History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012					

 $Q(\beta^{-})=8444$ 4; S(n)=5514 3; $S(p)=12.37\times 10^{3}$ 24; $Q(\alpha)=-9.27\times 10^{3}$ 18 2012Wa38

Production and identification: 2010St01: ⁶⁰Mn from ^{13,14}C(⁴⁸Ca,x), E=130 MeV, measured E γ , I γ , $\gamma\gamma$ coincidence, DCO ratios using Gammasphere array. 2008Va08: ⁶⁰Mn from ²³⁸U(⁷⁰Zn,x), E=460 MeV, measured E γ , I γ , $\gamma\gamma$ coincidence.

2006Li15: ⁶⁰Mn from ⁶⁰Cr decay produced from ⁹Be(⁸⁶Kr,x), E=140 MeV/nucleon. Measured fragment β - decay, $\beta\gamma$, $\beta\gamma$ (t) coincidence.

1988Bo06: ⁶⁰Mn from W(⁷⁶Ge,x), E=11.5 MeV/nucleon, mass separation.

1985Ru05: ⁶⁰Mn from W(⁸²Se,x), E=11.5 MeV/nucleon, mass separation.

1978No03: ⁶⁰Mn from ⁴⁸Ca(¹⁸O, α pn), E=56 MeV; comparison of E γ with those of known decay γ rays in ⁶⁰Fe.

Others:

Discovery of Mn. Compilation: 2012Ga06.

Mass measurements: 2012He13, 2012Na15.

Nuclear structure theory: 2012Su07, 2010Sr03.

Neutrino measurements: 2007Li72, 2005Ju02.

⁶⁰Mn Levels

Cross Reference (XREF) Flags

٨	$60 Cr \beta$	- decay
A		decav

- ecay 60 Mn IT decay (1.77 s) В
- $^{14}C(^{48}Ca,pn\gamma)$ С
- $^{238}U(^{70}Zn.X\gamma)$ D

E(level) [#]	Jπ†	T _{1/2}	XREF	Comments
0.0	1+‡	0.28 s 2	ABCD	$\%\beta^{-}=100$
		0.20 0 2		J^{π} : from log <i>ft</i> =4.5 to 0 ⁺ (2006Li15) is consistent with G-T decay. Systematics show that β^{-} log <i>ft</i> values in the 3.6 to 6.4 range are inconsistent with 0 ⁺ to 0 ⁺ decays (1973Ra10). J^{π} is consistent with M3 γ -ray from 271-keV level. $T_{1/2}$: from 2006Li15. T=51 s 6 (1988Bo06, was not confirmed in 1993ScZS, since $T_{1/2}$ was very similar to that of Indium isomers detected in the spectra).
271.80 10	4+‡	1.77 s 2	BC	$\%\beta^{-}=88.5\ 8;\ \%IT=11.5\ 8$
				%β ⁻ ,%IT: From %IT/%β ⁻ =0.13 <i>I</i> (from 1985Ru05, 1988Bo06; details not given). J ^π : 271-keV M3 γ ray to J^{π} =1 ⁺ g.s., J^{π} =4 ⁺ from shell-model calculations (2006Li15). T _{1/2} : from 1988Bo06. Other: 1.79 s <i>I0</i> (1978No03).
347.59 16	(2^{+})		A CD	•, -
407.47 13	(3+)		CD	
726.40 13	(5^{+})		С	
733.91 12	(4)		С	
757.18 16	(1^{+})		AC	
836.48 13	(5)		С	
841.67 24			C	
965.98 [@] 14	(6)		С	
1090.46 16	(6^{+})		С	
1215.15 ^{&} 17	(7)		С	
1246.0 4			С	
1784.38 [@] 19	(8)		С	
2049.4 3	(7^{+})		c	
2223.34 ^a 25	(6)		c	
	. /			

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

E(level) [#]	$J^{\pi^{\dagger}}$	XREF	E(level) [#]	$J^{\pi \dagger}$	XREF	E(level) [#]	$J^{\pi \dagger}$	XREF
2382.13 ^{&} 21	(9)	С	4132.0 5		С	5985.6 <i>13</i>		С
2439.11 24		С	4388.9 5		С	6026.8 <mark>b</mark> 3	(13)	С
2569.51 ^b 25	(7)	С	4532.6 <i>3</i>		С	6108.0 ^{&} 4	(13)	С
3005.62 ^{<i>a</i>} 23	(8)	С	4612.74 ^b 24	(11)	С	6234.9 <i>4</i>		С
3047.62 [@] 22	(10)	С	4644.8 5		С	6824.2 [@] 5	(14)	С
3486.02 ^b 23	(9)	С	4781.3 [@] 3	(12)	С	6863.5 ^a 3	(14)	С
3601.62 24		С	5001.7 5		С	7758.1 <mark>b</mark> 3	(15)	С
3654.0 5		С	5075.5 9		С	8982.7 ^a 9	(16)	С
4022.67 ^{<i>a</i>} 23	(10)	С	5234.6 <i>3</i>		С	9235 [@] 3	(16)	С
4059.23 ^{&} 24	(11)	С	5261.65 ^a 25	(12)	С			

⁶⁰Mn Levels (continued)

[†] From γ -ray multipolarities supported by DCO ratios and rotational structure (2010St01).

[‡] Suggested configuration=((π f7/2)(ν f5/2)) multiplet (2006Li15).

[#] Deduced by evaluators from least-squares fit to γ -ray energies.

[@] Band(A): Band based on J=(6), signature α =0.

& Band(a): Band based on J=(7), signature α =1.

^{*a*} Band(B): Band based on J=(6), signature α =0.

^b Band(b): Band based on J=(7), signature α =1.

$\gamma(^{60}{ m Mn})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f J	\int_{f}^{π} Mu	ult. [‡] α^{\dagger}	Comments
271.80	4+	271.9 <i>1</i>	100	0.0 1+	Ma	3 0.0520	α (K)=0.0464 7; α (L)=0.00488 7; α (M)=0.000664 10; α (N+)=2.99×10 ⁻⁵ 5
							$\alpha(N)=2.99\times10^{-5}$ 5
							E_{γ} : From 1993ScZS.
							Mult.: From ce measurements (1993ScZS).
347.59	(2^{+})	347.6 2	100	0.0 1+	-		
407.47	(3^{+})	59.9 2	55 14	347.59 (2	+)		
		135.8 2	34 14	271.80 4+	- (D))	Additional information 1.
		407.0 2	100 33	0.0 1+	- (Q))	Additional information 2.
726.40	(5^{+})	454.6 1	100	271.80 4+	- (D))	
733.91	(4)	325.8 <i>3</i>	3.4 5	407.47 (3	+)		
		462.1 1	100 4	271.80 4+	(D)#	
757.18	(1^{+})	349.7 <i>1</i>		407.47 (3	+)		
		410.1 [@]		347.59 (2	+)		E_{α} : From ⁵⁰ Cr β^- decay.
		758.2		0.0 1+	-		F_{m} : From ⁶⁰ Cr β^- decay.
836.48	(5)	102.5 1	26.2	733.91 (4) D		DCO=0.93
000110	(0)	565.0 2	100 4	271.80 4+	D		
841.67		434.2 2	100	407.47 (3	+)		
965.98	(6)	129.5 1	100 4	836.48 (5) D		
		239.6 1	18.4 6	726.40 (5	+) D		
1090.46	(6^{+})	364.0 1	83 4	726.40 (5	+) (D)	
		818.79	100 14	271.80 4+	-		
1215.15	(7)	249.2 1	100	965.98 (6) D		
1246.0		519.6 <i>3</i>	100	726.40 (5	+)		
1784.38	(8)	569.1 2	100 4	1215.15 (7) D		
		818.4 2	0.8 6	965.98 (6)		

Adopted Levels, Gammas (continued)

$\gamma(^{60}Mn)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]
2049.4	(7 ⁺)	958.1 5 1323.8 7	49 7 100 <i>12</i>	1090.46 726.40	(6^+) (5^+)	0
2223.34	(6)	1132.7.3	100 12	1090.46	(6^+)	×
2382.13	(9)	597.6 2	100 3	1784.38	(8)	D
		1167.2 2	21.7 12	1215.15	(7)	0
2439.11		389.6 <i>3</i>	62 8	2049.4	(7^{+})	
		1193.5 9	100 11	1246.0		
2569.51	(7)	346.2 [@] 10	3.9 13	2223.34	(6)	
		1479.1 9	100 15	1090.46	(6^+)	
3005.62	(8)	436.1 <i>1</i>	24 6	2569.51	(7)	
		566.5 1	76 11	2439.11		
		782.2 2	53 8	2223.34	(6)	
		956.1 3	100 16	2049.4	(7^{+})	
		1790.4 23	50 11	1215.15	(7)	_
3047.62	(10)	665.5 1	100 3	2382.13	(9)	D
2406.02		1263.4 4	18 /	1784.38	(8)	Q
3486.02	(9)	480.4 2	100 8	3005.62	(8)	
		910.5 15	15 4	2309.31	()	
		1040.9 2	23 4 18 8	2439.11	(7^{+})	
		1701 6 3	40 0 20 1	178/ 38	(7)	
3601.62		554.0.1	100	3047.62	(0)	
3654.0		1869 6 4	100	1784 38	(10)	
4022.67	(10)	536.6 /	100 6	3486.02	(9)	
1022.07	(10)	1016.9.2	17 4	3005.62	(8)	
		1640.7 3	16.5 22	2382.13	(9)	
4059.23	(11)	1011.6 <i>1</i>	100 5	3047.62	(10)	D
		1676.8 5	47 <i>3</i>	2382.13	(9)	Q
4132.0		1749.8 <i>4</i>	100	2382.13	(9)	
4388.9		2006.7 4	100	2382.13	(9)	
4532.6		931.0 <i>1</i>	100	3601.62		
4612.74	(11)	590.0 <i>1</i>	100 5	4022.67	(10)	(D)
		1127.2 3	28 6	3486.02	(9)	
16110		1565.2 3	5 2	3047.62	(10)	
4644.8	(10)	512.8 7	100	4132.0	(11)	
4/81.3	(12)	122.0 2	100 5	4059.23	(11)	
5001.7		1054.2.0	100	3047.02	(10)	
5075 5		2693 3 8	100	2382 13	(10)	
5234.6		702.0 1	100	4532.6	())	
5261.65	(12)	648.9 /	100 6	4612.74	(11)	
	()	1239.0 3	42 6	4022.67	(10)	(O)
5985.6		1926.3 12	100	4059.23	(11)	
6026.8	(13)	765.1 <i>1</i>	100 7	5261.65	(12)	
		1414.0 4	32 8	4612.74	(11)	
6108.0	(13)	1326.6 2	45 13	4781.3	(12)	
		2050 <i>3</i>	100 48	4059.23	(11)	(Q)
6234.9		1453.6 2	100	4781.3	(12)	
6824.2	(14)	716.0 3	16 4	6108.0	(13)	
(0(2 5	(1.4)	2045.8 13	100 20	4/81.3	(12)	(Q)
0803.3	(14)	830./ I	89 9 100 15	0020.8	(13)	
7758 1	(15)	1001.9 J 804 6 1	100 13	5201.03 6863 5	(12) (14)	
1130.1	(13)	074.0 <i>I</i> 1731 3 6	88 28	6026.8	(14) (13)	
8982.7	(16)	2119.2.8	100	6863 5	(13)	
9235	(16)	2411.3	100	6824.2	(14)	
	(-0)				()	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

 $\gamma(^{60}Mn)$ (continued)

- [†] Additional information 3. [‡] From DCO measurements. Mult=Q indicates $\Delta J=2$ transition; mult=D, $\Delta J=1$, dipole transition with possible quadrupole admixture. # $\Delta J=(0)$ dipole transition. @ Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

⁶⁰₂₅Mn₃₅

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{60}_{25}Mn_{35}$

