
736.4 4	65 10	4407.39		3670.69	4+
^x 740.3 4					
826.06 <i>3</i>	85 2	2158.57	2+	1332.498	2^{+}
993.46 10	100	3619.38		2625.94	3+
1027.33 8	36 5	3185.95	3+	2158.57	2^{+}
^x 1104.6 4					
1164.92 8	100	3670.69	4+	2505.72	4+
1173.22 2	100	2505.72	4^{+}	1332.498	2^{+}
1225.06 8	40 5	3730.66		2505.72	4+
1293.38 10	39 2	2625.94	3+	1332.498	2^{+}
1314.8 4	15 7	4985.61		3670.69	4+
1332.48 2	100	1332.498	2+	0.0	0^{+}
1418.95 10	60 10	3924.71	$2^+, 3^+$	2505.72	4+
1538.9 4	20 5	4165.34	5+	2625.94	3+
^x 1560.31 10					
1659.64 10	80 5	4165.34	5+	2505.72	4+
^x 1759.11 10					
1766.19 20	40 10	3924.71	$2^+, 3^+$	2158.57	2^{+}
1787.20 10	92 2	3119.78	4+	1332.498	2+
1788.9 4	40 10	4294.4		2505.72	4+
1853.8 <i>3</i>	33 5	3185.95	3+	1332.498	2+
1881.8 5	30 10	4039.66	3-	2158.57	2^{+}
1901.70 15	35 10	4407.39		2505.72	4+
1919.	45 10	4078.1	$1^+, 2^+$	2158.57	2^{+}
^x 1922.2 5					
1937.20 10	100	3269.74	2+	1332.498	2^{+}
^x 1953.2 4					

⁵⁹Co(p,γ) **1975Er05** (continued)

γ (⁶⁰Ni) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
2060.04.8	100	3392.58	2^{+}	1332,498	2+
x2102.0 4	100	3372.30	2	1552.190	-
^x 2132.8 4					
2158.57 10	15 2	2158.57	2+	0.0	0^{+}
2397.94 8	60 5	3730.66		1332.498	2+
2479.84 10	85 7	4985.61		2505.72	4+
2641.3 5	100	4800.3		2158.57	2^{+}
2707.02 15	70 10	4039.66	3-	1332.498	2^{+}
2745.2 5	55 10	4078.1	$1^+, 2^+$	1332.498	2+
2961.8 4	60 10	4294.4	,	1332.498	2+
x3017.4 5					
3153.6 7	45 7	5780.4		2625.94	3+
3275.4 7	55 7	5780.4		2505.72	4+
3428.6 10	100	4761.1	(1,2)	1332.498	2^{+}
3515.0 10	100	4847.2		1332.498	2^{+}
5358	2.1	11138.6		5780.4	
5369	2.5	11149.4		5780.4	
5694	1.2	11226.3		5532.0	
5781	1.7	11226.3		5445.0	
6163	3.6	11149.4		4985.61	
6287	2.5	11048.5		4761.1	(1,2)
6338	1.2	11138.6		4800.3	
6347	3.0	11149.4		4800.3	
6360	1.5	11207.5		4847.2	
6379	1.5	11226.3		4847.2	
6407	1.5	11207.5		4800.3	(1, 2)
0440 6465	1.5	11207.5		4/01.1	(1,2)
6742	2.9	11220.5		4/01.1	(1,2)
6844	0.0	11149.4		4407.39 1201 1	
6855	0.9	111/0/		1294.4	
6883	43	11048 5		4165 34	5+
6973	2.5	11138.6		4165 34	5+ 5+
6984	1.7	11149.4		4165.34	5+ 5+
7022	2.1	11429.6		4407.39	
7063	4.8	10988.2		3924.71	$2^+.3^+$
7098	0.8	11138.6		4039.66	3-
7128	1.4	11207.5		4078.1	$1^+, 2^+$
7147	2.0	11226.3		4078.1	$1^+, 2^+$
7192	3.4	11599.6		4407.39	
7224	0.9	11149.4		3924.71	$2^+, 3^+$
7264	1.4	11429.6		4165.34	5+
7301	1.0	11226.3		3924.71	$2^+, 3^+$
7305	1.9	11599.6		4294.4	
7317	4.4	10988.2		3670.69	4+
7317	4.1	11048.5		3730.66	
7369	3.5	10988.2		3619.38	4.4
15//	2.9	11048.5		36/0.69	4'
/418	1.3	11149.4		3/30.66	
1429 7467	1./	11048.3 11129 4		3019.38	4+
7407 7778	4.1 1 Q	11138.0		3070.09	4 1+
7470 7487	4.0 2.0	11149.4		3670.09	+ 4+
7492	2.0	11226.3		3730.66	-7
7504	1.6	11429.6		3924 71	$2^{+}.3^{+}$
7536	0.7	11207.5		3670.69	4+

Continued on next page (footnotes at end of table)

⁵⁹Co(p,γ) **1975Er05** (continued)

γ (⁶⁰Ni) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	I_{γ} ‡	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
7539	2.9	11158.5	3619.38	8482	19.4	10988.2	_	2505.72	4+
7555	1.0	11226.3	3670.69 4+	8512	1.1	11138.6		2625.94	3+
7588	1.9	11207.5	3619.38	8523	1.7	11149.4		2625.94	3+
7607	2.9	11226.3	3619.38	8532	4.9	11158.5		2625.94	3+
7674	1.6	11599.6	3924.71 2+,3+	8542	3.7	11048.5		2505.72	4^{+}
7698	2.2	11429.6	3730.66	8581	2.0	11207.5		2625.94	3+
7715	1.5	11446.5	3730.66	8600	5.3	11226.3		2625.94	3+
7758	3.3	11429.6	3670.69 4+	8632	5.6	11138.6		2505.72	4+
7765	1.9	11158.5	3392.58 2+	8643	8.0	11149.4		2505.72	4+
7775	4.3	11446.5	3670.69 4+	8652	6.6	11158.5		2505.72	4+
7778	6.9	11048.5	3269.74 2+	8701	5.0	11207.5		2505.72	4+
7802	5.3	10988.2	3185.95 3+	8720	4.5	11226.3		2505.72	4^{+}
7810	2.0	11429.6	3619.38	8803	6.6	11429.6		2625.94	3+
7833	0.6	11226.3	3392.58 2+	8820	2.0	11446.5		2625.94	3+
7862	6.2	11048.5	3185.95 3+	8829	2.7	10988.2		2158.57	2^{+}
7865	4.6	10988.2	3119.78 4+	8889	2.9	11048.5		2158.57	2^{+}
7868	3.4	11599.6	3730.66	8923	3.5	11429.6		2505.72	4^{+}
7928	2.3	11048.5	3119.78 4+	8940	7.7	11446.5		2505.72	4+
7928	2.9	11599.6	3670.69 4+	8973	4.2	11599.6		2625.94	3+
7937	0.7	11207.5	3269.74 2+	8979	1.5	11138.6		2158.57	2^{+}
7952	1.3	11138.6	3185.95 3+	8990	0.9	11149.4		2158.57	2^{+}
7956	1.1	11226.3	3269.74 2+	8999	3.1	11158.5		2158.57	2+
7963	1.7	11149.4	3185.95 3+	9048	2.6	11207.5		2158.57	2^{+}
7972	4.4	11158.5	3185.95 3+	9067	3.5	11226.3		2158.57	2+
8018	4.2	11138.6	3119.78 4+	9093	8.6	11599.6		2505.72	4+
8021	4.3	11207.5	3185.95 3+	9270	3.2	11429.6		2158.57	2+
8029	2.3	11149.4	3119.78 4+	9287	3.1	11446.5		2158.57	2+
8038	4.8	11158.5	3119.78 4+	9440	0.9	11599.6		2158.57	2+
8040	1.7	11226.3	3185.95 3+	9656	4.2	10988.2		1332.498	2+
8087	4.5	11207.5	3119.78 4+	9716	0.4	11048.5		1332.498	2+
8106	3.0	11226.3	3119.78 4+	9806	3.3	11138.6		1332.498	2+
8159	0.7	11429.6	3269.74 2+	9817	4.7	11149.4		1332.498	2+
8243	2.5	11429.6	3185.95 3+	9826	0.7	11158.5		1332.498	2+
8260	1.5	11446.5	3185.95 3+	9875	5.7	11207.5		1332.498	2+
8309	2.1	11429.6	3119.78 4+	9894	5.0	11226.3		1332.498	2+
8326	5.5	11446.5	3119.78 4+	10097	1.2	11429.6		1332.498	2+
8329	0.3	11599.6	3269.74 2+	10114	1.6	11446.5		1332.498	2+
8362	16.7	10988.2	2625.94 3+	10267	0.9	11599.6		1332.498	2+
8413	0.7	11599.6	3185.95 3+	11207	0.9	11207.5		0.0	0^+
8422	13.6	11048.5	2625.94 3+	11226	0.3	11226.3		0.0	0^+
8479	2.9	11599.6	3119.78 4+						

[†] E γ > 5 MeV (that is, for those from the proton capture states) are deduced from level separation.

[‡] Photon branching intensities of primary transitions are normalized to $I(1332\gamma)=100$ for each resonance. For secondary transitions, % photon branchings from each level are given.

 $x \gamma$ ray not placed in level scheme.

Lev

Lev

Lev

Lev

3+	067
4+	
2+	
2+	
0+	