		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012

Parent: ⁶⁰Mn: E=271.21 24; $J^{\pi}=4^+$; $T_{1/2}=1.77$ s 2; $Q(\beta^-)=8444$ 4; $\%\beta^-$ decay=88.5 8

 60 Mn-Q(β^{-}): From 2012Wa38.

 60 Mn-E,J^{π},T_{1/2}: From Adopted Levels for 60 Mn.

 60 Mn-% β^- decay: % β^- =88.5 8 in 60 Mn Adopted Levels.

2010Ho13: ⁶⁰Mn formed in ²³⁸U(⁶⁴Ni,X) reaction at E=430 MeV beam provided by ATLAS facility at Argonne. Target= 55 mg/cm². Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ using GAMMASPHERE array of 100 Compton-suppressed HPGe detectors. Additional information 1.

Others:

1988Bo06: ⁶⁰Mn from W(⁷⁶Ge,X), E=11.5 MeV/nucleon, mass separation, measured E γ , I γ , $\beta\gamma$ coin, T_{1/2}.

1985Ru05: ⁶⁰Mn from W(⁸²Se,X), E=11.5 MeV/nucleon, mass separation, measured E γ , I γ , $\beta\gamma$ coin, T_{1/2}.

1978No03: ⁶⁰Mn from ⁴⁸Ca(¹⁸O, α pn), E=56 MeV. Measured t, E γ , I γ , E β , $\gamma\gamma$ coin, $\beta\gamma$ coin, Enriched target (96.8%). Ge(Li) detectors, plastic scintillators. Discovery of ⁶⁰Mn.

⁶⁰Fe Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	0+	2.62×10 ⁶ y 4	T _{1/2} : From Adopted Levels, Gammas.
823.83 9	2^{+}		
2114.60 12	4+		
2299.67 11			$J^{\pi}=2^+$ from 1476 γ M1 to 2 ⁺ , and 2300 γ E2 to 0 ⁺ . However, log $ft=6.0$ to 2300-keV level is not consistent with β^- decay from 60 Mn(4 ⁺) to 60 Fe(2 ⁺).
2792.68 11	$3^+, 4^+$		
3072.01 23	4+		
3193.51 24			
3352.9 6			
3486.02 24			
3498.6 10	4+		

[†] Deduced by evaluators from least-squares fit to γ -ray energies.

β^- radiations

E(decay)	E(level)	Ιβ ^{-†#}	Log ft [‡]		Comments	
(5217 4)	3498.6	0.4 4	>6.1	av Eβ=2360.8 21		
(5229 4)	3486.02	2.7 3	5.9	av E β =2367.0 20		
(5362 4)	3352.9	0.53 23	6.6	av E β =2431.9 20		
(5522 4)	3193.51	2.2 3	6.1	av E β =2509.6 20		
(5643 4)	3072.01	3.2 5	5.9	av E β =2568.9 20		
(5923 4)	2792.68	73 <i>3</i>	4.7	av E β =2705.2 20		
(6416 4)	2299.67	5.0 15	6.0	av E β =2946.0 20		
(6601 4)	2114.60	2.4 11	6.4	av E β =3036.4 20		

[†] Deduced by evaluators from γ -ray transition intensity balance at each level. These should be considered limits since the decay scheme may not be complete.

[‡] Values deduced by evaluators.

[#] For absolute intensity per 100 decays, multiply by 0.885 8.

60 Mn β^- decay (1.77 s) 2010Ho13,1978No03 (continued)

$\gamma(^{60}\text{Fe})$

I γ normalization: Deduced by evaluators from I γ (823.8)+I γ (2299.7 γ)=88.5% 8.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α@	Comments
279.6 7	0.3 2	3072.01	4+	2792.68	3+,4+	M1	0.00260 4	$\alpha = 0.00260 \ 4; \ \alpha(K) = 0.00234 \ 4; \\ \alpha(L) = 0.000226 \ 4; \ \alpha(M) = 3.11 \times 10^{-5} \\ 5; \ \alpha(N+) = 1.431 \times 10^{-6} \ 22 \\ \alpha(N) = 1.431 \times 10^{-6} \ 22$
401.0 ^{&} 10 493.0 1	0.2 2 24.9 <i>13</i>	3193.51 2792.68	3+,4+	2792.68 2299.67	3+,4+	(M1)	0.000697 <i>10</i>	$\alpha = 0.000697 \ 10; \ \alpha(K) = 0.000628 \ 9; \\ \alpha(L) = 6.02 \times 10^{-5} \ 9; \ \alpha(M) = 8.29 \times 10^{-6} \\ 12; \ \alpha(N+) = 3.84 \times 10^{-7} \ 6 \\ \alpha(N) = 3.84 \times 10^{-7} \ 6 \\ L \cdot W_{\text{orbital surges}} \ \text{of } 26.2, 20 $
678.1 <i>1</i>	3.5 4	2792.68	3+,4+	2114.60	4+	(M1)	0.000348 5	
823.8 <i>I</i>	100	823.83	2+	0.0	0+	E2	0.000319 5	I_{γ} : Weighted average of 3.6 4 (2010Ho13) and 3.0 7 (1978No03). α=0.000319 5; α(K)=0.000287 4; α(L)=2.75×10 ⁻⁵ 4; α(M)=3.78×10 ⁻⁶ 6; α(N+)=1.740×10 ⁻⁷ 25
957.5 3	1.3 2	3072.01	4+	2114.60	4+	M1	0.0001708 24	$\alpha(N)=1.740 \times 10^{-7} 25$ $\alpha=0.0001708 24; \ \alpha(K)=0.0001540 22;$ $\alpha(L)=1.464 \times 10^{-5} 21;$ $\alpha(M)=2.02 \times 10^{-6} 3$ $\alpha(N)=0.20 \times 10^{-8} 14$
1078.9 2	2.9 4	3193.51		2114.60	4+			$u(\mathbf{N}) = 9.39 \times 10^{-5} 14$
x1150.2 4	1.6 4	2252.0		2114 (0	4+			E_{γ}, I_{γ} : From 1985Ru05.
1238.3 5 1290.8 <i>I</i>	0.7 3 15.7 11	3352.9 2114.60	4+	823.83	2 ⁺	E2	0.0001356 <i>19</i>	$\alpha = 0.0001356 \ I9; \ \alpha(K) = 9.84 \times 10^{-5} \ I4;$ $\alpha(L) = 9.36 \times 10^{-6} \ I4;$ $\alpha(M) = 1.289 \times 10^{-6} \ I8;$ $\alpha(N+) = 2.65 \times 10^{-5}$ $\alpha(N) = 5.98 \times 10^{-8} \ 9; \ \alpha(IPF) = 2.65 \times 10^{-5}$
								I_{γ} : Weighted average of 16.4 8 (2010Ho13) and 13.9 <i>I3</i> (1978No03). (1291 γ)(824 γ)(θ): A ₂ =+0.17 7, A ₄ =+0.05 9.
1371.4 2	3.6 4	3486.02	4+	2114.60	4 ⁺	M1	0.0001201.17	$\alpha = 0.0001201$ 17; $\alpha(K) = 7.55 \times 10^{-5}$ 11;
1584.0 10	0.5 5	3498.0	4	2114.00	4	INI I	0.0001201 17	$\begin{array}{l} \alpha = 0.0001201 \ 17; \ \alpha(\mathbf{K}) = 7.55 \times 10^{-6} \ 17; \\ \alpha(\mathbf{L}) = 7.15 \times 10^{-6} \ 10; \\ \alpha(\mathbf{M}) = 9.86 \times 10^{-7} \ 14; \\ \alpha(\mathbf{N}+) = 3.65 \times 10^{-5} \ 6 \\ \alpha(\mathbf{N}) = 4.60 \times 10^{-8} \ 7; \ \alpha(\mathbf{IPF}) = 3.64 \times 10^{-5} \\ 6 \end{array}$
1475.8 <i>1</i>	14.0 7	2299.67		823.83	2+	M1	0.0001331 <i>19</i>	$ \begin{array}{l} \alpha = 0.0001331 \ 19; \ \alpha(\mathrm{K}) = 6.70 \times 10^{-5} \ 10; \\ \alpha(\mathrm{L}) = 6.35 \times 10^{-6} \ 9; \ \alpha(\mathrm{M}) = 8.74 \times 10^{-7} \\ 13; \ \alpha(\mathrm{N}+) = 5.89 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 4.08 \times 10^{-8} \ 6; \ \alpha(\mathrm{IPF}) = 5.88 \times 10^{-5} \\ 9 \end{array} $

Continued on next page (footnotes at end of table)

$^{60}{\rm Mn}\,\beta^-$ decay (1.77 s) 2010Ho13,1978No03 (continued)

$\gamma(^{60}\text{Fe})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f .	\mathbf{J}_{f}^{π}	Mult. [‡]	α@	Comments
1968.8 <i>1</i>	69.0 <i>34</i>	2792.68	3+,4+	823.83	2+	(M1)	0.000285 4	$\begin{aligned} \alpha(\text{N}) = 4.08 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 5.88 \times 10^{-5} \ 9 \\ \text{I}_{\gamma}: \text{ Weighted average of } 13.8 \ 7 \ (2010\text{Ho}13) \text{ and} \\ 14.6 \ 14 \ (1978\text{No}03). \\ (1476\gamma)(824\gamma)(\theta): \ \text{A}_2 = -0.18 \ 7, \ \text{A}_4 = +0.4 \ 1. \\ \alpha = 0.000285 \ 4; \ \alpha(\text{K}) = 4.00 \times 10^{-5} \ 6; \\ \alpha(\text{L}) = 3.78 \times 10^{-6} \ 6; \ \alpha(\text{M}) = 5.21 \times 10^{-7} \ 8; \\ \alpha(\text{N}+) = 0.000241 \ 4 \end{aligned}$
2248.0 <i>3</i>	2.7 6	3072.01	4+	823.83	2+	E2	0.000471 7	$\alpha(N)=2.43\times10^{-8}$ 4; $\alpha(IPF)=0.000241$ 4 I_{γ} : Weighted average of 67.2 34 (2010Ho13) and 71.1 36 (1978No03). (1969 γ)(824 γ)(θ): A ₂ =-0.22 4, A ₄ =-0.02 5. α =0.000471 7; $\alpha(K)=3.35\times10^{-5}$ 5; $\alpha(L)=3.17\times10^{-6}$ 5; $\alpha(M)=4.36\times10^{-7}$ 7; $\alpha(N+)=0.000434$ 6 $\alpha(D)=2.02\times10^{-8}$ 3; $\alpha(IPE)=0.000424$ 6
2299.7 2	17.5 12	2299.67		0.0 (0+			

[†] From 2010Ho13, unless otherwise specified.

 \ddagger M1 transitions are expected to be M1+E2.

[#] For absolute intensity per 100 decays, multiply by 0.753 *11*. [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

60 Mn β^- decay (1.77 s) 2010Ho13,1978No03

Decay Scheme

