60 Cr β^- decay 2006Li15

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012					

Parent: ⁶⁰Cr: E=0; $J^{\pi}=0^+$; $T_{1/2}=0.49$ s *1*; $Q(\beta^-)=6.46\times10^3$ 21; % β^- decay=100.0 ⁶⁰Cr- $T_{1/2}$: From 2006Li15.

Additional information 1.

2006Li15 suggest that the previous study of 1988Bo06 was affected by possible contamination from 120 In.

2006Li15 produced the source from projectile fragmentation of ⁸⁶Kr at E=140 MeV/A incident on Be and mass separation.

Fully-stripped ⁶⁰Cr fragments were implanted in double-sided Si microstrip detector which was part of beta counting system. Measured fragment- $\beta\gamma$, $\beta\gamma$ (t).

Other: 1988Bo06.

⁶⁰Mn Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	1+	0.28 s 2	$T_{1/2}$: from 2006Li15. Other: 51 s 6 (1988Bo06); however, 1993ScZS were not able to confirm the value of 1988Bo06 since $T_{1/2}$ was very similar to that of Indium isomers detected in the spectra.
349? 759	(2^+) (1^+)		1/2 ····· 1/2

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(5.70 \times 10^3 \ 21)$	759	10.2 6	5.0 1	av E β =2601 103
$(6.11 \times 10^{3#} 21)$ $(6.46 \times 10^{3} 21)$	349?	1.2 6 88 6 6	6.0 2 4 2 1	av $E\beta = 2801 \ 103$ av $E\beta = 2972 \ 103$

[†] These are upper limits due to possible unobserved transitions (2006Li15).

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{60}Mn)$

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	$I_{(\gamma+ce)}$
348.6 [†]	349?	(2+)	0.0 1+	6.4 5
410.1	759	(1^{+})	349? (2 ⁺)	5.2 4
758.2	759	(1^{+})	$0.0 \ 1^+$	5.0 5

[†] The order of placement of 348γ and 410γ in the β^- decay scheme could be reversed.

[‡] Absolute intensity per 100 decays.

60 Cr β^- decay 2006Li15

Decay Scheme

