⁶⁰Zn ε decay 1969Ho01,1972Du09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012

Parent: ⁶⁰Zn: E=0; $J^{\pi}=0^+$; $T_{1/2}=2.38 \text{ min } 5$; $Q(\varepsilon)=4170.8 \ 16$; $\%\varepsilon+\%\beta^+$ decay=100.0 ⁶⁰Zn-Q(ε): from 2012Wa38.

Production: Ni(³He,n), E(³He)<10 MeV, chemical separation. Measured γ (t) and $\gamma\gamma$ with NaI, singles spectra with Ge(Li) (1969Ho01).

Production: Ni(³He,n), E(³He)=15 MeV, mass separation. Measured $\gamma(t)$ with NaI and singles spectra with Ge(Li) (1972Du09). Production: Ni(³He,n), E(³He)=15 MeV, chemical separation. Measured $\gamma^{\pm}\gamma(t)$ (1975Ro25). Production: Ni(α ,xn), E(α)= 50 MeV. On-line isotope separator. Measured β^{+} spectra, γ singles, and $\gamma(t)$ (1986Ka38). The decay scheme is established from $\gamma\gamma$ data from 1969Ho01. Other: 1955Li39.

⁶⁰Cu Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	2+	23.7 min 4	T _{1/2} : From Adopted Levels.
62.0 4	1^{+}	2.00 ns 10	$T_{1/2}$: from 1975Ro25, $\gamma\gamma$ (t).
335.7 <i>3</i>			
364.6 <i>3</i>	(1^{+})		
670.1 <i>3</i>	1^{+}		
947? 1			

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(3223.8 [‡] 19)	947?	0.9 3	0.053 16	6.0 1	1.0 3	av E β =975.4 9; ε K=0.04737 12; ε L=0.005172 13; ε M+=0.00090
(3500.7 16)	670.1	70 6	2.8 2	4.4 1	73 6	av E β =1104.9 8; ε K=0.03357 7; ε L=0.003663 7; ε M+=0.00064
(3806.2 16)	364.6	3.1 7	0.086 19	5.9 1	3.2 7	av E β =1248.9 8; ε K=0.02388 5; ε L=0.002605 5; ε M+=0.0004547 8
(3835.1 [‡] 16)	335.7	<4	< 0.1	>5.9	<4	av E β =1262.6 8; ε K=0.02317 4; ε L=0.002527 5; ε M+=0.0004411 8
(4108.8 17)	62.0	20 5	0.40 10	5.3 1	20 5	av $E\beta$ =1392.4 8; εK =0.01763 3; εL =0.001923 3; εM +=0.0003356 6

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

$\gamma(^{60}Cu)$

Iy normalization: from $\Sigma I(\gamma+ce)$ (to g.s.)=100, assuming zero feeding to g.s. (0⁺ to 2⁺ transition).

E_{γ}^{\ddagger}	I_{γ} #@	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
61.4 6	40 5	62.0	1+	$0.0 \ 2^+$	M1(+E2)	<0.11	0.226 24	$\begin{aligned} &\alpha(\mathbf{K}) = 0.201 \ 20; \ \alpha(\mathbf{L}) = 0.022 \ 3; \ \alpha(\mathbf{M}) = 0.0030 \ 4; \\ &\alpha(\mathbf{N}+) = 8.6 \times 10^{-5} \ 8 \\ &\alpha(\mathbf{N}) = 8.6 \times 10^{-5} \ 8 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) > 0.036?; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) < 2.4 \times 10^{2}? \end{aligned}$

60 Zn ε decay 1969Ho01,1972Du09 (continued)

$\gamma(^{60}Cu)$ (continued)

E _γ ‡	Ι _γ #@	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
						Mult., δ : see Adopted Levels, gammas. This value is consistent with the upper limit $\alpha(\exp) < 1.9$ from $I(\gamma^{\pm})/I(\gamma)$ (1969Ho01).
273.4 4	17 2	335.7		62.0	1^{+}	
334.4 1	14 2	670.1	1^{+}	335.7		
364.6 <i>3</i>	51	364.6	(1^{+})	0.0	2^{+}	
^x 572.4 3	4.1 11		. ,			E_{γ} : peak probably due to $511\gamma + 61\gamma$ coin summing.
670.3 <i>3</i>	100 5	670.1	1^{+}	0.0	2^{+}	I_{γ} : Uncertainty estimated by evaluators.
947 <mark>&</mark> 1	1.6 4	947?		0.0	2^{+}	E_{γ} : seen only by 1972Du09.

[†] Additional information 1.
[‡] From 1969Ho01, except as noted.
[#] Average of values from 1969Ho01 and 1972Du09.

^(a) For absolute intensity per 100 decays, multiply by 0.64 5. [&] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

⁶⁰Zn ε decay 1969Ho01,1972Du09

Decay Scheme

 $^{60}_{29}Cu_{31}$

3