²⁸Si(³⁶Ar,4pγ) 2008To15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012

Projectile: ³⁶Ar, E=134-, 143-, and 148 MeV. Measured γ -ray energies and relative intensities, $\gamma\gamma$ coin, $\gamma\gamma(\theta)$, DCO ratios. Detector: GAMMASPHERE array.

2004Iz01: ⁴⁰Ca(²⁴Mg,4pγ), measured γ, DCO ratios. Report 5014(1894γ,E1, 2507γ,E1), 5348(334γ,E2, 363γ,E1, 1083γ,E1, 2842γ,E3) levels.

⁶⁰Ni Levels

E(level) [‡]	$J^{\pi \dagger}$	E(level) [‡]	$J^{\pi \dagger}$
0.0 [#]	0^{+}	8044.21 ^{<i>a</i>} 24	9-
1332.59 [#] 17	2^{+}	8074.6 5	8+
2158.87 [#] 19	2^{+}	8272.2 3	10-
2506.15 [#] 19	4+	8390.0 4	9-
2626.16 [#] 19	3+	8426.88 22	9-
3120.07 [#] 20	4+	8485.7 ^d 3	9-
3186.25 ^{&} 19	3+	8521.23 ^a 25	10-
3619.9 4	3+	8689.1 [@] 3	10^{+}
3671.37 [@] 21	4+	9123.2 ^d 3	10-
3731.06 ^{&} 20	4+	9132.4 ^a 3	11-
4165.69 [@] 20	5+	9264.5 <i>3</i>	11-
4186.4 3	(4^{+})	9426.3 4	10^{+}
4265.11 [#] 20	6+	9622.4 ^{<i>f</i>} 8	10-
4407.66 ^{&} 20	5+	9665.8 ^h 3	10^{+}
4579.1 6	(4^{+})	9715.0 4	(10^{+})
4986.19 ^{⁽⁰⁾} 20	6+	9718.4 3	11-
5014.65 20	5	9/60.6 3	11-
5148.67 20	6 ⁺	9888.1 4	10+
5236.57 21	$5^{(+)}$	9960.3 ^{<i>u</i>} 3	11-
5348.98 20 5449 7 4	/ 6 ⁺	9989.4 ⁴ 3	(11^{-})
5663 18 [@] 22	7 ⁺	10158 7 4	(11^{-})
5901.82 <i>21</i>	6-	10242.0 5	(12^{-}) (11^{-})
6112.58 ^{&} 24	7+	10697.4 4	12-
6278.56 21	(6 ⁻)	10788.8 ^d 3	12-
6461.24 [@] 23	8+	10825.4 3	11^{+}
6762.05 22	$7^{(+)}$	10872.8 <i>3</i>	11^{+}
6811.3 <i>3</i>	9-	10977.8 3	11+
6837.2 <i>3</i>	8-	11030.73	11+
7027.99 24	8 ⁺ 0+	11044.3" 3	12^{+}
7250.1 5	o (8)	11079.54 11112.9 ^{<i>a</i>} 4	(12) 13^{-}
7380 5 5	(0) 8 ⁺	$11120.6 \int 9$	12-
$7433\ 60^{@}\ 24$	0 ⁺	1120.0 5	(11^+)
7465.8.3	(7^{-})	$11225.0^{\circ} 3$ $11255 4^{\circ} 3$	12+
7531.5 4	8+	11443.6 ^e 3	13-
7690.61 23	8-	11493.8 5	(12^{+})
7732.7 4	8+	11553.4 ^d 4	13-
7760.4 3	8-	11785.7 [°] 5	(12^{+})
7981.0 <i>3</i>	9+	11851.3 ^b 3	13+

Continued on next page (footnotes at end of table)

28 Si(36 Ar,4p γ) 2008To15 (continued)

⁶⁰Ni Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	Comments
11878.1 5	(13)	
122/3.8 ^{<i>a</i>} 4	14^{-}	
12460.5 J 12578 6 h	(15)	
12742.2 5	14 13 ⁺	
12774.9 ^h 4	14^{+}	
12859.5 6	13+	No information about γ decay from this level.
13037.5 ^e 10	14-	
13246.5 ⁸ 4	13+	
13282.5 5	(14^+)	
13353.1° 6	(14 ⁺)	
13013.0° 3	15	
13002.4° 4	15^{+} (15 ⁻)	
14201 2 [°] 7	(15^{+})	
14463.8 ^g 4	15+	
14645.6 ^h 6	16+	
14803.4 ^b 5	16+	
14934.1 ⁱ 5	16+	
15165.0 [°] 7	(16^{+})	
15281.4 ^{<i>f</i>} 11	(16 ⁻)	
16026.8 ⁸ 5	17^{+}	
16098.2 ⁰ 5	(17^{+})	
16194.5° 8	17^{-}	
16242.0° 13	$(1/^{+})$	
16842.6" 8	18	
17236.0° 8	18 ⁺ 10 ⁺	
1/911.787	(10-)	I_{L} =
10131.4° 14 10238.5° 11	(10^{-})	J": positive parity in table 1 of 2008 1013 seems to be a misprint.
19230.5 II 10504.5h I0	$(1)^{+}$	
19504.5 10	(20^{+})	
20177.7 <mark>8</mark> 10	21+	
22863.6^{h} 13	(22^{+})	
22996.6 ⁸ 12	23+	

[†] J^{π} and rotational-band assignments are based on γ -ray multipolarities and DCO ratios.

[‡] From least-squares fit to γ -ray energies.

- [#] Band(A): γ cascade based on g.s..
- [@] Band(B): $\Delta J=1$ structure based on 3671, 4⁺.
- [&] Band(D): $\Delta J=1$ structure based on 3071, 1. [&] Band(C): $\Delta J=1$ structure based on 3187, 3⁺. ^{*a*} Band(D): Magnetic-dipole rotational band-1. Band based on 8044, 9⁻ state. Configuration= $\pi [1f_{7/2}^{-1}(fp)^1] \otimes \nu [1g_{9/2}^1(fp)^3]$.

^b Band(E): Magnetic-dipole rotational band-2. Band based on 11255, 12^+ state. Configuration= $\pi [1f_{7/2}^{-1}(fp)^1] \otimes \nu [1g_{9/2}^2(fp)^2]$ or

 $\pi[(1f_{7/2}^{-1}1g_{9/2}^{1}] \otimes \nu[1g_{9/2}^{1}(fp)^{3}].$ ^c Band(F): Magnetic-dipole rotational band-3. Band based on 11225, (11⁺) state. Configuration= $\pi[1f_{7/2}^{-1}(fp)^{1}] \otimes \nu[1g_{9/2}^{2}(fp)^{2}]$ or $\pi[(1f_{7/2}^{-1}1g_{9/2}^{1}] \otimes \nu[1g_{9/2}^{1}(fp)^{3}].$

^d Band(G): Magnetic-dipole rotational band-4. Band based on 8485, 9⁻ state. Configuration= $\pi [1f_{7/2}^{-1}(fp)^1] \otimes v [1g_{9/2}^{-1}(fp)^3]$.

²⁸Si(³⁶Ar,4pγ) 2008To15 (continued)

⁶⁰Ni Levels (continued)

- ^{*e*} Band(H): $\Delta J=2$ band based on 11443, 13⁻. Configuration= $\pi [1f_{7/2}^{-2}(fp)^2] \otimes \nu [1g_{9/2}^1(fp)^3]$.
- ^f Band(h): ΔJ=2 band based on 11120, 12⁻. Configuration= $\pi [1f_{7/2}^{1/2}(fp)^2] \otimes v [1g_{9/2}^{1/2}(fp)^3].$
- ^g Band(I): $\Delta J=2$ band based on 13246, 13⁺ Configuration= $\pi [1f_{7/2}^{-3}1g_{9/2}^{1}(fp)^{2}] \otimes \nu [1g_{9/2}^{1}(fp)^{3}].$
- ^h Band(J): ΔJ=2 band based on 9665, 10⁺. Two forked spin sequences, one based on 9665, 10⁺ and the other 13282, (14⁺). Configuration= $\pi [1f_{7/2}^{-2} 1g_{9/2}^{1}(\text{fp})^{1}] \otimes \nu [1g_{9/2}^{1}(\text{fp})^{3}].$
- ^{*i*} Band(j): $\Delta J=2$ band based on 13282, (14⁺). Two forked spin sequences, one based on 9665, 10⁺ and the other 13282, (14⁺). Configuration= $\pi [1f_{7/2}^{-2} 1g_{9/2}^{-1}(fp)^{1}] \otimes \nu [1g_{9/2}^{-1}(fp)^{3}].$

1							:	²⁸ Si(³⁶ Ar,4pγ)) 2008To1	5 (continued)
									γ (⁶⁰ Ni)	
	Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α #	Comments
	119.6 <i>1</i>	1.2 2	2626.16	3+	2506.15	4+	M1+E2		0.16 <i>13</i>	$\alpha(K)=0.14$ 12; $\alpha(L)=0.015$ 13; $\alpha(M)=0.0022$ 18; $\alpha(N+)=8.E-5$ 7 $\alpha(N)=8.E-5$ 7
	200.2 1	2.6 2	5348.98	7-	5148.67	6+	E1		0.00621 9	E _γ : level-energy difference=120.0. α =0.00621 9; α (K)=0.00558 8; α (L)=0.000547 8; α (M)=7.67×10 ⁻⁵ 11; α (N+)=3.22×10 ⁻⁶ 5 α (N)=3.22×10 ⁻⁶ 5
	224.6 1	0.3 1	11255.4	12+	11030.7	11+	M1+E2	-0.12 10	0.0061 7	DCO=0.54 5. DCO=0.82 7 for gate on $\Delta J=1$ transition. α =0.0061 7; α (K)=0.0055 6; α (L)=0.00055 7; α (M)=7.7×10 ⁻⁵ 9; α (N+)=3.3×10 ⁻⁶ 4 α (N)=3.3×10 ⁻⁶ 4 DCO=0.96 16 @. DCO=0.77 11 for 30°, 53°, gate on $\Delta J=1$ transition.
	241.8 <i>1</i> 249.0 <i>1</i>	1.4 2 0.4 1	4407.66 8521.23	5+ 10 ⁻	4165.69 8272.2	5+ 10 ⁻	D D			DCO=0.92 11 for 53°, 83°, gate on $\Delta J=1$ transition. DCO=0.86 10 @. DCO=1.05 12.
	278.0 2	2.1 1	11255.4	12+	10977.8	11+	M1(+E2)	-0.03 5	0.00344 7	α =0.00344 7; α (K)=0.00309 7; α (L)=0.000307 7; α (M)=4.32×10 ⁻⁵ 9; α (N+)=1.85×10 ⁻⁶ 4 α (N)=1.85×10 ⁻⁶ 4 DCO=0.90 11. DCO=0.90 4 for gate on Δ J=1 transition. DCO=0.89 5 for 30°, 53°, gate on Δ J=1 transition. DCO=1.02 5 for 53° 83° gate on Δ I=1 transition.
	283.9 2	1.3 2	8044.21	9-	7760.4	8-	M1+E2		0.007 4	α =0.007 4; α (K)=0.007 4; α (L)=0.0007 4; α (M)=9.E-5 6; α (N+)=3.8×10 ⁻⁶ 21 α (N)=3.8×10 ⁻⁶ 21
	294.7 2	0.2 1	7760.4	8-	7465.8	(7 ⁻)	(M1+E2)		0.006 4	$\alpha = 0.006 \ 4; \ \alpha(K) = 0.006 \ 4; \ \alpha(L) = 0.0006 \ 4; \ \alpha(M) = 8.E - 5 \ 5; \\ \alpha(N+) = 3.4 \times 10^{-6} \ 18 \\ \alpha(N) = 2.4 \times 10^{-6} \ 18$
	334.2 1	8.3 4	5348.98	7-	5014.65	5-	E2		0.00636 9	$\alpha(N)=5.4\times10^{-178}$ $\alpha=0.00636 \ 9; \ \alpha(K)=0.00570 \ 8; \ \alpha(L)=0.000575 \ 8; \ \alpha(M)=8.06\times10^{-5} \ 12; \ \alpha(N+)=3.30\times10^{-6} \ 5 \ \alpha(N)=3.30\times10^{-6} \ 5 \ DCO=0.98 \ 5$
	346.8 4	0.2 1	2506.15	4+	2158.87	2+	E2		0.00559 9	$\alpha = 0.00559 \ 9; \ \alpha(\text{K}) = 0.00501 \ 8; \ \alpha(\text{L}) = 0.000505 \ 8; \ \alpha(\text{M}) = 7.08 \times 10^{-5} \ 11; \\ \alpha(\text{N}+) = 2.90 \times 10^{-6} \ 5 \\ \alpha(\text{N}) = 2.90 \times 10^{-6} \ 5$
	348.7 2	0.7 2	6461.24	8+	6112.58	7+	M1+E2		0.0037 18	$\alpha(N) = 2.50 \times 10^{-5} 3$ $\alpha = 0.0037 \ 18; \ \alpha(K) = 0.0034 \ 16; \ \alpha(L) = 0.00034 \ 16; \ \alpha(M) = 4.7 \times 10^{-5} \ 23; $ $\alpha(N+) = 2.0 \times 10^{-6} \ 9 $ $\alpha(N) = 2.0 \times 10^{-6} \ 9 $ $DCO = 0.74 \ 10 \ \emptyset$
	352.9 2	2.1 3	8044.21	9-	7690.61	8-	M1+E2		0.0036 17	$\alpha = 0.0036 \ 17; \ \alpha(\text{K}) = 0.0032 \ 15; \ \alpha(\text{L}) = 0.00032 \ 16; \ \alpha(\text{M}) = 4.5 \times 10^{-5} \ 22;$

 $^{60}_{28}\mathrm{Ni}_{32}\text{--}4$

 $^{60}_{28}\mathrm{Ni}_{32}$ -4

					28	⁸ Si(³⁶ Ar,4pγ)) 2008To15 (continued)
						γ ⁶⁰	⁹ Ni) (continued)	
Eγ	Iγ	E_i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [†]	δ^{\ddagger}	α #	Comments
								α (N+)=1.9×10 ⁻⁶ 9 α (N)=1.9×10 ⁻⁶ 9 E _{γ} : level-energy difference=353.6. DCO=0.93 5 @.
362.8 1	3.7 3	5348.98	7-	4986.19 6+	E1		0.001128 16	$ \begin{array}{l} \alpha = 0.001128 \ 16; \ \alpha(\text{K}) = 0.001014 \ 15; \ \alpha(\text{L}) = 9.92 \times 10^{-5} \ 14; \\ \alpha(\text{M}) = 1.395 \times 10^{-5} \ 20; \ \alpha(\text{N}+) = 5.93 \times 10^{-7} \\ \alpha(\text{N}) = 5.93 \times 10^{-7} \ 9 \\ \text{DCO} = 0 \ 53 \ 5 \end{array} $
382.8 2	0.7 1	11255.4	12+	10872.8 11 ⁺	M1+E2	-0.05 4	0.00161 3	
405.7 2	0.5 1	7433.60	9+	7027.99 8+	M1+E2		0.0023 10	α =0.0023 <i>10</i> ; α (K)=0.0021 <i>9</i> ; α (L)=0.00021 <i>9</i> ; α (M)=2.9×10 ⁻⁵ <i>12</i> ; α (N+)=1.2×10 ⁻⁶ <i>5</i> α (N)=1.2×10 ⁻⁶ <i>5</i>
429.9 2 454.0 2	0.9 1	9718.4	12+	10825.4 11 ⁺ 9264.5 11 ⁻	M1(+E2)	-0.04 4	0.001230 <i>19</i>	
467.1 <i>I</i>	3.6 2	2626.16	3+	2158.87 2+	M1+E2	+0.38 18	0.00115 12	α =0.00115 <i>12</i> ; α (K)=0.00103 <i>11</i> ; α (L)=0.000102 <i>11</i> ; α (M)=1.43×10 ⁻⁵ <i>15</i> ; α (N+)=6.1×10 ⁻⁷ 6 α (N)=6.1×10 ⁻⁷ 6 δ : also +3 to +15 (or +9 6). DCO=1.02 8. DCO=1.09 8 for 30°, 53°. DCO=1.02 7 for 53°, 83°.
476.7 2	17.3 5	8521.23	10-	8044.21 9-	M1(+E2)	0.00 5	0.000971 14	
493.4 <i>1</i>	1.2 2	3120.07	4+	2626.16 3+	M1(+E2)	+0.25 40	0.00095 20	$\alpha = 0.00095 \ 20; \ \alpha(\text{K}) = 0.00085 \ 18; \ \alpha(\text{L}) = 8.4 \times 10^{-5} \ 18; \ \alpha(\text{M}) = 1.2 \times 10^{-5} \ 3; \ \alpha(\text{N}+) = 5.1 \times 10^{-7} \ 11 \ \alpha(\text{N}) = 5.1 \times 10^{-7} \ 11 \ \delta: \ -0.14 \ \text{to} \ +0.65.$

S

 $^{60}_{28}\mathrm{Ni}_{32}$ -5

					²⁸ Si	i(³⁶ A r,4p γ)	2008To15 (co	ontinued)
						γ ⁶⁰ N	Ji) (continued)	
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f J	f Mult. [†]	δ^{\ddagger}	α [#]	Comments
			_		_			E _{γ} : level-energy difference=493.9. DCO=0.64 9. DCO=0.99 4 for gate on Δ J=1 transition. DCO=0.88 4 for 30°, 53°, gated on Δ J=1 transition. DCO=1.43 6 for 53°, 83°, gated on Δ J=1 transition.
494.4 2	0.5 1	4165.69	5+	3671.37 4+	M1+E2		0.0013 5	$\alpha = 0.0013 \ 5; \ \alpha(\text{K}) = 0.0012 \ 4; \ \alpha(\text{L}) = 0.00012 \ 4; \ \alpha(\text{M}) = 1.6 \times 10^{-5} \ 6; \\ \alpha(\text{N}+) = 6.9 \times 10^{-7} \ 22 \\ \alpha(\text{N}) = 6.9 \times 10^{-7} \ 22 \\ \text{DCO} = 0 \ 72 \ 11 $
514.4 2	0.6 1	5663.18	7+	5148.67 6+	M1+E2		0.0012 4	$\alpha = 0.0012 \ 4; \ \alpha(\text{K}) = 0.0010 \ 4; \ \alpha(\text{L}) = 0.00010 \ 4; \ \alpha(\text{M}) = 1.5 \times 10^{-5} \ 5; \alpha(\text{N}+) = 6.2 \times 10^{-7} \ 18 \alpha(\text{N}) = 6.2 \times 10^{-7} \ 18$
515 <i>1</i> 545.0 <i>1</i>	0.2 <i>1</i> 0.3 <i>1</i>	4186.4 3731.06	(4 ⁺) 4 ⁺	3671.37 4 ⁺ 3186.25 3 ⁺	(D) M1+E2		0.0010 <i>3</i>	α =0.0010 3; α (K)=0.00089 25; α (L)=8.8×10 ⁻⁵ 25; α (M)=1.2×10 ⁻⁵ 4; α (N+)=5.3×10 ⁻⁷ 15 α (N)=5.3×10 ⁻⁷ 15
547.2 <i>4</i>	0.1 1	7981.0	9+	7433.60 9+	D			DC0=1.12 24 @.
560.8 2	0.2 1	11785.7	(12 ⁺)	11225.0 (11	+) M1+E2		0.00092 25	$\begin{array}{l} \alpha = 0.00092 \ 25; \ \alpha(\mathrm{K}) = 0.00082 \ 22; \ \alpha(\mathrm{L}) = 8.1 \times 10^{-5} \ 22; \\ \alpha(\mathrm{M}) = 1.1 \times 10^{-5} \ 3; \ \alpha(\mathrm{N}+) = 4.9 \times 10^{-7} \ 13 \\ \alpha(\mathrm{N}) = 4.9 \times 10^{-7} \ 13 \\ \mathrm{DCO} = 0.94 \ 11 \ @. \end{array}$
578.3 <i>3</i>	0.9 2	4986.19	6+	4407.66 5+	M1+E2		0.00084 22	α =0.00084 22; α (K)=0.00076 20; α (L)=7.5×10 ⁻⁵ 20; α (M)=1.1×10 ⁻⁵ 3; α (N+)=4.5×10 ⁻⁷ 11 α (N)=4.5×10 ⁻⁷ 11
596.0 2	6.6 <i>3</i>	11851.3	13+	11255.4 12	M1(+E2)	-0.03 4	0.000591 9	α =0.000591 9; α (K)=0.000531 8; α (L)=5.21×10 ⁻⁵ 8; α (M)=7.34×10 ⁻⁶ 11; α (N+)=3.17×10 ⁻⁷ 5 α (N)=3.17×10 ⁻⁷ 5 DCO=0.75 8. DCO=1.04 4 for gate on Δ J=1 transition. DCO=0.97 5 for 30° 53°, gate on Δ J=1 transition. DCO=1.03 5 for 53° 83°, gate on Δ J=1 transition.
601.6 2 610.9 3 611 5 2	0.2 <i>1</i> 0.3 <i>1</i> 25 1 8	9123.2 3731.06	10^{-} 4 ⁺	8521.23 10 ⁻ 3120.07 4 ⁺ 8521 23 10 ⁻	- D D - M1+E2	10.08.7	0.000561.10	$\alpha = 0.000561$ 10: $\alpha(K) = 0.000504$ 0: $\alpha(L) = 4.04 \times 10^{-5}$ 0:
011.3 2	23.1 8	9132.4	11	6321.23 10	WII+E2	+0.08 /	0.000301 10	α (M)=6.96×10 ⁻⁶ 12; α (N+)=3.00×10 ⁻⁷ 5 α (N)=3.00×10 ⁻⁷ 5 DCO=0.61 3. DCO=1.06 5 for gate on Δ J=1 transition. DCO=0.77 4 for 30°, 53°. DCO=0.80 4 for 53° 83°
613.7 <i>3</i>	0.4 1	3120.07	4+	2506.15 4+	D			

From ENSDF

⁶⁰₂₈Ni₃₂-6

					²⁸ Si	(³⁶ Ar,4pγ) 200	8To15 (continu	ed)
						γ ⁽⁶⁰ Ni) (co	ntinued)	
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [†]	δ^{\ddagger}	α [#]	Comments
637.5 2	1.8 1	9123.2	10-	8485.7 9-	M1+E2		0.00065 15	$\alpha = 0.00065 \ 15; \ \alpha(K) = 0.00059 \ 13; \ \alpha(L) = 5.8 \times 10^{-5} \ 13; \\ \alpha(M) = 8.1 \times 10^{-6} \ 18; \ \alpha(N+) = 3.5 \times 10^{-7} \ 8 \\ \alpha(N) = 3.5 \times 10^{-7} \ 8 \\ DCO = 0.93 \ 11 \ @.$
654.9 2	0.4 1	11443.6	13-	10788.8 12-	M1+E2		0.00061 13	$\alpha = 0.00061 \ 13; \ \alpha(\text{K}) = 0.00055 \ 12; \ \alpha(\text{L}) = 5.4 \times 10^{-5} \ 12; \alpha(\text{M}) = 7.6 \times 10^{-6} \ 16; \ \alpha(\text{N}+) = 3.2 \times 10^{-7} \ 7 \alpha(\text{N}) = 3.2 \times 10^{-7} \ 7 \text{DCO} = 0.63 \ 12.$
676.6 2	3.1 3	4407.66	5+	3731.06 4+	M1+E2		0.00056 11	$\alpha = 0.00056 \ 11; \ \alpha(\text{K}) = 0.00050 \ 10; \ \alpha(\text{L}) = 4.9 \times 10^{-5} \ 10; \alpha(\text{M}) = 7.0 \times 10^{-6} \ 14; \ \alpha(\text{N}+) = 3.0 \times 10^{-7} \ 6 \alpha(\text{N}) = 3.0 \times 10^{-7} \ 6$
677.7 2	5.4 4	5663.18	7+	4986.19 6+	M1+E2	+0.18 +17-16	0.000454 19	$\begin{array}{l} \alpha = 0.000454 \ 19; \ \alpha(\mathrm{K}) = 0.000408 \ 17; \ \alpha(\mathrm{L}) = 4.00 \times 10^{-5} \ 17; \\ \alpha(\mathrm{M}) = 5.63 \times 10^{-6} \ 23; \ \alpha(\mathrm{N}+) = 2.43 \times 10^{-7} \ 1 \\ \alpha(\mathrm{N}) = 2.43 \times 10^{-7} \ 10 \\ \delta: \ +0.02 \ \mathrm{to} \ +0.35. \\ \mathrm{DCO} = 0.84 \ 4. \\ \mathrm{E}_{\gamma}: \ \mathrm{level-energy} \ \mathrm{difference} = 677.0. \\ \mathrm{DCO} = 0.83 \ 4 \ \mathrm{for} \ 30^{\circ}, \ 53^{\circ}. \\ \mathrm{DCO} = 0.85 \ 4 \ \mathrm{for} \ 53^{\circ} \ 83^{\circ} \end{array}$
680.0 1	0.3 1	3186.25	3+	2506.15 4+	M1+E2		0.00055 11	$\alpha = 0.00055 \ 11; \ \alpha(K) = 0.00050 \ 10; \ \alpha(L) = 4.9 \times 10^{-5} \ 10; \alpha(M) = 6.9 \times 10^{-6} \ 14; \ \alpha(N+) = 2.9 \times 10^{-7} \ 6 \alpha(N) = 2.9 \times 10^{-7} \ 6 $
700.8 2	0.4 1	8044.21 12486.3	(13 ⁺)	11785.7 (12 ⁺)	(D+Q) M1+E2		0.00051 10	α=0.00051 10; α(K)=0.00046 9; α(L)=4.5×10 ⁻⁵ 9; α(M)=6.4×10 ⁻⁶ 12; α(N+)=2.7×10 ⁻⁷ 5 α(N)=2.7×10 ⁻⁷ 5 DCO=0.83 9 @.
720.9 2 727.1 2	2.7 2 4.7 3	4986.19 12578.6	6+ 14+	4265.11 6 ⁺ 11851.3 13 ⁺	D M1(+E2)	+0.03 5	0.000385 6	DCO=0.98 4. α =0.000385 6; α (K)=0.000346 5; α (L)=3.38×10 ⁻⁵ 5; α (M)=4.77×10 ⁻⁶ 7; α (N+)=2.06×10 ⁻⁷ 3 α (N)=2.06×10 ⁻⁷ 3 DCO=0.64 12. DCO=1.00 4 for gate on Δ J=1 transition. DCO=1.05 6 for 30°, 53°, gate on Δ J=1 transition. DCO=1.04 5 for 53°, 83°, gate on Λ J=1 transition.
734.1 2	0.2 1	10788.8	12-	10054.4 (11 ⁻)	M1+E2		0.00046 8	$\alpha = 0.00046 \ 8; \ \alpha(\text{K}) = 0.00041 \ 7; \ \alpha(\text{L}) = 4.0 \times 10^{-5} \ 7; \alpha(\text{M}) = 5.7 \times 10^{-6} \ 10; \ \alpha(\text{N}+) = 2.4 \times 10^{-7} \ 4 \alpha(\text{N}) = 2.4 \times 10^{-7} \ 4$
736.4 2	1.9 <i>3</i>	4407.66	5+	3671.37 4+	M1+E2		0.00045 8	α =0.00045 8; α (K)=0.00041 7; α (L)=4.0×10 ⁻⁵ 7; α (M)=5.6×10 ⁻⁶ 10; α (N+)=2.4×10 ⁻⁷ 4 α (N)=2.4×10 ⁻⁷ 4
740.9 2	4.2 4	5148.67	6+	4407.66 5+	M1+E2	+0.4 1	0.000391 11	$\alpha = 0.000391 \ 11; \ \alpha(K) = 0.000351 \ 10; \ \alpha(L) = 3.44 \times 10^{-5} \ 10;$

 $^{60}_{28}\mathrm{Ni}_{32}$ -7

						28	Si(³⁶ Ar,4pγ)) 2008To15 (c	continued)
							$\gamma(^{60}$	⁹ Ni) (continued)	
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	a #	Comments
									$\alpha(M) = 4.84 \times 10^{-6} \ 14; \ \alpha(N+) = 2.09 \times 10^{-7} \ 6$ $\alpha(N) = 2.09 \times 10^{-7} \ 6$ DCO = 0.81 $\alpha(N) = 0.05 \ 7 \ \text{for } 30^{\circ}, \ 53^{\circ}.$ DCO = 1.03 7 for 53^{\circ}, \ 83^{\circ}.
749.5 <i>3</i>	0.1 1	5014.65	5-	4265.11	6+	E1		0.000189 3	α =0.000189 3; α (K)=0.0001700 24; α (L)=1.655×10 ⁻⁵ 24; α (M)=2.33×10 ⁻⁶ 4; α (N+)=1.002×10 ⁻⁷ α (N)=1.002×10 ⁻⁷ 14
764.2 3	0.5 1	11553.4	13-	10788.8	12-	M1+E2		0.00041 7	α =0.00041 7; α (K)=0.00037 6; α (L)=3.6×10 ⁻⁵ 6; α (M)=5.1×10 ⁻⁶ 9; α (N+)=2.2×10 ⁻⁷ 4 α (N)=2.2×10 ⁻⁷ 4 DCO=0.96 4 @.
789.4 <i>3</i>	0.1 1	10054.4	(11^{-})	9264.5	11-	D			
798.1 2	7.7 4	6461.24	8+	5663.18	7+	M1+E2	+0.45 5	0.000335 6	α =0.000335 6; α (K)=0.000301 6; α (L)=2.94×10 ⁻⁵ 6; α (M)=4.15×10 ⁻⁶ 8; α (N+)=1.79×10 ⁻⁷ 3 α (N)=1.79×10 ⁻⁷ 3 DCO=0.98 6. DCO=1.16 6 for gate on Δ J=1 transition. DCO=1.08 5 for 30°, 53°. DCO=1.03 5 for 53° 83°
820.5 2	0.7 1	4986.19	6+	4165.69	5+	M1+E2		0.00035 5	$\alpha = 0.00035 \ 5; \ \alpha(K) = 0.00031 \ 5; \ \alpha(L) = 3.1 \times 10^{-5} \ 5; \ \alpha(M) = 4.3 \times 10^{-6} \ 7; \\ \alpha(N+) = 1.9 \times 10^{-7} \ 3 \\ \alpha(N) = 1.9 \times 10^{-7} \ 3 \\ DCO = 0.60 \ 5 \ @.$
826.1 2	5.8 <i>3</i>	2158.87	2+	1332.59	2+	M1(+E2)	-0.2 2	0.000298 11	$\alpha = 0.000298 \ II; \ \alpha(K) = 0.000268 \ I0; \ \alpha(L) = 2.62 \times 10^{-5} \ I0; \alpha(M) = 3.69 \times 10^{-6} \ I3; \ \alpha(N+) = 1.59 \times 10^{-7} \ 6 \alpha(N) = 1.59 \times 10^{-7} \ 6 DCO = 1.07 \ 8. DCO = 1.04 \ 8 \ for \ 30^{\circ}, \ 53^{\circ}. DCO = 1.00 \ 6 \ for \ 53^{\circ}, \ 83^{\circ}.$
827.8 6	0.2 1	9960.3	11^{-}	9132.4	11-	D			
828.3 3	0.2 1	5014.65	5-	4186.4	(4+)	(E1)		0.0001528 22	α =0.0001528 22; α (K)=0.0001375 20; α (L)=1.337×10 ⁻⁵ 19; α (M)=1.88×10 ⁻⁶ 3 α (N)=8.11×10 ⁻⁸ 12
828.5 3	0.5 1	10788.8	12-	9960.3	11-	M1+E2		0.00034 5	α =0.00034 5; α (K)=0.00031 5; α (L)=3.0×10 ⁻⁵ 5; α (M)=4.2×10 ⁻⁶ 6; α (N+)=1.81×10 ⁻⁷ 25 α (N)=1.81×10 ⁻⁷ 25 DCO=0.99 4 @.
836.4 3	1.3 1	9960.3	11-	9123.2	10-	M1+E2		0.00033 5	$ \begin{array}{l} \alpha = 0.00033 \ 5; \ \alpha(\mathrm{K}) = 0.00030 \ 4; \ \alpha(\mathrm{L}) = 2.9 \times 10^{-5} \ 4; \ \alpha(\mathrm{M}) = 4.1 \times 10^{-6} \ 6; \\ \alpha(\mathrm{N}+) = 1.77 \times 10^{-7} \ 24 \\ \alpha(\mathrm{N}) = 1.77 \times 10^{-7} \ 24 \\ \mathrm{DCO} = 1.10 \ 5 \ @. \end{array} $

 ∞

 $^{60}_{28}\mathrm{Ni}_{32}$ -8

						²⁸ Si(³⁶ Ar,4p γ)	2008To15 (cont	inued)
							γ (⁶⁰ Ni) (continued)	
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	a#	Comments
837.1 3	0.2 1	11079.3	(12 ⁻)	10242.0	(11 ⁻)	(M1+E2)		0.00033 5	α =0.00033 5; α (K)=0.00030 4; α (L)=2.9×10 ⁻⁵ 4; α (M)=4.1×10 ⁻⁶ 6; α (N+)=1.77×10 ⁻⁷ 24 α (N)=1.77×10 ⁻⁷ 24
848.0 <i>3</i>	0.3 1	14201.2	(15 ⁺)	13353.1	(14 ⁺)	M1+E2		0.00032 5	$\begin{array}{l} \alpha(1)=1.77\times10^{-5} \ \alpha(1)=0.00029 \ 4; \ \alpha(1)=2.8\times10^{-5} \ 4; \\ \alpha(1)=4.0\times10^{-6} \ 6; \ \alpha(1+)=1.71\times10^{-7} \ 23 \\ \alpha(1)=1.71\times10^{-7} \ 23 \\ \Omega(1)=0.71\times10^{-7} \ 23$
848.9 <i>1</i>	0.1 1	5014.65	5-	4165.69	5+	E1		0.0001452 21	$\alpha = 0.0001452 \ 21; \ \alpha(\text{K}) = 0.0001307 \ 19; \ \alpha(\text{L}) = 1.271 \times 10^{-5} \ 18; \ \alpha(\text{M}) = 1.79 \times 10^{-6} \ 3 \ \alpha(\text{N}) = 7.71 \times 10^{-8} \ 11$
856.9 <i>3</i>	12.0 6	9989.4	12-	9132.4	11-	M1(+E2)	+0.13 15	0.000274 6	$ α = 0.000274 6; α(K) = 0.000247 6; α(L) = 2.41 \times 10^{-5} 6; α(M) = 3.39 \times 10^{-6} 8; α(N+) = 1.47 \times 10^{-7} 4 α(N) = 1.47 \times 10^{-7} 4 DCO = 0.65 4. DCO = 1.07 5 for gate on ΔJ = 1 transition. DCO = 0.85 5 for 30°, 53°. DCO = 0.81 4 for 53°, 83°. $
861.4 <i>4</i>	0.3 1	6762.05	7 ⁽⁺⁾	5901.82	6-	(E1)		0.0001409 20	α =0.0001409 20; α (K)=0.0001268 18; α (L)=1.233×10 ⁻⁵ 18; α (M)=1.736×10 ⁻⁶ 25 α (N)=7.48×10 ⁻⁸ 11
866.8 <i>3</i>	0.6 1	13353.1	(14 ⁺)	12486.3	(13+)	M1+E2		0.00031 4	$\alpha = 0.00031 \ 4; \ \alpha(K) = 0.00027 \ 4; \ \alpha(L) = 2.7 \times 10^{-5} \ 4; \alpha(M) = 3.8 \times 10^{-6} \ 5; \ \alpha(N+) = 1.63 \times 10^{-7} \ 21 \alpha(N) = 1.63 \times 10^{-7} \ 21 DCO = 1 \ 13 \ 12 \ @$
872.6 <i>3</i>	0.3 1	11851.3	13+	10977.8	11+	E2		0.000338 5	$\alpha = 0.000338 \ 5; \ \alpha(K) = 0.000304 \ 5; \ \alpha(L) = 2.99 \times 10^{-5} \ 5; \alpha(M) = 4.20 \times 10^{-6} \ 6; \ \alpha(N+) = 1.80 \times 10^{-7} \ 3 \alpha(N) = 1.80 \times 10^{-7} \ 3$
874.1 <i>3</i>	0.1 1	9264.5	11-	8390.0	9-	E2		0.000337 5	$\alpha = 0.000337 \ 5; \ \alpha(\text{K}) = 0.000303 \ 5; \ \alpha(\text{L}) = 2.97 \times 10^{-5} \ 5; \alpha(\text{M}) = 4.18 \times 10^{-6} \ 6; \ \alpha(\text{N}+) = 1.79 \times 10^{-7} \ 3 \alpha(\text{N}) = 1.79 \times 10^{-7} \ 3$
883.5 <i>1</i> 894.1 <i>3</i>	1.2 <i>I</i> 0.3 <i>I</i>	5148.67 10158.7	6 ⁺ (12 ⁻)	4265.11 9264.5	6+ 11 ⁻	D (M1+E2)		0.00028 4	DCO=1.08 5. α =0.00028 4; α (K)=0.00026 3; α (L)=2.5×10 ⁻⁵ 3; α (M)=3.5×10 ⁻⁶ 5; α (N+)=1.51×10 ⁻⁷ 18 α (N)=1.51×10 ⁻⁷ 18
914.8 <i>3</i>	0.7 1	7027.99	8+	6112.58	7+	M1+E2		0.00027 4	$\alpha = 0.00027 \ 4; \ \alpha(K) = 0.00024 \ 3; \ \alpha(L) = 2.4 \times 10^{-5} \ 3; \alpha(M) = 3.3 \times 10^{-6} \ 4; \ \alpha(N+) = 1.44 \times 10^{-7} \ 16 \alpha(N) = 1.44 \times 10^{-7} \ 16 DCO = 1.05 \ 21 \ @.$
928.2 1	0.5 1	7690.61	8-	6762.05	7 ⁽⁺⁾	(E1)		0.0001212 17	α =0.0001212 17; α (K)=0.0001090 16; α (L)=1.060×10 ⁻⁵ 15; α (M)=1.492×10 ⁻⁶ 21 α (N)=6.44×10 ⁻⁸ 9 E _y : level-energy difference=928.6.

From ENSDF

						²⁸ Si(³⁶ Ar,4p γ)	2008To15 (con	ntinued)
							$\gamma(^{60}]$	Ni) (continued)	
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α [#]	Comments
936.7 <i>3</i>	0.4 1	10697.4	12-	9760.6	11-	M1+E2		0.00026 3	α =0.00026 3; α (K)=0.00023 3; α (L)=2.2×10 ⁻⁵ 3; α (M)=3.2×10 ⁻⁶ 4; α (N+)=1.36×10 ⁻⁷ 15 α (N)=1.36×10 ⁻⁷ 15 DCO=0.62 12.
948.5 <i>3</i>	0.2 1	7760.4	8-	6811.3	9-	M1+E2		0.00025 3	$\alpha = 0.00025 \ 3; \ \alpha(\text{K}) = 0.000223 \ 24; \ \alpha(\text{L}) = 2.18 \times 10^{-5} \ 24; \alpha(\text{M}) = 3.1 \times 10^{-6} \ 4; \ \alpha(\text{N}+) = 1.32 \times 10^{-7} \ 14 \alpha(\text{N}) = 1.32 \times 10^{-7} \ 14$
954.1 <i>3</i>	0.1 1	11112.9	13-	10158.7	(12 ⁻)	(M1+E2)		0.00024 3	α =0.00024 3; α (K)=0.000220 24; α (L)=2.15×10 ⁻⁵ 24; α (M)=3.0×10 ⁻⁶ 4; α (N+)=1.31×10 ⁻⁷ 14 α (N)=1.31×10 ⁻⁷ 14
963.7 <i>3</i>	2.8 2	6112.58	7+	5148.67	6+	M1+E2	+0.3 2	0.000219 7	
963.8 <i>3</i>	0.2 1	15165.0	(16 ⁺)	14201.2	(15 ⁺)	(M1+E2)		0.000239 25	α =0.000239 25; α (K)=0.000215 23; α (L)=2.10×10 ⁻⁵ 23; α (M)=3.0×10 ⁻⁶ 4; α (N+)=1.28×10 ⁻⁷ 13 α (N)=1.28×10 ⁻⁷ 13
972.3 2	5.0 5	7433.60	9+	6461.24	8+	M1+E2	+0.4 2	0.000217 7	
979.1 <i>3</i>	0.3 1	10697.4	12-	9718.4	11-	M1+E2		0.000231 24	$\alpha = 0.000231 \ 24; \ \alpha(K) = 0.000208 \ 21; \ \alpha(L) = 2.03 \times 10^{-5} \ 21; \alpha(M) = 2.9 \times 10^{-6} \ 3; \ \alpha(N+) = 1.23 \times 10^{-7} \ 12 \alpha(N) = 1.23 \times 10^{-7} \ 12 DCO = 0.48 \ 11.$
982.9 <i>3</i>	0.5 1	5148.67	6+	4165.69	5+	M1+E2		0.000229 23	α =0.000229 23; α (K)=0.000206 21; α (L)=2.01×10 ⁻⁵ 21; α (M)=2.8×10 ⁻⁶ 3; α (N+)=1.22×10 ⁻⁷ 12 α (N)=1.22×10 ⁻⁷ 12
993.7 <i>3</i>	0.3 1	3619.9	3+	2626.16	3+	D			
1025.1 3	0.2 1	11079.3	(12 ⁻)	10054.4	(11 ⁻)	(M1+E2)		0.000209 20	α =0.000209 20; α (K)=0.000188 18; α (L)=1.83×10 ⁻⁵ 18; α (M)=2.58×10 ⁻⁶ 25; α (N+)=1.11×10 ⁻⁷ 1 α (N)=1.11×10 ⁻⁷ 10
1025.1 3	0.2 1	12578.6	14+	11553.4	13-	E1		9.99×10 ⁻⁵ 14	$\alpha = 9.99 \times 10^{-5} \ 14; \ \alpha(\text{K}) = 8.99 \times 10^{-5} \ 13; \ \alpha(\text{L}) = 8.73 \times 10^{-6} \ 13; \ \alpha(\text{M}) = 1.229 \times 10^{-6} \ 18; \ \alpha(\text{N}+) = 5.31 \times 10^{-8} \ 8 \ \alpha(\text{N}) = 5.31 \times 10^{-8} \ 8$
1028.0 9	0.4 1	10788.8	12-	9760.6	11-	M1+E2		0.000207 19	$\alpha = 0.000207 \ 19; \ \alpha(K) = 0.000186 \ 17; \ \alpha(L) = 1.82 \times 10^{-5} \ 18;$

1							²⁸ Si(³	⁶ Ar,4p γ)	2008To15 (contin	nued)
								γ (⁶⁰ Ni)	(continued)	
]	Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [†]	δ^{\ddagger}	a [#]	Comments
102	822	0.5.7	3186.25	3+	2158.87	2+	M1+F2		0.000207.19	$\alpha(M) = 2.57 \times 10^{-6} \ 24; \ \alpha(N+) = 1.11 \times 10^{-7} \ I$ $\alpha(N) = 1.11 \times 10^{-7} \ I0$ $\alpha = 0.000207 \ I9; \ \alpha(K) = 0.000186 \ I7; \ \alpha(L) = 1.82 \times 10^{-5} \ I8;$
102	20.2 2	0.5 1	5160.25	5	2156.67	2	WII+L2		0.000207 19	$\alpha(M)=2.56\times10^{-6}\ 24;\ \alpha(N+)=1.11\times10^{-7}\ I$ $\alpha(N)=1.11\times10^{-7}\ I0$ $E_{\gamma}:$ level-energy difference=1027.4. DCO=0.63 8.
104	2.0 1	0.2 1	6278.56	(6 ⁻)	5236.57	5(+)	(E1)		9.68×10 ⁻⁵ 14	$\alpha = 9.68 \times 10^{-5} \ 14; \ \alpha(\text{K}) = 8.71 \times 10^{-5} \ 13; \ \alpha(\text{L}) = 8.46 \times 10^{-6} \\ 12; \ \alpha(\text{M}) = 1.191 \times 10^{-6} \ 17; \ \alpha(\text{N}+) = 5.14 \times 10^{-8} \ 8 \\ \alpha(\text{N}) = 5.14 \times 10^{-8} \ 8 $
104	14.4 2	0.8 2	4165.69	5+	3120.07	4+	M1+E2		0.000200 18	α =0.000200 <i>18</i> ; α (K)=0.000180 <i>16</i> ; α (L)=1.76×10 ⁻⁵ <i>16</i> ; α (M)=2.48×10 ⁻⁶ <i>23</i> ; α (N+)=1.07×10 ⁻⁷ <i>I</i> α (N)=1.07×10 ⁻⁷ <i>I</i> 0 E _v : level-energy difference=1045.6.
107	71	0.1 1	16242.0	(17 ⁺)	15165.0	(16 ⁺)	(M1+E2)		0.000187 16	$\alpha = 0.000187 \ I6; \ \alpha(K) = 0.000168 \ I4; \ \alpha(L) = 1.64 \times 10^{-5} \ I5; \alpha(M) = 2.32 \times 10^{-6} \ 20; \ \alpha(N+) = 1.00 \times 10^{-7} \ 9 \alpha(N) = 1.00 \times 10^{-7} \ 9$
108	33.6 2	49.0 2	5348.98	7-	4265.11	6+	E1		9.00×10 ⁻⁵ 13	$\alpha = 9.00 \times 10^{-5} \ 13; \ \alpha(\text{K}) = 8.10 \times 10^{-5} \ 12; \ \alpha(\text{L}) = 7.86 \times 10^{-6} \ 11; \ \alpha(\text{M}) = 1.106 \times 10^{-6} \ 16; \ \alpha(\text{N}+) = 4.78 \times 10^{-8} \ 7 \ \alpha(\text{N}) = 4.78 \times 10^{-8} \ 7 \ \text{DCO} = 0.60 \ 3$
108	33.9 <i>3</i>	3.6 <i>3</i>	13662.4	15+	12578.6	14+	M1+E2		0.000185 16	α =0.000185 <i>16</i> ; α (K)=0.000166 <i>14</i> ; α (L)=1.62×10 ⁻⁵ <i>14</i> ; α (M)=2.28×10 ⁻⁶ <i>20</i> ; α (N+)=9.9×10 ⁻⁸ <i>8</i> α (N)=9.9×10 ⁻⁸ <i>8</i>
108	38.2 3	0.7 1	9132.4	11-	8044.21	9-	E2		0.000198 3	α =0.000198 3; α (K)=0.0001780 25; α (L)=1.741×10 ⁻⁵ 25; α (M)=2.45×10 ⁻⁶ 4; α (N+)=1.054×10 ⁻⁷ α (N)=1.054×10 ⁻⁷ 15
110	05.0 4	0.5 1	3731.06	4+	2626.16	3+	M1+E2		0.000178 15	α =0.000178 <i>15</i> ; α (K)=0.000159 <i>13</i> ; α (L)=1.56×10 ⁻⁵ <i>13</i> ; α (M)=2.19×10 ⁻⁶ <i>18</i> ; α (N+)=9.3×10 ⁻⁷ <i>17</i> α (N)=9.5×10 ⁻⁸ <i>8</i> ; α (IPF)=8.4×10 ⁻⁷ <i>16</i>
112	23.4 3	5.8 4	11112.9	13-	9989.4	12-	M1+E2	+0.13 7	0.0001597 24	
114	1.1 3	1.4 <i>1</i>	14803.4	16+	13662.4	15+	M1(+E2)	-0.01 10	0.0001552 22	$\alpha = 0.0001552 \ 22; \ \alpha(K) = 0.0001379 \ 20; \ \alpha(L) = 1.342 \times 10^{-5}$ 19; \(\alpha(M) = 1.89 \times 10^{-6} \ 3\) \(\alpha(N) = 8.20 \times 10^{-8} \ 12; \(\alpha(IPF) = 1.84 \times 10^{-6} \ 3\)

 $^{60}_{28}\mathrm{Ni}_{32}$ -11

I							28	Si(³⁶ Ar,4pγ)) 2008To15 (c	ontinued)
								$\gamma(6)$	⁹ Ni) (continued)	
	E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α [#]	Comments
	1145.2 2	3.7 3	4265.11	6+	3120.07	4+	E2		0.000179 3	DCO=0.89 9 @. DCO=0.92 12 for 30°, 53°, gate on $\Delta J=1$ transition. DCO=1.08 7 for 53°, 83°, gate on $\Delta J=1$ transition. α =0.000179 3; α (K)=0.0001584 23; α (L)=1.548×10 ⁻⁵ 22; α (M)=2.18×10 ⁻⁶ 3; α (N+)=3.02×10 ⁻⁶ 5 α (N)=9.38×10 ⁻⁸ 14; α (IPF)=2.93×10 ⁻⁶ 5
	1156.8 <i>3</i>	0.8 1	11044.3	12+	9888.1	10^{+}	E2		0.0001760 25	DCO=1.00 8. α =0.0001760 25; α (K)=0.0001548 22; α (L)=1.513×10 ⁻⁵ 22; α (M)=2.13×10 ⁻⁶ 3
	1160.8 <i>3</i>	2.6 3	12273.8	14-	11112.9	13-	M1+E2	+0.11 6	0.0001515 22	
	1165.2 2	6.2 3	3671.37	4+	2506.15	4+	D+Q			DCO= 0.775 for 53° , 83° . δ : -0.108 or $+1.45$. DCO= 0.954 . DCO= 1.024 for 30° , 53° .
	1173.2 2	82.0 25	2506.15	4+	1332.59	2+	E2		0.0001723 25	DCO=0.97 4 for 53°, 83°. α =0.0001723 25; α (K)=0.0001500 21; α (L)=1.465×10 ⁻⁵ 21; α (M)=2.06×10 ⁻⁶ 3 (DE) 5 42×10 ⁻⁶ 9
	1180.7 <i>3</i> 1196.8 <i>3</i>	0.3 <i>1</i> 1.1 <i>1</i>	11878.1 9718.4	(13) 11 ⁻	10697.4 8521.23	12 ⁻ 10 ⁻	(D+Q) M1+E2		0.000157 12	$\alpha(N)=8.88 \times 10^{-6} 13; \alpha(IPF)=3.42 \times 10^{-6} 8$ DCO=1.03 4. Mult.: $\Delta J=(1)$ transition. $\alpha=0.000157 12; \alpha(K)=0.000135 10; \alpha(L)=1.31 \times 10^{-5} 10;$ $\alpha(M)=1.85 \times 10^{-6} 13; \alpha(N+)=7.2 \times 10^{-6} 13$ $\alpha(N)=8.0 \times 10^{-8} 6; \alpha(IPF)=7.2 \times 10^{-6} 13$ DCO=1.18 16 @
	1207.0 <i>3</i>	4.8 5	8044.21	9-	6837.2	8-	M1+E2	+0.37 4	0.0001471 22	α =0.0001471 22; α (K)=0.0001257 18; α (L)=1.223×10 ⁻⁵ 18; α (M)=1.724×10 ⁻⁶ 25 α (N)=7.47×10 ⁻⁸ 11; α (IPF)=7.37×10 ⁻⁶ 13 DCO=1.08 9. DCO=1.70 8 for gate on Δ J=1 transition. DCO=1.33 5 for 30°, 53°, gate on Δ J=1 transition.
	1217.1 3	0.9 2	14463.8	15+	13246.5	13+	E2		0.0001653 24	$\alpha = 0.0001653 \ 24; \ \alpha(K) = 0.0001383 \ 20; \ \alpha(L) = 1.350 \times 10^{-5} \ 19; \ \alpha(M) = 1.90 \times 10^{-6} \ 3 \ \alpha(N) = 8.19 \times 10^{-8} \ 12; \ \alpha(IPF) = 1.153 \times 10^{-5} \ 17 \ DCO = 0.96 \ 8$
1	1224.9 2 1233.0 <i>3</i>	$\begin{array}{c} 0.7 \ 2 \\ 1.1 \ 2 \end{array}$	3731.06 8044.21	4+ 9-	2506.15 6811.3	4+ 9-	D D			DCO=1.05 9 @. DCO=1.15 16 @.

						²⁸ Si(³⁶ Ar,4p γ)	2008To15 (cont	inued)
							γ (⁶⁰ Ni) (continued)	
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [†]	δ^{\ddagger}	α #	Comments
1239.0 <i>3</i>	1.0 <i>1</i>	9760.6	11-	8521.23	10-	M1+E2		0.000152 11	$\alpha = 0.000152 \ 11; \ \alpha(K) = 0.000125 \ 8; \ \alpha(L) = 1.22 \times 10^{-5} \ 8; \\ \alpha(M) = 1.72 \times 10^{-6} \ 12; \ \alpha(N+) = 1.33 \times 10^{-5} \ 23 \\ \alpha(N) = 7.4 \times 10^{-8} \ 5; \ \alpha(IPF) = 1.33 \times 10^{-5} \ 22 \\ PCO = 0.88 \ 12 \ 6$
1255.1 3	1.2 1	5663.18	7+	4407.66	5+	E2		0.0001624 23	$\alpha = 0.0001624 \ 23; \ \alpha(\text{K}) = 0.0001293 \ 19; \ \alpha(\text{L}) = 1.261 \times 10^{-5} \ 18; \alpha(\text{M}) = 1.776 \times 10^{-6} \ 25 \alpha(\text{L}) = 7.65 \times 10^{-8} \ 10^{-5} \ 2^$
1255.4 4	1.7 3	8689.1	10+	7433.60	9+	M1+E2	+0.5 3	0.000145 5	$\alpha(N) = 7.65 \times 10^{-6} II; \alpha(IPF) = 1.86 \times 10^{-5} J$ $\alpha = 0.000145 5; \alpha(K) = 0.000118 4; \alpha(L) = 1.14 \times 10^{-5} 4;$ $\alpha(M) = 1.61 \times 10^{-6} 5; \alpha(N+) = 1.46 \times 10^{-5} II$ $\alpha(N) = 6.98 \times 10^{-8} I9; \alpha(IPF) = 1.45 \times 10^{-5} II$ DCO = 1.06 9. DCO = 0.93 7 for gate on $\Delta J = 1$ transition. DCO = 0.89 7 for 30°, 53°.
1255.8 2	0.5 1	4986.19	6+	3731.06	4+	E2		0.0001623 23	$\begin{aligned} &\alpha = 0.0001623 \ 23; \ \alpha(K) = 0.0001291 \ 18; \ \alpha(L) = 1.260 \times 10^{-5} \ 18; \\ &\alpha(M) = 1.774 \times 10^{-6} \ 25 \\ &\alpha(N) = 7.64 \times 10^{-8} \ 11; \ \alpha(IPF) = 1.88 \times 10^{-5} \ 3 \end{aligned}$
1264.0 <i>1</i>	0.3 1	6278.56	(6 ⁻)	5014.65	5-	(M1+E2)		0.000151 11	E _{γ} : level-energy difference=1255.1. α =0.000151 <i>11</i> ; α (K)=0.000120 8; α (L)=1.17×10 ⁻⁵ 8; α (M)=1.65×10 ⁻⁶ <i>11</i> ; α (N+)=1.8×10 ⁻⁵ 3 α (L)=7.1×10 ⁻⁸ 5 (DEC) 1.9×10 ⁻⁵ 2
1281.1 <i>4</i>	0.1 1	12774.9	14+	11493.8	(12+)	(E2)		0.0001616 23	$\alpha(N) = 7.1 \times 10^{-5} \text{ ; } \alpha(PF) = 1.8 \times 10^{-5} \text{ 3}$ $\alpha = 0.0001616 \text{ 23; } \alpha(K) = 0.0001236 \text{ 18; } \alpha(L) = 1.206 \times 10^{-5} \text{ 17; }$ $\alpha(M) = 1.698 \times 10^{-6} \text{ 24}$ $\alpha(L) = 1.206 \times 10^{-5} \text{ 17; }$
1283.0 4	0.2 1	11044.3	12+	9760.6	11-	E1		0.0001728 25	$\begin{aligned} \alpha(N) &= 7.32 \times 10^{-5} II; \ \alpha(IPF) &= 2.41 \times 10^{-5} 4 \\ \alpha &= 0.0001728 \ 25; \ \alpha(K) &= 5.97 \times 10^{-5} 9; \ \alpha(L) &= 5.79 \times 10^{-6} 9; \\ \alpha(M) &= 8.15 \times 10^{-7} \ I2; \ \alpha(N+) &= 0.0001065 \ I \end{aligned}$
1283.8 4	0.3 1	5014.65	5-	3731.06	4+	E1		0.0001733 25	$\alpha(N)=3.53\times10^{-6} 5; \ \alpha(IPF)=0.0001064 \ 16$ $\alpha=0.0001733 \ 25; \ \alpha(K)=5.97\times10^{-5} \ 9; \ \alpha(L)=5.78\times10^{-6} \ 9; \ \alpha(M)=8.14\times10^{-7} \ 12; \ \alpha(N+)=0.0001070 \ 1$
1287.9 <i>4</i>	0.2 1	9715.0	(10 ⁺)	8426.88	9-	(E1)		0.0001757 25	$\alpha(N)=3.52\times10^{-5} 5; \alpha(IPF)=0.000107076$ $\alpha=0.0001757 25; \alpha(K)=5.93\times10^{-5} 9; \alpha(L)=5.75\times10^{-6} 8;$ $\alpha(M)=8.10\times10^{-7} 12; \alpha(N+)=0.0001008 1$ $\alpha(N)=2.50\times10^{-8} 5; \alpha(IPF)=0.0001008 16$
1288.3 4	0.4 1	4407.66	5+	3120.07	4+	M1+E2		0.000151 11	$\alpha(N) = 5.50 \times 10^{-5} J, \alpha(N) = 0.0001098 T0^{-5} \alpha(L) = 1.13 \times 10^{-5} 7;$ $\alpha(M) = 1.59 \times 10^{-6} I0; \alpha(N+) = 2.2 \times 10^{-5} 4$ $\alpha(N) = 6.9 \times 10^{-8} 4; \alpha(NE) = 2.2 \times 10^{-5} 4$
1293.4 4	0.6 1	11255.4	12+	9960.3	11-	E1		0.000179 <i>3</i>	$\alpha(N)=0.5\times10^{-4}$, $\alpha(N=2.2\times10^{-4} 4^{-4})$ $\alpha=0.000179$ 3; $\alpha(K)=5.89\times10^{-5}$ 9; $\alpha(L)=5.71\times10^{-6}$ 8; $\alpha(M)=8.04\times10^{-7}$ 12; $\alpha(N+)=0.0001135$ 17 $\alpha(N)=3.48\times10^{-8}$ 5; $\alpha(IPF)=0.0001135$ 17 E_{γ} : level-energy difference=1295.1. DCO=0.88 10 @.
1293.7 2	1.6 2	2626.16	3+	1332.59	2+	M1(+E2)	+0.11 15	0.0001401 23	α =0.0001401 23; α (K)=0.0001083 17; α (L)=1.053×10 ⁻⁵ 17;

 $^{60}_{28}\mathrm{Ni}_{32}$ -13

						²⁸ Si(³⁶ A	Ar,4pγ) 20081	o15 (continued)
							$\gamma(^{60}\text{Ni})$ (conti	nued)
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [†]	α #	Comments
								α (M)=1.484×10 ⁻⁶ 23 α (N)=6.44×10 ⁻⁸ 10; α (IPF)=1.97×10 ⁻⁵ 5 DCO=0.56 2. DCO=0.73 3 for 30°, 53°. DCO=0.74 3 for 53°, 83°.
1294.8 <i>1</i>	0.1 1	16098.2	(17 ⁺)	14803.4	16+	(M1+E2)	0.000151 11	$\alpha = 0.000151 \ II; \ \alpha(K) = 0.000114 \ 7; \ \alpha(L) = 1.11 \times 10^{-5} \ 7; \ \alpha(M) = 1.57 \times 10^{-6} \\ I0; \ \alpha(N+) = 2.4 \times 10^{-5} \ 4 \\ \alpha(N) = 6 \ 8 \times 10^{-8} \ 4; \ \alpha(IPF) = 2 \ 3 \times 10^{-5} \ 4$
1312.4 4	2.1 2	6461.24	8+	5148.67	6+	E2	0.0001618 23	$\begin{array}{l} \alpha = 0.0001618 \ 23; \ \alpha(\text{K}) = 0.0001174 \ 17; \ \alpha(\text{L}) = 1.145 \times 10^{-5} \ 16; \\ \alpha(\text{M}) = 1.612 \times 10^{-6} \ 23 \\ \alpha(\text{N}) = 6.95 \times 10^{-8} \ 10; \ \alpha(\text{IPF}) = 3.13 \times 10^{-5} \ 5 \\ \text{DCO} = 1.37 \ 10 \ \emptyset \end{array}$
1314.5 2	1.8 2	4986.19	6+	3671.37	4+	E2	0.0001619 23	$\alpha = 0.0001619 \ 23; \ \alpha(K) = 0.0001170 \ 17; \ \alpha(L) = 1.141 \times 10^{-5} \ 16; \alpha(M) = 1.606 \times 10^{-6} \ 23 \alpha(N) = 6.93 \times 10^{-8} \ 10; \ \alpha(IPF) = 3.18 \times 10^{-5} \ 5 DCO = 1.03 \ 8. DCO = 1.34 \ U \text{for gate on } \Delta I = 1 \text{ transition}$
1321.1 4	1.6 4	7433.60	9+	6112.58	7+	E2	0.0001620 23	$\alpha = 0.0001620 \ 23; \ \alpha(K) = 0.0001157 \ 17; \ \alpha(L) = 1.128 \times 10^{-5} \ 16; \ \alpha(M) = 1.589 \times 10^{-6} \ 23 \ \alpha(N) = 6.85 \times 10^{-8} \ 10; \ \alpha(IPE) = 3.34 \times 10^{-5} \ 5$
1323.9 4	0.3 1	12578.6	14+	11255.4	12+	E2	0.0001621 23	$\alpha(1)=0.55\times10^{-10}, \alpha(111)=2.55\times10^{-5}, \beta$ $\alpha=0.0001621 \ 23; \ \alpha(K)=0.0001152 \ 17; \ \alpha(L)=1.123\times10^{-5} \ 16; \alpha(M)=1.582\times10^{-6} \ 23$ $\alpha(N)=6.82\times10^{-8} \ 10; \ \alpha(IPF)=3.40\times10^{-5} \ 5$
1329.0 4	0.1 1	11044.3	12+	9715.0	(10 ⁺)	(E2)	0.0001623 23	$\alpha(1)=0.32\times10^{-10}, \alpha(111)=0.40\times10^{-5}$ $\alpha=0.0001623 \ 23; \ \alpha(K)=0.0001143 \ 16; \ \alpha(L)=1.114\times10^{-5} \ 16; \ \alpha(M)=1.569\times10^{-6} \ 22 \ \alpha(N)=6.77\times10^{-8} \ 10; \ \alpha(IEF)=3.53\times10^{-5} \ 5$
1332.5 2	100 3	1332.59	2+	0.0	0+	E2	0.0001625 23	$\alpha(N)=0.77\times10^{-7} I0, \alpha(IFF)=3.53\times10^{-5} J$ $\alpha=0.0001625 23; \alpha(K)=0.0001137 I6; \alpha(L)=1.108\times10^{-5} I6;$ $\alpha(M)=1.560\times10^{-6} 22$ $\alpha(N)=6.73\times10^{-8} I0; \alpha(IPF)=3.61\times10^{-5} 5$ DCO=1.00 <i>A</i>
1343.3 2	1.7 2	5014.65	5-	3671.37	4+	E1	0.000208 3	$\alpha = 0.000208 \ 3; \ \alpha(\text{K}) = 5.52 \times 10^{-5} \ 8; \ \alpha(\text{L}) = 5.35 \times 10^{-6} \ 8; \ \alpha(\text{M}) = 7.53 \times 10^{-7} \\ 11; \ \alpha(\text{N}+) = 0.0001466 \ 21 \\ \alpha(\text{N}) = 3.26 \times 10^{-8} \ 5; \ \alpha(\text{IPF}) = 0.0001465 \ 21 \\ \text{DCO} = 0.74 \ 6$
1365.0 2	1.0 <i>I</i>	7027.99	8+	5663.18	7+	M1+E2	0.000153 12	$\alpha = 0.000153 \ 12; \ \alpha(\text{K}) = 0.000103 \ 6; \ \alpha(\text{L}) = 1.00 \times 10^{-5} \ 6; \ \alpha(\text{M}) = 1.41 \times 10^{-6} \ 8; \ \alpha(\text{N}+) = 3.9 \times 10^{-5} \ 6 \ \alpha(\text{N}) = 6.1 \times 10^{-8} \ 3; \ \alpha(\text{IPF}) = 3.9 \times 10^{-5} \ 6 \ \text{DCO} = 1.11 \ 9 \ @.$
1378.7 4	6.9 2	11044.3	12+	9665.8	10+	E2	0.0001655 24	$\alpha = 0.0001655 \ 24; \ \alpha(K) = 0.0001058 \ 15; \ \alpha(L) = 1.030 \times 10^{-5} \ 15; \alpha(M) = 1.451 \times 10^{-6} \ 21 \alpha(N) = 6.26 \times 10^{-8} \ 9; \ \alpha(IPF) = 4.79 \times 10^{-5} \ 7 DCO = 1.05 \ 6.$

						²⁸ Si	(³⁶ Ar,4p γ)	2008To15 (cont	tinued)
							γ (⁶⁰ N	i) (continued)	
Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Mult. [†]	δ^{\ddagger}	α #	Comments
1381.2 4	0.2 1	16026.8	17+	14645.6	16+	M1+E2		0.000154 12	α =0.000154 <i>12</i> ; α (K)=0.000100 <i>6</i> ; α (L)=9.8×10 ⁻⁶ <i>6</i> ; α (M)=1.38×10 ⁻⁶ <i>8</i> ; α (N+)=4.2×10 ⁻⁵ <i>7</i>
1397.7 2	3.7 3	5663.18	7+	4265.11	6+	M1(+E2)	-0.12 13	0.0001438 23	$\begin{aligned} \alpha(N) &= 6.0 \times 10^{-8} \ 3; \ \alpha(IPF) = 4.2 \times 10^{-5} \ 7 \\ \alpha &= 0.0001438 \ 23; \ \alpha(K) = 9.35 \times 10^{-5} \ 14; \ \alpha(L) = 9.08 \times 10^{-6} \ 14; \\ \alpha(M) &= 1.280 \times 10^{-6} \ 19; \ \alpha(N+) = 3.99 \times 10^{-5} \\ \alpha(N) &= 5.56 \times 10^{-8} \ 9; \ \alpha(IPF) = 3.98 \times 10^{-5} \ 9 \\ DCO &= 0.56 \ 4. \\ DCO &= 0.65 \ 5 \ for \ 30^{\circ}, \ 53^{\circ}. \\ DCO &= 0.63 \ 5 \ for \ 53^{\circ} \ 83^{\circ} \end{aligned}$
1398.8 9	0.1 1	10825.4	11+	9426.3	10+	M1+E2		0.000156 13	$\alpha = 0.000156 \ I3; \ \alpha(\mathbf{K}) = 9.8 \times 10^{-5} \ 5; \ \alpha(\mathbf{L}) = 9.5 \times 10^{-6} \ 5; \alpha(\mathbf{M}) = 1.34 \times 10^{-6} \ 7; \ \alpha(\mathbf{N}+) = 4.7 \times 10^{-5} \ 7 \ (\mathbf{M}) = 1.34 \times 10^{-6} \ 7; \ \alpha(\mathbf{N}+) = 4.7 \times 10^{-5} \ 7 \ (\mathbf{M}) = 1.34 \times 10^{-6} \ 7; \ \alpha(\mathbf{N}+) = 4.7 \times 10^{-5} \ 7 \ (\mathbf{M}) = 1.34 \times 10^{-6} \ 7; \ \alpha(\mathbf{N}+) = 4.7 \times 10^{-5} \ 7 \ (\mathbf{M}) = 1.34 \times 10^{-6} \ 7; \ \alpha(\mathbf{M}) = 1.34 \times 10^{-6} \ 10^{-6}$
1413.9 <i>4</i>	0.3 1	7690.61	8-	6278.56	(6 ⁻)	(E2)		0.0001694 24	$\alpha(N) = 5.8 \times 10^{-5} 3; \ \alpha(IPF) = 4.7 \times 10^{-5} 7$ $\alpha = 0.0001694 \ 24; \ \alpha(K) = 0.0001003 \ 14; \ \alpha(L) = 9.77 \times 10^{-6} \ 14;$ $\alpha(M) = 1.377 \times 10^{-6} \ 20$ $\alpha(N) = 5.94 \times 10^{-8} \ 9; \ \alpha(IPF) = 5.79 \times 10^{-5} \ 9$ Exclosed energy difference 1412 0
1418.9 <i>4</i>	0.3 1	7531.5	8+	6112.58	7+	M1+E2		0.000158 13	$\alpha = 0.000158 \ I3; \ \alpha(K) = 9.5 \times 10^{-5} \ 5; \ \alpha(L) = 9.3 \times 10^{-6} \ 5; \ \alpha(M) = 1.30 \times 10^{-6} \ 7; \ \alpha(N+) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(N) = 5.6 \times 10^{-8} \ 3; \ \alpha(PE) = 5.2 \times 10^{-5} \ 8 \ \alpha(PE) = 5.2 \times 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5} \ 10^{-5$
1435.0 4	0.8 1	8272.2	10-	6837.2	8-	E2		0.0001726 25	$\begin{aligned} \alpha(N) &= 5.0 \times 10^{-5} \ \beta, \ \alpha(IFF) &= 5.2 \times 10^{-5} \ 3 \\ \alpha &= 0.0001726 \ 25; \ \alpha(K) &= 9.73 \times 10^{-5} \ 14; \ \alpha(L) &= 9.48 \times 10^{-6} \ 14; \\ \alpha(M) &= 1.335 \times 10^{-6} \ 19; \ \alpha(N+) &= 6.44 \times 10^{-5} \\ \alpha(N) &= 5.76 \times 10^{-8} \ 8; \ \alpha(IPF) &= 6.44 \times 10^{-5} \ 10 \\ DCO &= 1.6 \ 4 \ \end{aligned}$
1438.6 <i>4</i>	0.5 1	9960.3	11-	8521.23	10-	M1+E2		0.000160 13	$\alpha = 0.000160 \ 13; \ \alpha(\text{K}) = 9.3 \times 10^{-5} \ 5; \ \alpha(\text{L}) = 9.0 \times 10^{-6} \ 5; \alpha(\text{M}) = 1.27 \times 10^{-6} \ 7; \ \alpha(\text{N}+) = 5.7 \times 10^{-5} \ 9 \alpha(\text{N}) = 5.5 \times 10^{-8} \ 2; \ \alpha(\text{DE}) = 5.7 \times 10^{-5} \ 9 $
1446.6 <i>4</i>	0.1 1	10872.8	11+	9426.3	10+	M1+E2		0.000162 14	$\alpha(N)=5.5\times10^{-5}; \alpha(N)=9.2\times10^{-5}; \alpha(L)=8.9\times10^{-6}; \alpha(M)=1.26\times10^{-6}; \alpha(N+)=6.0\times10^{-5}; 9$
1447.1 <i>4</i>	0.7 1	9718.4	11-	8272.2	10-	M1+E2		0.000162 14	$\alpha(N)=5.44\times10^{-6} 25; \ \alpha(IPF)=6.0\times10^{-5} 9$ $\alpha=0.000162 \ 14; \ \alpha(K)=9.2\times10^{-5} 5; \ \alpha(L)=8.9\times10^{-6} 5;$ $\alpha(M)=1.25\times10^{-6} 6; \ \alpha(N+)=6.0\times10^{-5} 9$
1461.6 <i>4</i>	4.5 7	8272.2	10-	6811.3	9-	M1+E2		0.000164 14	$\alpha(N) = 5.43 \times 10^{-6} \ 25; \ \alpha(IPF) = 6.0 \times 10^{-5} \ 9$ $\alpha = 0.000164 \ 14; \ \alpha(K) = 9.0 \times 10^{-5} \ 5; \ \alpha(L) = 8.7 \times 10^{-6} \ 5;$ $\alpha(M) = 1.23 \times 10^{-6} \ 6; \ \alpha(N+) = 6.4 \times 10^{-5} \ 9$
1462.3 4	39.1 <i>17</i>	6811.3	9-	5348.98	7-	E2		0.0001775 25	$\begin{aligned} \alpha(N) &= 5.33 \times 10^{-8} \ 24; \ \alpha(IPF) &= 6.4 \times 10^{-5} \ 9 \\ \alpha &= 0.0001775 \ 25; \ \alpha(K) &= 9.36 \times 10^{-5} \ 14; \ \alpha(L) &= 9.11 \times 10^{-6} \ 13; \\ \alpha(M) &= 1.284 \times 10^{-6} \ 18; \ \alpha(N+) &= 7.35 \times 10^{-5} \\ \alpha(N) &= 5.55 \times 10^{-8} \ 8; \ \alpha(IPF) &= 7.34 \times 10^{-5} \ 11 \\ DCO &= 1.66 \ 8 \ @. \end{aligned}$
1468.3 <i>4</i>	0.5 1	9989.4	12-	8521.23	10-	E2		0.000179 3	$\alpha = 0.000179 \ 3; \ \alpha(K) = 9.28 \times 10^{-5} \ 13; \ \alpha(L) = 9.04 \times 10^{-6} \ 13; \alpha(M) = 1.273 \times 10^{-6} \ 18; \ \alpha(N+) = 7.55 \times 10^{-5} \ 11 \alpha(N) = 5.50 \times 10^{-8} \ 8; \ \alpha(IPF) = 7.55 \times 10^{-5} \ 11$

⁶⁰₂₈Ni₃₂-15

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -15

						²⁸ Si	(³⁶ Ar,4pγ) 2	008To15 (continued)
							γ ⁽⁶⁰ Ni) (continued)
E_{γ}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
1475.0 4	1.2 <i>I</i>	6461.24	8+	4986.19	6+	E2	0.000180 3	$ \begin{array}{l} \alpha = 0.000180 \ 3; \ \alpha(\mathrm{K}) = 9.20 \times 10^{-5} \ 13; \ \alpha(\mathrm{L}) = 8.95 \times 10^{-6} \ 13; \ \alpha(\mathrm{M}) = 1.261 \times 10^{-6} \ 18; \\ \alpha(\mathrm{N}+) = 7.79 \times 10^{-5} \ 11 \\ \alpha(\mathrm{N}) = 5.45 \times 10^{-8} \ 8; \ \alpha(\mathrm{IPF}) = 7.78 \times 10^{-5} \ 11 \\ \end{array} $
1477.3 4	0.2 1	5148.67	6+	3671.37	4+	E2	0.000181 <i>3</i>	DCO=0.89 17. α =0.000181 3; α (K)=9.17×10 ⁻⁵ 13; α (L)=8.92×10 ⁻⁶ 13; α (M)=1.257×10 ⁻⁶ 18; α (N+)=7.87×10 ⁻⁵ 12
1487.8 <i>4</i>	8.2 5	6837.2	8-	5348.98	7-	M1+E2	0.000169 <i>15</i>	$\begin{aligned} &\alpha(N) = 5.43 \times 10^{-8} \ 8; \ \alpha(IPF) = 7.86 \times 10^{-5} \ 12 \\ &\alpha = 0.000169 \ 15; \ \alpha(K) = 8.7 \times 10^{-5} \ 4; \ \alpha(L) = 8.4 \times 10^{-6} \ 4; \ \alpha(M) = 1.19 \times 10^{-6} \ 6; \\ &\alpha(N+) = 7.3 \times 10^{-5} \ 10 \\ &\alpha(N) = 5.14 \times 10^{-8} \ 22; \ \alpha(IPF) = 7.3 \times 10^{-5} \ 10 \\ &DCO = 1.63 \ 8. \end{aligned}$
1498.0 <i>4</i>	0.2 1	5663.18	7+	4165.69	5+	E2	0.000185 3	DCO=2.15 <i>10</i> for gate on $\Delta J=1$ transition. α =0.000185 <i>3</i> ; α (K)=8.91×10 ⁻⁵ <i>13</i> ; α (L)=8.67×10 ⁻⁶ <i>13</i> ; α (M)=1.222×10 ⁻⁶ <i>18</i> ; α (N+)=8.62×10 ⁻⁵ <i>13</i> α (N=5.20, 10 ⁻⁵ 0.2) α (2, 10 ⁻⁵ 12)
1498.1 <i>4</i>	0.2 1	11120.6	12-	9622.4	10-	E2	0.000185 3	$ \begin{array}{l} \alpha(\mathrm{N}) = 5.28 \times 10^{-6} \ 8; \ \alpha(\mathrm{IPF}) = 8.62 \times 10^{-5} \ 13 \\ \alpha = 0.000185 \ 3; \ \alpha(\mathrm{K}) = 8.91 \times 10^{-5} \ 13; \ \alpha(\mathrm{L}) = 8.67 \times 10^{-6} \ 13; \ \alpha(\mathrm{M}) = 1.222 \times 10^{-6} \ 18; \\ \alpha(\mathrm{N}+) = 8.63 \times 10^{-5} \ 13 \\ \alpha(\mathrm{N}) = 5.28 \times 10^{-8} \ 8; \ \alpha(\mathrm{IPF}) = 8.62 \times 10^{-5} \ 13 \end{array} $
1512.1 6	0.1 1	3671.37	4+	2158.87	2+	E2	0.000189 3	DCO=0.95 4. α =0.000189 3; α (K)=8.75×10 ⁻⁵ 13; α (L)=8.51×10 ⁻⁶ 12; α (M)=1.199×10 ⁻⁶ 17; α (N+)=9.16×10 ⁻⁵ 13
1519.9 <i>4</i>	1.4 5	7981.0	9+	6461.24	8+	M1+E2	0.000176 15	$\alpha(N)=5.18\times10^{-8} \ 8; \ \alpha(IPF)=9.15\times10^{-5} \ 13$ $\alpha=0.000176 \ 15; \ \alpha(K)=8.3\times10^{-5} \ 4; \ \alpha(L)=8.1\times10^{-6} \ 4; \ \alpha(M)=1.14\times10^{-6} \ 5; \ \alpha(N+)=8.3\times10^{-5} \ 12$ $\alpha(N+)=8.3\times10^{-5} \ 12$
1525.0 <i>1</i>	0.3 1	6762.05	7(+)	5236.57	5(+)	E2	0.000192 3	$\alpha(N)=4.94\times10^{-5} 21; \ \alpha(PF)=8.3\times10^{-5} 12$ DCO=0.76 13. $\alpha=0.000192 \ 3; \ \alpha(K)=8.60\times10^{-5} \ 12; \ \alpha(L)=8.36\times10^{-6} \ 12; \ \alpha(M)=1.178\times10^{-6} \ 17;$ $\alpha(N+)=9.66\times10^{-5} \ 14$ $\alpha(N)=5.09\times10^{-8} \ 8; \ \alpha(IPF)=9.65\times10^{-5} \ 14$
1536.2 4	0.3 1	13810.1	(15 ⁻)	12273.8	14-	(M1+E2)	0.000180 16	E _γ : level-energy difference=1525.5. α =0.000180 <i>16</i> ; α (K)=8.1×10 ⁻⁵ <i>4</i> ; α (L)=7.9×10 ⁻⁶ <i>4</i> ; α (M)=1.12×10 ⁻⁶ <i>5</i> ; α (N+)=8.9×10 ⁻⁵ <i>12</i>
1539.0 <i>3</i>	0.8 2	4165.69	5+	2626.16	3+	E2	0.000196 3	$ \begin{array}{l} \alpha(\mathrm{N}) = 4.83 \times 10^{-8} \ 20; \ \alpha(\mathrm{IPF}) = 8.9 \times 10^{-5} \ 12 \\ \alpha = 0.000196 \ 3; \ \alpha(\mathrm{K}) = 8.44 \times 10^{-5} \ 12; \ \alpha(\mathrm{L}) = 8.21 \times 10^{-6} \ 12; \ \alpha(\mathrm{M}) = 1.157 \times 10^{-6} \ 17; \\ \alpha(\mathrm{N}+) = 0.0001021 \\ \alpha($
1560.2 4	0.3 1	4186.4	(4+)	2626.16	3+	(M1+E2)	0.000186 17	$\alpha(N)=5.00\times10^{-6} 7; \ \alpha(IPF)=0.0001021 \ 15$ $\alpha=0.000186 \ 17; \ \alpha(K)=7.9\times10^{-5} \ 4; \ \alpha(L)=7.7\times10^{-6} \ 4; \ \alpha(M)=1.08\times10^{-6} \ 5; \ \alpha(N+)=9.8\times10^{-5} \ 13$
1562.9 4	6.4 <i>3</i>	16026.8	17+	14463.8	15+	E2	0.000203 3	$ \begin{aligned} &\alpha(\text{N}) = 4.69 \times 10^{-6} \ 19; \ \alpha(\text{IPF}) = 9.8 \times 10^{-5} \ 13 \\ &\alpha = 0.000203 \ 3; \ \alpha(\text{K}) = 8.18 \times 10^{-5} \ 12; \ \alpha(\text{L}) = 7.96 \times 10^{-6} \ 12; \ \alpha(\text{M}) = 1.121 \times 10^{-6} \ 16; \\ &\alpha(\text{N}+) = 0.0001119 \end{aligned} $

							28	Si(³⁶ Ar,4pγ)	2008To15 (co	ontinued)
								γ (⁶⁰ N	i) (continued)	
	Eγ	I_{γ}	E _i (level)	J_i^{π}	E_{f}	J_f^{π}	Mult. [†]	δ^{\ddagger}	α #	Comments
										$\alpha(N)=4.85\times10^{-8}$ 7; $\alpha(IPF)=0.0001118$ 16
	1578.6 <i>4</i>	0.6 1	7027.99	8+	5449.7	6+	E2		0.000208 3	DCO=1.13 10. α =0.000208 3; α (K)=8.02×10 ⁻⁵ 12; α (L)=7.80×10 ⁻⁶ 11; α (M)=1.099×10 ⁻⁶ 16; α (N+)=0.0001184
	1583.3 4	0.6 1	8044.21	9-	6461.24	8+	E1		0.000370 6	$\alpha(N)=4.75\times10^{-8} 7; \ \alpha(IPF)=0.0001184 \ 17$ $\alpha=0.000370 \ 6; \ \alpha(K)=4.20\times10^{-5} \ 6; \ \alpha(L)=4.07\times10^{-6} \ 6;$ $\alpha(M)=5.73\times10^{-7} \ 8; \ \alpha(N+)=0.000324 \ 5$ $\alpha(N)=2.48\times10^{-8} \ 4; \ \alpha(IPF)=0.000323 \ 5$
	1590.3 4	0.7 1	11255.4	12+	9665.8	10+	E2		0.000211 3	DCO=1.09 <i>14</i> 2. α =0.000211 <i>3</i> ; α (K)=7.91×10 ⁻⁵ <i>11</i> ; α (L)=7.69×10 ⁻⁶ <i>11</i> ; α (M)=1.083×10 ⁻⁶ <i>16</i> ; α (N+)=0.0001234 α (N)=4.68×10 ⁻⁸ 7; α (IIE)=0.0001234
	1590.9 4	0.5 1	9665.8	10+	8074.6	8+	E2		0.000211 3	DCO=2.5 4 @. α =0.000211 3; α (K)=7.90×10 ⁻⁵ 11; α (L)=7.68×10 ⁻⁶ 11; α (M)=1.082×10 ⁻⁶ 16; α (N+)=0.0001237 α (N)=4.68×10 ⁻⁸ 7; α (IPF)=0.0001236 18
17	1604.3 4	0.6 1	14463.8	15+	12859.5	13+	E2		0.000216 3	DCO=0.98 <i>10.</i> α =0.000216 <i>3</i> ; α (K)=7.77×10 ⁻⁵ <i>11</i> ; α (L)=7.56×10 ⁻⁶ <i>11</i> ; α (M)=1.064×10 ⁻⁶ <i>15</i> ; α (N+)=0.0001294 α (N)=4.60×10 ⁻⁸ 7; α (IEE)=0.0001292 <i>10</i>
	1637.0 <i>1</i>	0.5 1	5901.82	6-	4265.11	6+	E1		0.000411 6	$\begin{array}{l} \alpha(N)=4.00\times10^{-7}, \ \alpha(IPP)=0.0001293\ 19\\ DCO=0.90\ 14.\\ \alpha=0.000411\ 6; \ \alpha(K)=3.98\times10^{-5}\ 6; \ \alpha(L)=3.86\times10^{-6}\ 6;\\ \alpha(M)=5.43\times10^{-7}\ 8; \ \alpha(N+)=0.000366\ 6 \end{array}$
	1648.0 <i>4</i>	0.4 1	7760.4	8-	6112.58	7+	E1		0.000419 6	$\begin{aligned} \alpha(N) &= 2.35 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.000366 \ 6 \\ E_{\gamma}: \ \text{level-energy difference} = 1636.7. \\ \alpha &= 0.000419 \ 6; \ \alpha(K) = 3.94 \times 10^{-5} \ 6; \ \alpha(L) = 3.82 \times 10^{-6} \ 6; \\ \alpha(M) &= 5.37 \times 10^{-7} \ 8; \ \alpha(N+) = 0.000375 \ 6 \end{aligned}$
	1648.2 <i>4</i>	0.6 1	8485.7	9-	6837.2	8-	M1+E2		0.000211 20	$\alpha(N)=2.33\times10^{-8} 4; \ \alpha(IPF)=0.000375 6$ $\alpha=0.000211 20; \ \alpha(K)=7.1\times10^{-5} 3; \ \alpha(L)=6.9\times10^{-6} 3;$ $\alpha(M)=9.7\times10^{-7} 4; \ \alpha(N+)=0.000132 17$ $\alpha(N)=4.23\times10^{-8} 16; \ \alpha(IPF)=0.000132 17$
	1651.7 4	0.4 1	14934.1	16+	13282.5	(14+)	(E2)		0.000231 4	$DCO=0.94 \ 11 \ @.$ $\alpha=0.000231 \ 4; \ \alpha(K)=7.34\times10^{-5} \ 11; \ \alpha(L)=7.13\times10^{-6} \ 10;$ $\alpha(M)=1.005\times10^{-6} \ 14; \ \alpha(N+)=0.0001500$
	1657.5 <i>4</i>	0.3 1	10788.8	12-	9132.4	11-	M1+E2		0.000214 20	$\alpha(N) = 4.35 \times 10^{-6} 6; \ \alpha(IPF) = 0.0001499 \ 21$ $\alpha = 0.000214 \ 20; \ \alpha(K) = 7.0 \times 10^{-5} \ 3; \ \alpha(L) = 6.8 \times 10^{-6} \ 3;$ $\alpha(M) = 9.6 \times 10^{-7} \ 4; \ \alpha(N+) = 0.000136 \ 17$ (N) $4.18 \times 10^{-8} \ 45 = (DF) = 0.000126 \ 17$
	1659.6 <i>3</i>	5.7 5	4165.69	5+	2506.15	4+	M1+E2	-1.1 +8-9	0.000217 <i>19</i>	$\alpha(N)=4.18 \times 10^{-7} I3; \ \alpha(IPF)=0.000136 I/$ $\alpha=0.000217 I9; \ \alpha(K)=7.05 \times 10^{-5} 25; \ \alpha(L)=6.85 \times 10^{-6} 25;$ $\alpha(M)=9.7 \times 10^{-7} 4; \ \alpha(N+)=0.000138 I6$ $\alpha(N)=4.18 \times 10^{-8} I4; \ \alpha(IPF)=0.000138 I6$ $\delta: -0.3 \text{ to } -2.0.$

						²⁸ Si	(³⁶ Ar,4p γ)	2008To15 (continued)
							γ ⁽⁶⁰)	Ni) (continued)	
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α #	Comments
1661.9 <i>4</i>	0.6 1	8689.1	10+	7027.99	8+	E2		0.000235 4	DCO=0.32 3. DCO=0.44 5 for 30°, 53°. DCO=0.54 4 for 53°, 83°. α =0.000235 4; α (K)=7.25×10 ⁻⁵ 11; α (L)=7.05×10 ⁻⁶ 10; α (M)=9.92×10 ⁻⁷ 14; α (N+)=0.0001545 2 α (N)=4.29×10 ⁻⁸ 6; α (IPE)=0.0001544 22
1674 5 <i>4</i>	021	8485 7	0-	6811.3	<u>0</u> -	D			$u(\mathbf{N}) = 4.29 \times 10^{-5}$ 0, $u(\mathbf{IFF}) = 0.000134422$
1683.2 4	1.4 <i>I</i>	11443.6	13-	9760.6	11-	E2		0.000242 4	α =0.000242 4; α (K)=7.07×10 ⁻⁵ 10; α (L)=6.87×10 ⁻⁶ 10; α (M)=9.68×10 ⁻⁷ 14; α (N+)=0.0001639 2 α (N)=4.19×10 ⁻⁸ 6; α (IPF)=0.0001638 23 DCO=0.08 14
1688.8 <i>4</i>	0.8 1	14463.8	15+	12774.9	14+	M1(+E2)	0.0 2	0.000204 4	$\begin{aligned} \alpha &= 0.000204 \ 4; \ \alpha(\text{K}) = 6.58 \times 10^{-5} \ 10; \ \alpha(\text{L}) = 6.38 \times 10^{-6} \ 10; \\ \alpha(\text{M}) &= 8.99 \times 10^{-7} \ 13; \ \alpha(\text{N}+) = 0.0001305 \ 2 \\ \alpha(\text{N}) &= 3.91 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 0.0001305 \ 23 \\ \text{DCO} &= 0.45 \ 4. \\ \text{DCO} &= 1.01 \ 4 \ \text{for } 30^{\circ}, \ 53^{\circ}. \end{aligned}$
1710.1 <i>4</i>	10.4 6	8521.23	10-	6811.3	9-	M1+E2	+0.34 5	0.000214 4	DCO=0.61 / for 55°, 85°. α =0.000214 4; α (K)=6.48×10 ⁻⁵ 10; α (L)=6.28×10 ⁻⁶ 9; α (M)=8.85×10 ⁻⁷ 13; α (N+)=0.0001422 23 α (N)=3.85×10 ⁻⁸ 6; α (IPF)=0.0001422 23 DCO=1.07 5. DCO=1.33 6 for gate on Δ J=1 transition. DCO=1.75 7 for 30°, 53°, gate on Δ J=1 transition. DCO=1.25 5 for 53° gate on Δ J=1 transition.
1722.0 4	1.6 <i>1</i>	14463.8	15+	12742.2	13+	E2		0.000256 4	$\alpha = 0.000256 \ 4; \ \alpha(\text{K}) = 6.77 \times 10^{-5} \ 10; \ \alpha(\text{L}) = 6.57 \times 10^{-6} \ 10; \alpha(\text{M}) = 9.26 \times 10^{-7} \ 13; \ \alpha(\text{N}+) = 0.000181 \ 3 \alpha(\text{N}) = 4.01 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 0.000181 \ 3 DCO = 1 \ 02 \ 11.$
1724.9 <i>4</i>	1.1 <i>I</i>	11443.6	13-	9718.4	11-	E2		0.000257 4	$\alpha = 0.000257 \ 4; \ \alpha(\text{K}) = 6.74 \times 10^{-5} \ 10; \ \alpha(\text{L}) = 6.55 \times 10^{-6} \ 10; \\ \alpha(\text{M}) = 9.23 \times 10^{-7} \ 13; \ \alpha(\text{N}+) = 0.000182 \ 3 \\ \alpha(\text{N}) = 4.00 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 0.000182 \ 3 \\ \text{DCO} = 0.99 \ 17.$
1730.4 <i>4</i>	11.3 6	12774.9	14+	11044.3	12+	E2		0.000259 4	$\alpha = 0.000259 \ 4; \ \alpha(\text{K}) = 6.70 \times 10^{-5} \ 10; \ \alpha(\text{L}) = 6.51 \times 10^{-6} \ 10; \alpha(\text{M}) = 9.17 \times 10^{-7} \ 13; \ \alpha(\text{N}+) = 0.000185 \ 3 \alpha(\text{N}) = 3.97 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 0.000185 \ 3 \text{DCO} = 1.21 \ 6$
1736.0 <i>1</i>	1.3 1	5901.82	6-	4165.69	5+	E1		0.000483 7	$\alpha = 0.000483 \ 7; \ \alpha(\text{K}) = 3.63 \times 10^{-5} \ 5; \ \alpha(\text{L}) = 3.52 \times 10^{-6} \ 5; \alpha(\text{M}) = 4.95 \times 10^{-7} \ 7; \ \alpha(\text{N}+) = 0.000442 \ 7 \alpha(\text{N}) = 2.15 \times 10^{-8} \ 3; \ \alpha(\text{IPF}) = 0.000442 \ 7$
1759.2 <i>3</i>	49.6 16	4265.11	6+	2506.15	4+	E2		0.000270 4	α =0.000270 4; α (K)=6.49×10 ⁻⁵ 9; α (L)=6.31×10 ⁻⁶ 9; α (M)=8.89×10 ⁻⁷ 13; α (N+)=0.000198 3 α (N)=3.85×10 ⁻⁸ 6; α (IPF)=0.000198 3 DCO=1.04 5.

						28	³ Si(³⁶ Ar,4pγ)	2008To15 (continued)
							γ (⁶⁰ N)) (continued)
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	$\alpha^{\#}$	Comments
1770.6 5	0.2 1	7433.60	9+	5663.18	7+	E2	0.000274 4	α =0.000274 4; α (K)=6.42×10 ⁻⁵ 9; α (L)=6.23×10 ⁻⁶ 9; α (M)=8.78×10 ⁻⁷ 13; α (N+)=0.000203 3 α (N)=3.80×10 ⁻⁸ 6; α (JEE)=0.000203 2
1781.3 <i>3</i>	0.9 1	4407.66	5+	2626.16	3+	E2	0.000278 4	$\alpha(N) = 3.80 \times 10^{-6}$ <i>b</i> , $\alpha(N+1) = 0.000205$ <i>b</i> $\alpha = 0.000278$ <i>4</i> ; $\alpha(K) = 6.34 \times 10^{-5}$ <i>9</i> ; $\alpha(L) = 6.16 \times 10^{-6}$ <i>9</i> ; $\alpha(M) = 8.68 \times 10^{-7}$ <i>13</i> ; $\alpha(N+) = 0.000208$ <i>3</i>
1787.3 <i>3</i>	9.1 4	3120.07	4+	1332.59	2+	E2	0.000281 4	$\begin{aligned} \alpha(N) &= 3.76 \times 10^{-6} \ 6; \ \alpha(IPF) = 0.000208 \ 3 \\ \alpha &= 0.000281 \ 4; \ \alpha(K) = 6.30 \times 10^{-5} \ 9; \ \alpha(L) = 6.12 \times 10^{-6} \ 9; \ \alpha(M) = 8.62 \times 10^{-7} \ 12; \\ \alpha(N+) &= 0.000211 \ 3 \\ \alpha(N) &= 3.73 \times 10^{-8} \ 6; \ \alpha(IPF) = 0.000211 \ 3 \end{aligned}$
1790.2 5	0.5 1	7690.61	8-	5901.82	6-	E2	0.000282 4	DCO=1.10 5. α =0.000282 4; α (K)=6.28×10 ⁻⁵ 9; α (L)=6.10×10 ⁻⁶ 9; α (M)=8.59×10 ⁻⁷ 12; α (N+)=0.000212 3
1811.0 5	0.4 <i>1</i>	13662.4	15 ⁺	11851.3	13+	E2	0.000290 4	$\alpha(N)=3.72\times10^{-8} 6; \ \alpha(IPF)=0.000212 3$ DCO=1.40 8 @. $\alpha=0.000290 4; \ \alpha(K)=6.15\times10^{-5} 9; \ \alpha(L)=5.97\times10^{-6} 9; \ \alpha(M)=8.41\times10^{-7} 12;$
								α (N+)=0.000222 4 α (N)=3.64×10 ⁻⁸ 6; α (IPF)=0.000222 4 DCO=1.60 22 @.
1839.1 5	0.5 1	13282.5	(14+)	11443.6	13-	(E1)	0.000556 8	α =0.000556 8; α (K)=3.32×10 ⁻⁵ 5; α (L)=3.22×10 ⁻⁶ 5; α (M)=4.53×10 ⁻⁷ 7; α (N+)=0.000519 8 α (N)=1.96×10 ⁻⁸ 3; α (IPF)=0.000519 8
1847.2 5	1.7 2	6112.58	7+	4265.11	6+	M1+E2	0.00028 3	α = 0.00028 3; α (K)=5.76×10 ⁻⁵ 18; α (L)=5.59×10 ⁻⁶ 18; α (M)=7.87×10 ⁻⁷ 25; α (N+)=0.000215 24
1854.0 2	0.3 1	3186.25	3+	1332.59	2+	M1+E2	0.00028 3	$\alpha(N) = 5.42 \times 10^{-5} II; \ \alpha(HF) = 0.000215 24$ $\alpha = 0.00028 3; \ \alpha(K) = 5.72 \times 10^{-5} I8; \ \alpha(L) = 5.55 \times 10^{-6} I8; \ \alpha(M) = 7.82 \times 10^{-7} 25;$ $\alpha(N+) = 0.000218 24$
1860.4 5	0.1 1	7760.4	8-	5901.82	6-	E2	0.000310 5	$ \alpha(N) = 3.39 \times 10^{-6} I1; \ \alpha(IPF) = 0.000218 \ 24 \\ \alpha = 0.000310 \ 5; \ \alpha(K) = 5.84 \times 10^{-5} \ 9; \ \alpha(L) = 5.67 \times 10^{-6} \ 8; \ \alpha(M) = 7.99 \times 10^{-7} \ 12; \\ \alpha(N+) = 0.000245 \ 4 $
1862.9 5	0.3 1	11851.3	13+	9989.4	12-	E1	0.000573 8	$\begin{aligned} &\alpha(\text{N})=3.46\times10^{-8} \ 5; \ \alpha(\text{IPF})=0.000245 \ 4 \\ &\text{E}_{\gamma}: \ \text{level-energy difference}=1858.6. \\ &\alpha=0.000573 \ 8; \ \alpha(\text{K})=3.26\times10^{-5} \ 5; \ \alpha(\text{L})=3.15\times10^{-6} \ 5; \ \alpha(\text{M})=4.44\times10^{-7} \ 7; \end{aligned}$
1867.0 <i>3</i>	0.6 1	4986.19	6+	3120.07	4+	E2	0.000312 5	α (N+)=0.000537 8 α (N)=1.93×10 ⁻⁸ 3; α (IPF)=0.000536 8 α =0.000312 5; α (K)=5.80×10 ⁻⁵ 9; α (L)=5.63×10 ⁻⁶ 8; α (M)=7.94×10 ⁻⁷ 12;
								α (N+)=0.000248 <i>4</i> α (N)=3.44×10 ⁻⁸ <i>5</i> ; α (IPF)=0.000248 <i>4</i> DCO=1.4 <i>3</i> .
1870.8 <i>5</i>	5.5 5	14645.6	16+	12774.9	14+	E2	0.000314 5	E _γ : level-energy difference=1866.1. α =0.000314 5; α (K)=5.78×10 ⁻⁵ 8; α (L)=5.61×10 ⁻⁶ 8; α (M)=7.90×10 ⁻⁷ 11; α (N+)=0.000250 4 α (N)=3.42×10 ⁻⁸ 5; α (IPF)=0.000250 4 DCO=0.98 6.

⁶⁰₂₈Ni₃₂-19

						28	Si(³⁶ Ar,4pγ)	2008To15 (continued)
							γ (⁶⁰ N	i) (continued)
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	a#	Comments
1880.9 5	1.0 2	7027.99	8+	5148.67	6+	E2	0.000318 5	$ \begin{array}{l} \alpha = 0.000318 \ 5; \ \alpha(\mathrm{K}) = 5.72 \times 10^{-5} \ 8; \ \alpha(\mathrm{L}) = 5.56 \times 10^{-6} \ 8; \ \alpha(\mathrm{M}) = 7.83 \times 10^{-7} \ 11; \\ \alpha(\mathrm{N}+) = 0.000254 \ 4 \\ \alpha(\mathrm{N}) = 3.39 \times 10^{-8} \ 5; \ \alpha(\mathrm{IPF}) = 0.000254 \ 4 \\ \mathrm{E}_{\gamma}: \ \mathrm{level-energy} \ \mathrm{difference} = 1879.3. \end{array} $
1884.9 5	4.2 3	17911.7	19+	16026.8	17+	E2	0.000320 5	DCO=1.18 12 @. α =0.000320 5; α (K)=5.70×10 ⁻⁵ 8; α (L)=5.53×10 ⁻⁶ 8; α (M)=7.79×10 ⁻⁷ 11; α (N+)=0.000256 4 α (N)=3.38×10 ⁻⁸ 5; α (IPF)=0.000256 4
1894.7 <i>3</i>	3.1 3	5014.65	5-	3120.07	4+	E1	0.000595 9	DCO=1.13 10. α =0.000595 9; α (K)=3.18×10 ⁻⁵ 5; α (L)=3.07×10 ⁻⁶ 5; α (M)=4.33×10 ⁻⁷ 6; α (N+)=0.000560 8 α (N)=1.88×10 ⁻⁸ 3; α (IPF)=0.000560 8 DCO=0.74 6
1901.7 <i>3</i>	1.5 2	4407.66	5+	2506.15	4+	M1+E2	0.00030 3	$\alpha = 0.00030 \ 3; \ \alpha(\text{K}) = 5.46 \times 10^{-5} \ 17; \ \alpha(\text{L}) = 5.30 \times 10^{-6} \ 17; \ \alpha(\text{M}) = 7.46 \times 10^{-7} \ 23; \ \alpha(\text{N}+) = 0.00024 \ 3$
1911.4 5	0.2 1	11044.3	12+	9132.4	11-	E1	0.000607 9	$\alpha(N)=5.24\times10^{-5} \ 70; \ \alpha(PF)=0.00024 \ 3$ $\alpha=0.000607 \ 9; \ \alpha(K)=3.14\times10^{-5} \ 5; \ \alpha(L)=3.03\times10^{-6} \ 5; \ \alpha(M)=4.27\times10^{-7} \ 6; \ \alpha(N+)=0.000572 \ 8$
1916.9 5	0.4 <i>I</i>	13037.5	14-	11120.6	12-	E2	0.000333 5	$\alpha(N)=1.85\times10^{-6} 3; \ \alpha(IPF)=0.000572 8$ DCO=1.10 12 @. $\alpha=0.000333 5; \ \alpha(K)=5.52\times10^{-5} 8; \ \alpha(L)=5.36\times10^{-6} 8; \ \alpha(M)=7.55\times10^{-7} 11;$ $\alpha(N+)=0.000272 4$ $\alpha(N)=3.27\times10^{-8} 5; \ \alpha(IPF)=0.000272 4$
1934.0 5	0.4 1	9665.8	10+	7732.7	8+	E2	0.000340 5	DCO=1.10 5. α =0.000340 5; α (K)=5.43×10 ⁻⁵ 8; α (L)=5.27×10 ⁻⁶ 8; α (M)=7.43×10 ⁻⁷ 11; α (N+)=0.000280 4 α (N)=3.22×10 ⁻⁸ 5; α (IPF)=0.000280 4 DCO=0.08 17
1946.6 5	0.8 1	6112.58	7+	4165.69	5+	E2	0.000346 5	$\alpha = 0.000346 \ 5; \ \alpha(\text{K}) = 5.37 \times 10^{-5} \ 8; \ \alpha(\text{L}) = 5.21 \times 10^{-6} \ 8; \ \alpha(\text{M}) = 7.34 \times 10^{-7} \ 11; \ \alpha(\text{N}+) = 0.000286 \ 4$
1952.9 5	0.7 1	4579.1	(4+)	2626.16	3+	M1+E2	0.00032 3	$ \alpha(N) = 3.18 \times 10^{-6} 5; \ \alpha(IPF) = 0.000286 4 \alpha = 0.00032 3; \ \alpha(K) = 5.21 \times 10^{-5} 15; \ \alpha(L) = 5.05 \times 10^{-6} 15; \ \alpha(M) = 7.11 \times 10^{-7} 21; \alpha(N+) = 0.00026 3 $
1956.0 <i>12</i>	0.2 1	12742.2	13+	10788.8	12-	E1	0.000638 9	$\alpha(N)=3.09\times10^{-8} \ 9; \ \alpha(IPF)=0.00026 \ 3$ $\alpha=0.000638 \ 9; \ \alpha(K)=3.03\times10^{-5} \ 5; \ \alpha(L)=2.93\times10^{-6} \ 5; \ \alpha(M)=4.12\times10^{-7} \ 6; \ \alpha(N+)=0.000604 \ 9$
1981.1 5	0.4 1	11112.9	13-	9132.4	11-	E2	0.000360 5	$\alpha(N)=1.79\times10^{-6} 3; \ \alpha(IPF)=0.000604 9$ $\alpha=0.000360 5; \ \alpha(K)=5.20\times10^{-5} 8; \ \alpha(L)=5.04\times10^{-6} 7; \ \alpha(M)=7.10\times10^{-7} 10;$ $\alpha(N+)=0.000303 5$ $\alpha(N)=3.08\times10^{-8} 5; \ \alpha(IPF)=0.000303 5$ PCO=1.48 16 6
1992.9 5	0.3 1	9426.3	10+	7433.60	9+	M1+E2	0.00034 3	$\alpha = 0.00034 \ 3; \ \alpha(\text{K}) = 5.02 \times 10^{-5} \ 14; \ \alpha(\text{L}) = 4.87 \times 10^{-6} \ 14; \ \alpha(\text{M}) = 6.86 \times 10^{-7} \ 20; \ \alpha(\text{N}+) = 0.00028 \ 3$

I								²⁸ Si(³⁶ Ar,4pγ)	2008To15 (continued)
								γ (⁶⁰ N	i) (continued)
	Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	Comments
	2012.2 <i>5</i> 2029.0 <i>5</i>	0.1 <i>1</i> 0.3 <i>1</i>	7360.9 5148.67	(8) 6 ⁺	5348.98 3120.07	7- 4 ⁺	(D+Q) E2	0.000381 6	$\begin{aligned} \alpha(N) &= 2.98 \times 10^{-8} \ 9; \ \alpha(IPF) = 0.00028 \ 3 \\ DCO &= 1.12 \ 13 \ @. \\ Mult.: \ (E2/M1) \ in table I of 2008To15. \\ \alpha &= 0.000381 \ 6; \ \alpha(K) = 4.98 \times 10^{-5} \ 7; \ \alpha(L) = 4.83 \times 10^{-6} \ 7; \ \alpha(M) = 6.80 \times 10^{-7} \ 10; \\ \alpha(N+) &= 0.000326 \ 5 \\ \alpha(N) &= 2.95 \times 10^{-8} \ 5; \ \alpha(IPF) = 0.000326 \ 5 \\ DCO &= 1.1 \ 4. \end{aligned}$
	2041.9 5	0.4 2	7027.99	8+	4986.19	6+	E2	0.000387 6	$\begin{aligned} &\alpha = 0.000387 \ 6; \ \alpha(\text{K}) = 4.92 \times 10^{-5} \ 7; \ \alpha(\text{L}) = 4.77 \times 10^{-6} \ 7; \ \alpha(\text{M}) = 6.72 \times 10^{-7} \ 10; \\ &\alpha(\text{N}+) = 0.000332 \ 5 \\ &\alpha(\text{N}) = 2.91 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 0.000332 \ 5 \\ &\text{DCO} = 0.81 \ 17. \end{aligned}$
	2061.2 5	0.2 1	13615.6	15-	11553.4	13-	E2	0.000395 6	$\alpha = 0.000395 \ 6; \ \alpha(K) = 4.84 \times 10^{-5} \ 7; \ \alpha(L) = 4.69 \times 10^{-6} \ 7; \ \alpha(M) = 6.61 \times 10^{-7} \ 10; \ \alpha(N+) = 0.000342 \ 5$
	2116.0 <i>1</i>	1.0 <i>1</i>	5236.57	5(+)	3120.07	4+	D+Q		E_{γ} : level-energy difference=2116.5. δ : Δ J=1 transition. DCO=0.56 10.
	2123.4 5	1.0 <i>1</i>	11255.4	12+	9132.4	11-	E1	0.000751 11	$ \begin{array}{l} \alpha = 0.000751 \ 11; \ \alpha(\mathrm{K}) = 2.68 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.59 \times 10^{-6} \ 4; \ \alpha(\mathrm{M}) = 3.65 \times 10^{-7} \ 6; \\ \alpha(\mathrm{N}+) = 0.000722 \ 11 \\ \alpha(\mathrm{N}) = 1.586 \times 10^{-8} \ 23; \ \alpha(\mathrm{IPF}) = 0.000722 \ 11 \\ \mathrm{DCO} = 0.78 \ 7 \ \% \end{array} $
	2134.4 5	0.4 1	9665.8	10+	7531.5	8+	E2	0.000428 6	$\begin{array}{l} \alpha = 0.000428 \ 6; \ \alpha(\mathrm{K}) = 4.54 \times 10^{-5} \ 7; \ \alpha(\mathrm{L}) = 4.40 \times 10^{-6} \ 7; \ \alpha(\mathrm{M}) = 6.20 \times 10^{-7} \ 9; \\ \alpha(\mathrm{N}+) = 0.000378 \ 6 \\ \alpha(\mathrm{N}) = 2.69 \times 10^{-8} \ 4; \ \alpha(\mathrm{IPF}) = 0.000378 \ 6 \\ \mathrm{DCO} = 1 \ 1 \ 3 \end{array}$
	2135.8 5	0.3 1	10825.4	11+	8689.1	10+	M1+E2	0.00040 4	$\alpha = 0.00040 \ 4; \ \alpha(\text{K}) = 4.44 \times 10^{-5} \ 12; \ \alpha(\text{L}) = 4.30 \times 10^{-6} \ 12; \ \alpha(\text{M}) = 6.06 \times 10^{-7} \ 16; \ \alpha(\text{N}+) = 0.00035 \ 4$
	2158.9 5	1.5 2	14934.1	16 ⁺	12774.9	14+	E2	0.000439 7	$ \begin{array}{l} \alpha(\mathrm{N}) = 2.63 \times 10^{-6} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	2159.0 3	0.9 1	2158.87	2+	0.0	0+	E2	0.000439 7	$\begin{aligned} &\alpha = 0.000439 \ 7; \ \alpha(\text{K}) = 4.45 \times 10^{-5} \ 7; \ \alpha(\text{L}) = 4.31 \times 10^{-6} \ 6; \ \alpha(\text{M}) = 6.08 \times 10^{-7} \ 9; \\ &\alpha(\text{N}+) = 0.000390 \ 6 \end{aligned}$
	2172.9 5	1.5 <i>1</i>	13615.6	15-	11443.6	13-	E2	0.000445 7	$\alpha_{(N)=2.64\times10^{-4}; \alpha}(\text{IPF})=0.000390 6$ $\alpha=0.000445 7; \alpha(\text{K})=4.40\times10^{-5} 7; \alpha(\text{L})=4.26\times10^{-6} 6; \alpha(\text{M})=6.01\times10^{-7} 9; \alpha(\text{N}+)=0.000397 6$ $\alpha(\text{N})=2.61\times10^{-8} 4; \alpha(\text{IPF})=0.000397 6$ $\alpha(\text{N})=2.61\times10^{-8} 4; \alpha(\text{IPF})=0.000397 6$
	2184.4 5	0.2 1	10872.8	11+	8689.1	10+	M1+E2	0.00042 4	$\alpha = 0.00042 \ 4; \ \alpha(\text{K}) = 4.27 \times 10^{-5} \ 11; \ \alpha(\text{L}) = 4.13 \times 10^{-6} \ 11; \ \alpha(\text{M}) = 5.82 \times 10^{-7} \ 15; \\ \alpha(\text{N}+) = 0.00037 \ 4 \\ \alpha(\text{N}) = 2.53 \times 10^{-8} \ 7; \ \alpha(\text{IPE}) = 0.00037 \ 4$
	2189.9 5	0.2 1	14463.8	15+	12273.8	14^{-}	E1	0.000795 12	$\alpha = 0.000795 \ 12; \ \alpha(\text{K}) = 2.57 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.48 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.49 \times 10^{-7} \ 5;$

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -21

 $^{60}_{28}\mathrm{Ni}_{32}$ -21

						²⁸ S	i(³⁶ Ar,4pγ)	2008To15 (continued)
							γ (⁶⁰ Ni)	(continued)
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
2195.9 5	0.5 1	6461.24	8+	4265.11	6+	E2	0.000456 7	$\alpha(N+)=0.000766 \ 11$ $\alpha(N)=1.516\times10^{-8} \ 22; \ \alpha(IPF)=0.000766 \ 11$ $\alpha=0.000456 \ 7; \ \alpha(K)=4.32\times10^{-5} \ 6; \ \alpha(L)=4.18\times10^{-6} \ 6; \ \alpha(M)=5.89\times10^{-7} \ 9;$ $\alpha(N+)=0.000408 \ 6$ $\alpha(N)=2.56\times10^{-8} \ 4; \ \alpha(IPF)=0.000408 \ 6$
2196.9 5	2.3 3	16842.6	18+	14645.6	16+	E2	0.000456 7	DCO=0.93 4. α =0.000456 7; α (K)=4.31×10 ⁻⁵ 6; α (L)=4.18×10 ⁻⁶ 6; α (M)=5.89×10 ⁻⁷ 9; α (N+)=0.000408 6 α (N)=2.56×10 ⁻⁸ 4; α (IPF)=0.000408 6
2202.3 5	0.2 1	13246.5	13+	11044.3	12+	M1+E2	0.00042 4	DCO=0.87 7. α =0.00042 4; α (K)=4.21×10 ⁻⁵ 11; α (L)=4.08×10 ⁻⁶ 11; α (M)=5.74×10 ⁻⁷ 15; α (N+)=0.00038 4 α (N)=2.49×10 ⁻⁸ 7; α (IPF)=0.00038 4
2224.5 5	0.4 1	14803.4	16+	12578.6	14+	E2	0.000469 7	α = 0.000469 7; α (K)=4.22×10 ⁻⁵ 6; α (L)=4.09×10 ⁻⁶ 6; α (M)=5.76×10 ⁻⁷ 8; α (N+)=0.000422 6 α (N)=2.50×10 ⁻⁸ 4; α (IPF)=0.000422 6 DCO-1 29 <i>U</i> α
2227.2 5	0.8 2	8689.1	10^{+}	6461.24	8+	E2	0.000470 7	$\alpha = 0.000470 \ 7; \ \alpha(\text{K}) = 4.21 \times 10^{-5} \ 6; \ \alpha(\text{L}) = 4.08 \times 10^{-6} \ 6; \ \alpha(\text{M}) = 5.75 \times 10^{-7} \ 8; \\ \alpha(\text{N}+) = 0.000423 \ 6$
2233.0 5	0.3 1	9665.8	10+	7433.60	9+	M1+E2	0.00044 4	$ \begin{aligned} &\alpha(N) = 2.49 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.000423 \ 6 \\ &\alpha = 0.00044 \ 4; \ \alpha(K) = 4.11 \times 10^{-5} \ 11; \ \alpha(L) = 3.98 \times 10^{-6} \ 10; \ \alpha(M) = 5.60 \times 10^{-7} \ 15; \\ &\alpha(N+) = 0.00039 \ 4 \\ &\alpha(N) = 2.43 \times 10^{-8} \ 6; \ \alpha(IPF) = 0.00039 \ 4 \end{aligned} $
2238.1 9	0.2 1	13282.5	(14+)	11044.3	12+	(E2)	0.000475 7	DCO=0.54 8. α =0.000475 7; α (K)=4.17×10 ⁻⁵ 6; α (L)=4.05×10 ⁻⁶ 6; α (M)=5.70×10 ⁻⁷ 8; α (N+)=0.000428 6 α (N)=2.47×10 ⁻⁸ 4; α (IJEE)=0.000428 6
2243.9 5	0.3 1	15281.4	(16 ⁻)	13037.5	14-	(E2)	0.000477 7	$\alpha(N) = 2.47 \times 10^{-4} 4; \ \alpha(N+r) = 0.000428 \ 0$ $\alpha = 0.000477 \ 7; \ \alpha(K) = 4.16 \times 10^{-5} \ 6; \ \alpha(L) = 4.03 \times 10^{-6} \ 6; \ \alpha(M) = 5.67 \times 10^{-7} \ 8; \ \alpha(N+) = 0.000431 \ 6$
2265.9 6	1.0 <i>1</i>	20177.7	21+	17911.7	19+	E2	0.000487 7	$\alpha(N)=2.46\times10^{-8} 4; \ \alpha(IPF)=0.000431 6$ $\alpha=0.000487 7; \ \alpha(K)=4.08\times10^{-5} 6; \ \alpha(L)=3.96\times10^{-6} 6; \ \alpha(M)=5.58\times10^{-7} 8;$ $\alpha(N+)=0.000442 7$ $\alpha(N)=2.42\times10^{-8} 4; \ \alpha(IPF)=0.000442 7$
2284.6 6	0.4 1	12273.8	14-	9989.4	12-	E2	0.000496 7	DCO=1.21 <i>14.</i> α =0.000496 7; α (K)=4.03×10 ⁻⁵ 6; α (L)=3.90×10 ⁻⁶ 6; α (M)=5.50×10 ⁻⁷ 8; α (N+)=0.000451 7 α (N)=2.39×10 ⁻⁸ 4; α (IPF)=0.000451 7
2284.9 6	0.3 1	9665.8	10+	7380.5	8+	E2	0.000496 7	DCO=1.30 <i>12</i> @. α =0.000496 7; α (K)=4.03×10 ⁻⁵ 6; α (L)=3.90×10 ⁻⁶ 6; α (M)=5.49×10 ⁻⁷ 8; α (N+)=0.000451 7 α (N)=2.38×10 ⁻⁸ 4; α (IPF)=0.000451 7
2289.1 6	< 0.1	10977.8	11+	8689.1	10^{+}	M1+E2	0.00046 4	DCO=1.19 20. α =0.00046 4; α (K)=3.93×10 ⁻⁵ 10; α (L)=3.81×10 ⁻⁶ 10; α (M)=5.37×10 ⁻⁷ 14;

						28	Si(³⁶ Ar,4pγ)	2008To15 (continued)			
	γ ⁽⁶⁰ Ni) (continued)										
F	Ŧ		177		17		#				
E_{γ}	I_{γ}	E_i (level)	J_i^{n}	E_f	\mathbf{J}_{f}^{π}	Mult.	α"	Comments			
								α (N+)=0.00042 4 α (N)=2.22×10 ⁻⁸ 6. α (IDE)=0.00042 4			
2301.9 6	0.6 1	17236.0	18+	14934.1	16+	E2	0.000504 7	$\alpha(N) = 2.53 \times 10^{-6}$ 6; $\alpha(N) = 3.97 \times 10^{-5}$ 6; $\alpha(L) = 3.85 \times 10^{-6}$ 6; $\alpha(M) = 5.42 \times 10^{-7}$ 8;			
								α(N+)=0.000459 7			
								$\alpha(N)=2.35\times10^{-8}$ 4; $\alpha(IPF)=0.000459$ 7			
2311.8 6	0.5 1	9123.2	10^{-}	6811.3	9-	M1+E2	0.00047 4	$\alpha = 0.00047 \ 4; \ \alpha(\text{K}) = 3.87 \times 10^{-5} \ 10; \ \alpha(\text{L}) = 3.75 \times 10^{-6} \ 10; \ \alpha(\text{M}) = 5.28 \times 10^{-7} \ 13;$			
								α(N+)=0.00043 4			
								$\alpha(N)=2.29\times10^{-8} 6; \alpha(IPF)=0.00043 4$			
								DCO=1.05 16 for gate on $\Delta J=1$ transition.			
2317.5 3	1.0 3	7981.0	9+	5663.18	7+	E2	0.000511 8	$\alpha = 0.000511 \ 8; \ \alpha(\text{K}) = 3.93 \times 10^{-5} \ 6; \ \alpha(\text{L}) = 3.80 \times 10^{-6} \ 6; \ \alpha(\text{M}) = 5.36 \times 10^{-7} \ 8;$			
								$\alpha(N)=2.33\times10^{-8}$ 4: $\alpha(IPF)=0.000467.7$			
								DCO=1.3 3.			
00417	0.0.1	11020 7	11+	0(00.1	1.0+	141.50	0.00040.4	DCO=1.8 3 for gate on $\Delta J=1$ transition.			
2341.7 0	0.2 1	11030.7	11.	8689.1	10.	MI+E2	0.00048 4	$\alpha = 0.00048 4; \ \alpha(K) = 3.78 \times 10^{-9} 9; \ \alpha(L) = 3.66 \times 10^{-9} 9; \ \alpha(M) = 5.16 \times 10^{-7} 13; \ \alpha(N+) = 0.00044 4$			
								$\alpha(N)=2.24\times10^{-8}$ 6; $\alpha(IPF)=0.00044$ 4			
2361.4 9	0.1 1	11493.8	(12 ⁺)	9132.4	11-	(E1)	0.000901 13	α =0.000901 <i>13</i> ; α (K)=2.31×10 ⁻⁵ <i>4</i> ; α (L)=2.23×10 ⁻⁶ <i>4</i> ; α (M)=3.14×10 ⁻⁷ <i>5</i> ; α (N+)=0.000876 <i>13</i>			
2200 4 2		2521.04	4	1000 50	2+	50	0.000545.0	$\alpha(N)=1.362\times10^{-8}$ 19; $\alpha(IPF)=0.000876$ 13			
2398.4 3	1.1 2	3/31.06	4'	1332.59	21	E2	0.000547 8	$\alpha = 0.000547 \ 8; \ \alpha(\text{K}) = 3.70 \times 10^{-5} \ 6; \ \alpha(\text{L}) = 3.58 \times 10^{-5} \ 5; \ \alpha(\text{M}) = 5.05 \times 10^{-7} \ 7; \ \alpha(\text{N}_{\pm}) = 0.000506 \ 7$			
								$\alpha(N)=2.19\times10^{-8} 3; \alpha(IPF)=0.000506 7$			
0411 4 6	101	77(0)	0-	5240.00	7-	M1 . F2	0.00051 4	DCO=1.045.			
2411.4 0	1.0 1	//60.4	8	5348.98	/	MI+E2	0.00051 4	$\alpha = 0.000514; \ \alpha(K) = 3.60 \times 10^{-9}9; \ \alpha(L) = 3.48 \times 10^{-9}9; \ \alpha(M) = 4.91 \times 10^{-9}12; \ \alpha(N+) = 0.000474$			
								$\alpha(N)=2.13\times10^{-8}$ 5; $\alpha(IPF)=0.00047$ 4			
2416.2.6	071	0445 9	10+	7250 1	o+	EO	0.000555 8	DCO=1.30 10 @. $a=0.0005555 \text{ s}, a(K)=2.65\times10^{-5} \text{ f}, a(L)=2.54\times10^{-6} \text{ f}, a(M)=4.09\times10^{-7} \text{ f},$			
2410.5 0	0.7 1	9003.8	10	7230.1	0	E2	0.000333 8	$\alpha = 0.0005558$; $\alpha (\text{K}) = 5.05 \times 10^{-6}$; $\alpha (\text{L}) = 5.54 \times 10^{-5}$; $\alpha (\text{M}) = 4.98 \times 10^{-7}$; $\alpha (\text{N}+) = 0.0005158$			
								$\alpha(N)=2.16\times10^{-8}$ 3; $\alpha(IPF)=0.000515$ 8			
2451 5 6	017	7165 8	(7^{-})	5014 65	5-	E2	0.000571.8	DCO=0.93 10. $\alpha = 0.000571.8$; $\alpha(K) = 3.56 \times 10^{-5}.5$; $\alpha(L) = 3.45 \times 10^{-6}.5$; $\alpha(M) = 4.86 \times 10^{-7}.7$;			
2451.5 0	0.1 1	7405.8	(7)	5014.05	5	E2	0.000371 8	$\alpha(N+)=0.000532.8$			
								$\alpha(N)=2.11\times10^{-8}$ 3; $\alpha(IPF)=0.000532$ 8			
2452.2 6	1.1 <i>1</i>	9264.5	11-	6811.3	9-	E2	0.000571 8	α =0.000571 8; α (K)=3.56×10 ⁻⁵ 5; α (L)=3.45×10 ⁻⁶ 5; α (M)=4.86×10 ⁻⁷ 7; α (N+)=0.000532 8			
								$\alpha(N)=2.11\times10^{-8}$ 3; $\alpha(IPF)=0.000532$ 8			
2456 4 6	021	13246 5	13+	10788 8	12-	F1	0 000958 14	DCO=1.20 <i>17</i> . $\alpha = 0.000958$ <i>14</i> : $\alpha(K) = 2.18 \times 10^{-5}$ 3: $\alpha(L) = 2.11 \times 10^{-6}$ 3: $\alpha(M) = 2.07 \times 10^{-7}$ 5:			
2730.7 U	0.2 1	15270.5	15	10700.0	14	L1	0.000/00 14	$\alpha(N+)=0.000934\ 13$			

l					2	²⁸ Si(³⁶ Ar,4pγ)	2008To15 (continued)
						γ (⁶⁰ N	i) (continued)
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f J'	\int_{f}^{π} Mult. [†]	α #	Comments
							$\alpha(N)=1.288\times10^{-8}$ 18; $\alpha(IPF)=0.000934$ 13
2480.6 <i>3</i>	5.3 3	4986.19	6+	2506.15 4+	E2	0.000584 9	DCO=0.63 <i>12.</i> α =0.000584 <i>9</i> ; α (K)=3.49×10 ⁻⁵ <i>5</i> ; α (L)=3.38×10 ⁻⁶ <i>5</i> ; α (M)=4.76×10 ⁻⁷ <i>7</i> ; α (N+)=0.000546 <i>8</i>
							$\alpha(N)=2.07\times10^{-8}$ 3; $\alpha(IPF)=0.000546$ 8
2495.3 6	0.3 1	12486.3	(13+)	9989.4 12	2- (E1)	0.000981 14	$\alpha = 0.000981 \ 14; \ \alpha(\text{K}) = 2.13 \times 10^{-5} \ 3; \ \alpha(\text{L}) = 2.06 \times 10^{-6} \ 3; \ \alpha(\text{M}) = 2.90 \times 10^{-7} \ 4; \\ \alpha(\text{N}+) = 0.000958 \ 14$
2408 5 6	101	(7(2))5	7(+)	4265 11 6+			$\alpha(N)=1.261\times10^{-8}$ 18; $\alpha(IPF)=0.000958$ 14
2498.5 0	1.0 1	6762.05	7(1)	4265.11 6	D+Q		$\Delta CO=0.03$ 11. $\delta \cdot \Delta I=1$ transition
2508.7 4	2.7 3	5014.65	5-	2506.15 4+	E1	0.000989 14	α =0.000989 <i>14</i> ; α (K)=2.12×10 ⁻⁵ <i>3</i> ; α (L)=2.05×10 ⁻⁶ <i>3</i> ; α (M)=2.88×10 ⁻⁷ <i>4</i> ; α (N+)=0.000966 <i>14</i>
							$\alpha(N)=1.251\times10^{-8}$ 18; $\alpha(IPF)=0.000966$ 14
2578.9 6	0.6 1	16194.5	17-	13615.6 15	5- E2	0.000628 9	DCO=0.72 8. α =0.000628 9; α (K)=3.27×10 ⁻⁵ 5; α (L)=3.16×10 ⁻⁶ 5; α (M)=4.46×10 ⁻⁷ 7; α (N+)=0.000592 9
							$\alpha(N)=1.94\times10^{-8}$ 3; $\alpha(IPF)=0.000592$ 9
							DCO=1.05 17.
2586.2 6	0.3 1	7732.7	8+	5148.67 6*	E2	0.000632 9	$\alpha = 0.000632 \ 9; \ \alpha(\text{K}) = 3.25 \times 10^{-3} \ 5; \ \alpha(\text{L}) = 3.15 \times 10^{-6} \ 5; \ \alpha(\text{M}) = 4.44 \times 10^{-7} \ 7; \\ \alpha(\text{N}+) = 0.000595 \ 9 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{JDE}) \ 0.000595 \ 0 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{JDE}) \ 0.000595 \ 0 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{JDE}) \ 0.000595 \ 0 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{JDE}) \ 0.000595 \ 0 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{JDE}) \ 0.000595 \ 0 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{JDE}) \ 0.000595 \ 0 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{JDE}) \ 0.000595 \ 0 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{JDE}) \ 0.000595 \ 0 \\ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{N}) = 1.03 \times 10^{-8} \ 3 \ (\text{N}) = 1.03 \times 10^{-8} \ (\text{N}) = 1$
							$\alpha(N) = 1.93 \times 10^{\circ} 3; \alpha(IPF) = 0.000595.9$ E : level-energy difference = 2584.0
2638.4 6	0.2 1	9888.1	10+	7250.1 8+	E2	0.000655 10	α =0.000655 <i>10</i> ; α (K)=3.15×10 ⁻⁵ 5; α (L)=3.04×10 ⁻⁶ 5; α (M)=4.29×10 ⁻⁷ 6; α (N+)=0.000620 9
							$\alpha(N)=1.86\times10^{-8}$ 3; $\alpha(IPF)=0.000620$ 9
2643.0 <i>4</i>	2.5 3	5148.67	6+	2506.15 4+	E2	0.000657 10	α =0.000657 10; α (K)=3.14×10 ⁻⁵ 5; α (L)=3.04×10 ⁻⁶ 5; α (M)=4.28×10 ⁻⁷ 6; α (N+)=0.000622 9
							$\alpha(N)=1.86\times10^{-8}$ 3; $\alpha(IPF)=0.000622$ 9
2654.2 6	0.4 1	11785.7	(12 ⁺)	9132.4 11	- (E1)	0.001073 15	α =0.001073 <i>15</i> ; α (K)=1.96×10 ⁻⁵ <i>3</i> ; α (L)=1.89×10 ⁻⁶ <i>3</i> ; α (M)=2.66×10 ⁻⁷ <i>4</i> ; α (N+)=0.001051 <i>15</i>
							$\alpha(N)=1.158\times 10^{-8}$ 17; $\alpha(IPF)=0.001051$ 15
2661.9 6	0.5 1	19504.5	20+	16842.6 18	8+ E2	0.000665 10	α =0.000665 <i>10</i> ; α (K)=3.10×10 ⁻⁵ <i>5</i> ; α (L)=3.00×10 ⁻⁶ <i>5</i> ; α (M)=4.23×10 ⁻⁷ <i>6</i> ; α (N+)=0.000630 <i>9</i>
							$\alpha(N)=1.84\times10^{-6}$ 3; $\alpha(IPF)=0.000630$ 9
2696.1 6	2.9 2	8044.21	9-	5348.98 7-	E2	0.000680 10	$\alpha = 0.000680 \ 10; \ \alpha(\text{K}) = 3.03 \times 10^{-5} \ 5; \ \alpha(\text{L}) = 2.94 \times 10^{-6} \ 5; \ \alpha(\text{M}) = 4.14 \times 10^{-7} \ 6; \ \alpha(\text{N}+) = 0.000646 \ 9$
							$\alpha(N)=1.80\times 10^{-8} 3; \ \alpha(IPF)=0.000646 9$ DCO=1.03 4.
							DCO=1.70 9 for gate on $\Delta J=1$ transition.
2697.2 6	0.2 1	13810.1	(15^{-})	11112.9 13	³⁻ (E2)	0.000680 10	$\alpha = 0.000680 \ 10; \ \alpha(\text{K}) = 3.03 \times 10^{-5} \ 5; \ \alpha(\text{L}) = 2.93 \times 10^{-6} \ 5; \ \alpha(\text{M}) = 4.13 \times 10^{-7} \ 6;$

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -24

I

²⁸Si(³⁶Ar,4pγ) 2008To15 (continued)

γ (⁶⁰Ni) (continued)

	Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α #	Comments
25									α (N+)=0.000646 9 α (N)=1.80×10 ⁻⁸ 3; α (IPF)=0.000646 9
	2705 2	0.1 1	11225.0	(11+)	8521.23	10-	(E1)	0.001102 16	$\alpha = 0.001102 \ I6; \ \alpha(\text{K}) = 1.91 \times 10^{-5} \ 3; \ \alpha(\text{L}) = 1.84 \times 10^{-6} \ 3; \ \alpha(\text{M}) = 2.60 \times 10^{-7} \ 4; \ \alpha(\text{N}+) = 0.001080 \ I6 \ \alpha(\text{N}) = 1.128 \times 10^{-8} \ I6; \ \alpha(\text{IPF}) = 0.001080 \ I6$
	2705.8 6	0.1 1	10977.8	11+	8272.2	10-	E1	0.001102 16	$\alpha = 0.001102 \ I6; \ \alpha(K) = 1.91 \times 10^{-5} \ 3; \ \alpha(L) = 1.84 \times 10^{-6} \ 3; \ \alpha(M) = 2.60 \times 10^{-7} \ 4; \ \alpha(N+) = 0.001081 \ I6$
	2753.2 7	0.1 1	12742.2	13+	9989.4	12-	E1	0.001128 16	$\alpha(N)=1.128\times10^{-6} \ 16; \ \alpha(IPF)=0.001081 \ 16$ $\alpha=0.001128 \ 16; \ \alpha(K)=1.87\times10^{-5} \ 3; \ \alpha(L)=1.80\times10^{-6} \ 3; \ \alpha(M)=2.54\times10^{-7} \ 4; \ \alpha(N+)=0.001107 \ 16$
	2782.0.7	0.2.1	20019-1	(20^{+})	17226.0	10+	(E 2)	0.000717.10	$\alpha(N) = 1.102 \times 10^{-8} \ 16; \ \alpha(IPF) = 0.001107 \ 16$
	2782.07	0.2 1	20018.1	(20)	17230.0	10	(E2)	0.000717 10	$\alpha(N+.)=0.0008510$
	2785.2 7	0.3 1	9622.4	10-	6837.2	8-	E2	0.000718 10	$ \begin{aligned} \alpha(N) &= 1.706 \times 10^{-6} \ 24; \ \alpha(IPF) &= 0.000685 \ 10 \\ \alpha &= 0.000718 \ 10; \ \alpha(K) &= 2.87 \times 10^{-5} \ 4; \ \alpha(L) &= 2.78 \times 10^{-6} \ 4; \ \alpha(M) &= 3.92 \times 10^{-7} \ 6; \\ \alpha(N+) &= 0.000686 \ 10 \end{aligned} $
									$\alpha(N)=1.703\times10^{-8}$ 24; $\alpha(IPF)=0.000686$ 10 DCO=1.8 3 @.
	2818.9 7	0.2 1	22996.6	23+	20177.7	21+	E2	0.000733 11	α =0.000733 <i>11</i> ; α (K)=2.82×10 ⁻⁵ <i>4</i> ; α (L)=2.73×10 ⁻⁶ <i>4</i> ; α (M)=3.84×10 ⁻⁷ <i>6</i> ; α (N+)=0.000701 <i>10</i>
									$\alpha(N)=1.669\times10^{-8} 24; \ \alpha(IPF)=0.000701 \ 10$ DCO=0.95 15.
	2843.0 <i>1</i>	1.8 2	5348.98	7-	2506.15	4+	E3	0.000528 8	α =0.000528 8; α (K)=4.11×10 ⁻⁵ 6; α (L)=3.99×10 ⁻⁶ 6; α (M)=5.62×10 ⁻⁷ 8; α (N+)=0.000482 7
									α (N)=2.44×10 ° 4; α (IPF)=0.000482 / DCO=0.86 7.
	2844.8 7	0.3 1	10825.4	11+	7981.0	9+	E2	0.000744 11	α =0.000744 <i>11</i> ; α (K)=2.78×10 ⁻⁵ <i>4</i> ; α (L)=2.69×10 ⁻⁶ <i>4</i> ; α (M)=3.78×10 ⁻⁷ <i>6</i> ; α (N+)=0.000713 <i>10</i>
									$\alpha(N)=1.644\times10^{-6} 23; \ \alpha(IPF)=0.000713 \ 10^{-6} DCO=1.35 \ 16^{-6} @.$
	2849.9 7	0.2 1	18131.4	(18-)	15281.4	(16 ⁻)	(E2)	0.000746 11	α =0.000746 <i>11</i> ; α (K)=2.77×10 ⁻⁵ <i>4</i> ; α (L)=2.68×10 ⁻⁶ <i>4</i> ; α (M)=3.77×10 ⁻⁷ <i>6</i> ; α (N+)=0.000715 <i>10</i>
	2854.4 7	1.5 2	9665.8	10+	6811.3	9-	E1	0.001180 17	$\alpha(N)=1.639\times10^{-6} 23; \ \alpha(DF)=0.000715 \ 10$ $\alpha=0.001180 \ 17; \ \alpha(K)=1.777\times10^{-5} \ 25; \ \alpha(L)=1.715\times10^{-6} \ 24; \ \alpha(M)=2.41\times10^{-7} \ 4; \ \alpha(N+)=0.001160$
									$\alpha(N)=1.049\times10^{-8}$ 15; $\alpha(IPF)=0.001160$ 17 DCO=0.49.4
	2891.7 7	0.2 1	10872.8	11+	7981.0	9+	E2	0.000764 11	$\alpha = 0.000764 \ 11; \ \alpha(\text{K}) = 2.70 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.61 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.68 \times 10^{-7} \ 6; \\ \alpha(\text{N}+) = 0.000734 \ 11$
	2905.9 7	1.7 <i>1</i>	9718.4	11-	6811.3	9-	E2	0.000770 11	$ \begin{aligned} &\alpha(\text{N}) = 1.601 \times 10^{-8} \ 23; \ \alpha(\text{IPF}) = 0.000734 \ 11 \\ &\alpha = 0.000770 \ 11; \ \alpha(\text{K}) = 2.68 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.59 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.65 \times 10^{-7} \ 6; \\ &\alpha(\text{N}+) = 0.000740 \ 11 \end{aligned} $

						28	⁸ Si(³⁶ Ar,4pγ)	2008To15 (continued)	
γ ⁽⁶⁰ Ni) (continued)									
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α [#]	Comments	
								$\alpha(N)=1.588\times10^{-8} 23; \ \alpha(IPF)=0.000740 \ 11$ DCO=0.88 11	
2944.4 7	0.3 1	5449.7	6+	2506.15	4+	E2	0.000787 11	$\alpha = 0.000787 \ 11; \ \alpha(\text{K}) = 2.62 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.54 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.58 \times 10^{-7} \ 5; \\ \alpha(\text{N}+) = 0.000758 \ 11$	
2948.8 7	2.3 2	9760.6	11-	6811.3	9-	E2	0.000789 11	$\begin{aligned} \alpha(\text{N}) &= 1.554 \times 10^{-8} \ 22; \ \alpha(\text{IPF}) = 0.000758 \ 11 \\ \alpha &= 0.000789 \ 11; \ \alpha(\text{K}) = 2.62 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.53 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.57 \times 10^{-7} \ 5; \\ \alpha(\text{N}+) = 0.000759 \ 11 \end{aligned}$	
								α (N)=1.550×10 ⁻⁸ 22; α (IPF)=0.000759 11 DCO=1.09 12.	
2986.5 7	1.6 <i>1</i>	7250.1	8+	4265.11	6+	E2	0.000804 12	α =0.000804 <i>12</i> ; α (K)=2.56×10 ⁻⁵ <i>4</i> ; α (L)=2.48×10 ⁻⁶ <i>4</i> ; α (M)=3.49×10 ⁻⁷ <i>5</i> ; α (N+)=0.000776 <i>11</i>	
								α (N)=1.519×10 ⁻⁸ 22; α (IPF)=0.000776 11 DCO=0.94 10.	
2996.6 7	0.6 3	10977.8	11+	7981.0	9+	E2	0.000809 12	α =0.000809 12; α (K)=2.55×10 ⁻⁵ 4; α (L)=2.47×10 ⁻⁶ 4; α (M)=3.47×10 ⁻⁷ 5; α (N+)=0.000780 11	
								α (N)=1.511×10 ⁻⁸ 22; α (IPF)=0.000780 11 DCO=1.1 5.	
3039.2 7	0.8 1	8390.0	9-	5348.98	7-	E2	0.000826 12	DCO=1.90 22 for gate on Δ J=1 transition. α =0.000826 12; α (K)=2.49×10 ⁻⁵ 4; α (L)=2.41×10 ⁻⁶ 4; α (M)=3.40×10 ⁻⁷ 5; α (N+)=0.000799 12	
30/3 0 7	017	10238 5	(10^{-})	16104 5	17-	(F 2)	0 000828 12	$\alpha(N)=1.476\times10^{-8} 21; \ \alpha(IPF)=0.000799 12$ $\alpha=0.000828 12; \ \alpha(K)=2.40\times10^{-5} 4; \ \alpha(L)=2.40\times10^{-6} 4; \ \alpha(M)=3.30\times10^{-7} 5;$	
3043.97	0.1 1	19230.3	(19)	10194.5	17	(E2)	0.000828 12	$\alpha(N+)=0.000801 12$ $\alpha(N+)=0.000801 12$ $\alpha(N+)=1.472\times10^{-8} 21. \alpha(DE)=0.000801 12$	
3048.4 7	0.1 1	11030.7	11+	7981.0	9+	E2	0.000830 12	$\begin{aligned} \alpha(N) &= 1.475 \times 10^{-2} 21, \ \alpha(PF) = 0.00080112 \\ \alpha &= 0.000830 12; \ \alpha(K) = 2.48 \times 10^{-5} 4; \ \alpha(L) = 2.40 \times 10^{-6} 4; \ \alpha(M) = 3.38 \times 10^{-7} 5; \\ \alpha(N+) &= 0.000802 12 \end{aligned}$	
3077.8 1	0.9 1	8426.88	9-	5348.98	7-	E2	0.000842 12	$\alpha(N)=1.469\times10^{-8} 21; \ \alpha(IPF)=0.000802 \ 12$ $\alpha=0.000842 \ 12; \ \alpha(K)=2.44\times10^{-5} \ 4; \ \alpha(L)=2.36\times10^{-6} \ 4; \ \alpha(M)=3.33\times10^{-7} \ 5; \ \alpha(N+)=0.000815 \ 12$	
								$\alpha(N)=1.447 \times 10^{-8} 21; \ \alpha(IPF)=0.000815 12$ DCO=1.3 3.	
3079.0 7	0.2 1	9888.1	10+	6811.3	9-	E1	0.001289 18	DCO=2.3 4 for gate on ΔJ =1 transition. α =0.001289 18; α (K)=1.607×10 ⁻⁵ 23; α (L)=1.550×10 ⁻⁶ 22; α (M)=2.18×10 ⁻⁷ 3; α (N)=)=0.001271	
								$\alpha(N+)=0.001271$ $\alpha(N)=9.49\times10^{-9}$ 14; $\alpha(IPF)=0.001271$ 18 E _w : level-energy difference=3076.6.	
3114.7 7	1.0 1	7380.5	8+	4265.11	6+	E2	0.000857 12	$\alpha = 0.000857 \ I2; \ \alpha(\text{K}) = 2.40 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.32 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.26 \times 10^{-7} \ 5; \ \alpha(\text{N}+) = 0.000830 \ I2$	
								α (N)=1.419×10 ⁻⁸ 20; α (IPF)=0.000830 12 DCO=0.94 17.	
3136.9 7	0.7 1	8485.7	9-	5348.98	7-	E2	0.000866 13	$ \begin{array}{l} \alpha = 0.000866 \ 13; \ \alpha(\text{K}) = 2.37 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.29 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.23 \times 10^{-7} \ 5; \\ \alpha(\text{N}+) = 0.000839 \ 12 \\ \alpha(\text{N}) = 1.403 \times 10^{-8} \ 20; \ \alpha(\text{IPF}) = 0.000839 \ 12 \end{array} $	

						²⁸ Si(³⁶ Ar,4pγ)	2008To15 (continued)		
γ (⁶⁰ Ni) (continued)									
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π} Mu	lt. [†] $\alpha^{\#}$	Comments		
							DCO=1.0 3.		
3204.6 7	0.2 1	9665.8	10+	6461.24	8+ E2	0.000893 13	$\alpha = 0.000893 \ 13; \ \alpha(\text{K}) = 2.29 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.21 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 3.12 \times 10^{-7} \ 5; \ \alpha(\text{N}+) = 0.000868 \ 13$		
3243.4 7	0.3 1	10054.4	(11 ⁻)	6811.3	9- (E2	2) 0.000909 13	$ \begin{aligned} \alpha(\mathrm{N}) &= 1.356 \times 10^{-6} \ 19; \ \alpha(\mathrm{IPF}) = 0.000868 \ 13 \\ \alpha &= 0.000909 \ 13; \ \alpha(\mathrm{K}) = 2.25 \times 10^{-5} \ 4; \ \alpha(\mathrm{L}) = 2.17 \times 10^{-6} \ 3; \ \alpha(\mathrm{M}) = 3.06 \times 10^{-7} \ 5; \\ \alpha(\mathrm{N}+) = 0.000884 \ 13 \end{aligned} $		
2266 0 8	041	7521 5	o+	1265 11	6 ⁺ E2	0.000010.73	$\alpha(N)=1.331\times10^{-8}$ 19; $\alpha(IPF)=0.000884$ 13 $\alpha=0.000010$ 13: $\alpha(K)=2.22\times10^{-5}$ 4: $\alpha(L)=2.15\times10^{-6}$ 2: $\alpha(M)=2.02\times10^{-7}$ 5:		
3200.9 8	0.4 1	/551.5	8	4205.11	0 E2	0.000919 13	$\alpha = 0.000919 \ I3; \ \alpha(M) = 2.22 \times 10^{-4} \ 4; \ \alpha(L) = 2.13 \times 10^{-5} \ 3; \ \alpha(M) = 3.02 \times 10^{-5} $		
							α (N)=1.315×10 ⁻⁸ <i>19</i> ; α (IPF)=0.000894 <i>13</i> DCO=1.25 <i>23</i> .		
3359.0 8	0.1 1	22863.6	(22 ⁺)	19504.5	20 ⁺ (E2	2) 0.000955 14	α =0.000955 <i>14</i> ; α (K)=2.13×10 ⁻⁵ <i>3</i> ; α (L)=2.05×10 ⁻⁶ <i>3</i> ; α (M)=2.89×10 ⁻⁷ <i>4</i> ; α (N+)=0.000932 <i>13</i>		
							$\alpha(N) = 1.259 \times 10^{-8} \ 18; \ \alpha(IPF) = 0.000932 \ 13$		
3390.8 8	0.1 1	10825.4	11+	7433.60	9 ⁺ E2	0.000968 14	$\alpha = 0.000968 \ 14; \ \alpha(K) = 2.10 \times 10^{-5} \ 3; \ \alpha(L) = 2.02 \times 10^{-6} \ 3; \ \alpha(M) = 2.85 \times 10^{-7} \ 4; \ \alpha(N+) = 0.000944 \ 14$		
2429.0.9	051	10242.0	(11-)	6011.2	0= (E2	0 000001 14	$\alpha(N)=1.241\times10^{-6}$ 18; $\alpha(IPF)=0.000944$ 14		
3428.9 8	0.5 1	10242.0	(11)	6811.3	9 (E2	2) 0.000981-14	$\alpha = 0.000981 \ 14; \ \alpha(\text{K}) = 2.06 \times 10^{-5} \ 3; \ \alpha(\text{L}) = 1.99 \times 10^{-5} \ 3; \ \alpha(\text{M}) = 2.80 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 0.000959 \ 14$		
3/30 2 8	031	10872.8	11+	7433 60	0+ E2	0 000085 14	$\alpha(N)=1.219\times10^{-6}$ 17; $\alpha(IPF)=0.000959$ 14 $\alpha=0.000085$ 14: $\alpha(K)=2.05\times10^{-5}$ 3: $\alpha(L)=1.08\times10^{-6}$ 3: $\alpha(M)=2.70\times10^{-7}$ 4:		
3439.2 0	0.5 1	10072.0	11	7455.00	9 E2	0.000985 14	$\alpha(N+)=0.000962 \ 14$		
							α (N)=1.213×10 ⁻⁸ <i>17</i> ; α (IPF)=0.000962 <i>14</i>		
3465.8 8	0.4 1	7732.7	8+	4265.11	6 ⁺ E2	0.000995 14	α =0.000995 <i>14</i> ; α (K)=2.02×10 ⁻⁵ <i>3</i> ; α (L)=1.96×10 ⁻⁶ <i>3</i> ; α (M)=2.76×10 ⁻⁷ <i>4</i> ; α (N+)=0.000972 <i>14</i>		
							α (N)=1.199×10 ⁻⁸ 17; α (IPF)=0.000972 14		
3544.2 8	0.5 1	10977.8	11+	7433.60	9 ⁺ E2	0.001022 15	$\alpha = 0.001022 \ I5; \ \alpha(\text{K}) = 1.96 \times 10^{-5} \ 3; \ \alpha(\text{L}) = 1.89 \times 10^{-6} \ 3; \ \alpha(\text{M}) = 2.66 \times 10^{-7} \ 4; \ \alpha(\text{N}+) = 0.001000 \ I4$		
							$\alpha(N)=1.158\times 10^{-8}$ 17; $\alpha(IPF)=0.001000$ 14		
3596.7 8	0.1 1	11030.7	11+	7433.60	9 ⁺ E2	0.001041 15	α =0.001041 <i>15</i> ; α (K)=1.91×10 ⁻⁵ <i>3</i> ; α (L)=1.85×10 ⁻⁶ <i>3</i> ; α (M)=2.60×10 ⁻⁷ <i>4</i> ; α (N+)=0.001020 <i>15</i>		
							$\alpha(N)=1.132\times10^{-8}$ 16; $\alpha(IPF)=0.001020$ 15		
3792.5 9	0.2 1	11225.0	(11 ⁺)	7433.60	9 ⁺ (E2	2) 0.001118 <i>16</i>	α =0.001118 <i>16</i> ; α (K)=1.763×10 ⁻⁵ 25; α (L)=1.702×10 ⁻⁶ 24; α (M)=2.40×10 ⁻⁷ 4; α (N+)=0.001098		
			- 1				$\alpha(N)=1.044 \times 10^{-8}$ 15; $\alpha(IPF)=0.001098$ 16		
3807.8 9	0.1 1	8074.6	8+	4265.11	6⁺ E2	0.001123 16	$ \begin{array}{l} \alpha = 0.001123 \ 16; \ \alpha(\mathrm{K}) = 1.752 \times 10^{-5} \ 25; \ \alpha(\mathrm{L}) = 1.692 \times 10^{-6} \ 24; \ \alpha(\mathrm{M}) = 2.38 \times 10^{-7} \ 4; \\ \alpha(\mathrm{N}+) = 0.001104 \\ \alpha(\mathrm{N}) = 1.037 \times 10^{-8} \ 15; \ \alpha(\mathrm{IPF}) = 0.001104 \ 16 \end{array} $		

²⁸Si(³⁶Ar,4pγ) **2008To15** (continued)

$\gamma(^{60}\text{Ni})$ (continued)

- [†] From $\gamma\gamma(\theta)$, DCO ratios, and level scheme. Unless given otherwise, DCO are for 30°, 83°, gates on E2 transitions. @ DCO are for 30°, 83°, gates on $\Delta J=1$ transitions.
- [‡] 2008To15 state that Rose-Brink convention was used for mixing ratios. To be consistent with ENSDF policy of using Krane-Steffen convention, all the signs of mixing ratios in 2008To15 have been reversed.
- [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

²⁸Si(³⁶Ar,4pγ) 2008To15 Legend Level Scheme $\begin{array}{l} \bullet \quad I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative I_{γ} $+ \frac{1}{3_{339}} \frac{28_{8_9}}{8_{29}} \frac{1}{8_{29}} \frac{2}{8_{29}} \frac{1}{8_{29}} \frac{1}{8$ $\frac{23^+}{(22^+)}$ 22996.6 22863.6 + 2059 + 27820 + 27820 (E2)02 \$0.5 $\frac{21^+}{(20^+)}$ 20177.7 20018.1 + 3043.9 (E.2), 2061.9 20^{+} 19504.5 (19^{-}) 19238.5 (18⁻) 18131.4 + ²³01,9 + 19+ 17911.7 + 2/9/9 - 2/3/9 - 2/3/9 + 10(23+110) + 101 + 101 10 (37×100 8) 1 238.9 | 1 238.9 | 2 2 0.6 | 18^{+} 17236.0 $\frac{18^+}{(17^+)}$ 16842.6 16242.0 $\frac{17^{-}}{(17^{+})}$ 16194.5 16098.2 150-05-1 17^{+} 16026.8 $\frac{1}{10^{10}} \left[\frac{2_{13}^{1}}{6_{12}} \right]_{1} \left[\frac{2_{13}^{1$ 1 - 243,9 1 (16^{-}) 15281.4 ¥ (16^+) 15165.0 0 102 | 8 41 6 | 8 16 6 | 08 16^{+} 14934.1 16^{+} 14803.4 16^{+} 14645.6 (H) KE ¥. 15^{+} Ð-14463.8 (15^{+}) 14201.2 Ð ¥ 6 (15⁻) 13810.1 100 100 100 15^{+} (E))05 13662.4 41,42,03 ¥. 16,275 + $\frac{15^{-}}{(14^{+})}$ 13615.6 208 866 -9 13353.1 (14^{+}) 1830 40 13282.5 ¥ N 181 181 191 ŝ 13+ 13246.5 ¥ 14-13037.5 13^{+} 12859.5 20.00 14^{+} 12774.9 ¥ 12742.2 13^{+} ÷ $\frac{14^+}{(13^+)}$ 12578.6 v 12486.3 $\frac{14^{-}}{13^{+}}$ 12273.8 ¥ 11851.3 $\frac{13^{-}}{(12^{+})}$ 11553.4 11493.8 × 13-11443.6 ¥ 11120.6 11112.9 12 ¥ 13ŧ 12^{+} 11044.3 12 10788.8 0.0 0^+

 $^{60}_{28}{
m Ni}_{32}$

²⁸Si(³⁶Ar,4pγ) 2008To15

 $^{60}_{28}{
m Ni}_{32}$

 $^{60}_{28}\mathrm{Ni}_{32}$ -31

 $^{60}_{28}\mathrm{Ni}_{32}$

32

 $^{60}_{28}\mathrm{Ni}_{32}\text{--}32$

Legend

 $^{60}_{28}\mathrm{Ni}_{32}$

33

From ENSDF

 $^{60}_{28}\mathrm{Ni}_{32}$ -33

 $^{60}_{28}{
m Ni}_{32}$

²⁸Si(³⁶Ar,4pγ) 2008To15 (continued)

