⁷Li(³He,α),⁷Li(³He,dα) 2002Ti10,1971Co22

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Hu, Tilley, Kelley et al.	NP A708, 3 (2002)	23-Aug-2001			

1965Fo07: ⁷Li(³He, α) E=1.3-5.5 MeV, measured σ (E,E $_{\alpha}$, θ).

- 1968Co07: ⁷Li(³He, α) E=0.9-12 MeV, measured $\sigma(E_{\alpha},\theta)$, ⁶Li deduced levels, Γ .
- 1969Li06: ⁷Li(³He, α) E=1-12 MeV, measured σ (E, θ), deduced reaction mechanism. ⁶Li deduced levels, J, π , Γ , T.
- 1969Or01: ⁷Li(³He, α) E=2.0-4.2 MeV, measured $\sigma(E,\theta)$, deduced cluster reduced widths. PWBA with exchange analysis.
- 1970Or03: ⁷Li(³He, α) E=6.0, 7.5 MeV, 5-8 MeV, measured σ (E, θ). ⁶Li deduced cluster structure.
- 1971Ar37: ⁷Li(³He, α) E=32, 16 MeV, measured σ (E(α_1), E(α_2)). ⁶Li levels deduced Γ , J, π .
- 1971Co22: ⁷Li(³He, α) E=1.2 MeV, measured α d-, α ALPHA-coin. ⁶Li deduced branching ratios, partial width Γ_d .
- 1971Za07: ⁷Li(³He, α) E(³He)=16-18 MeV, measured σ (E, θ), compared with zero-range, finite-range DWBA.
- 1972Ka08: ⁷Li(³He, α) E=1.5 MeV, measured σ (E $_{\alpha}$,E(⁶Li), $\theta(\alpha)$, $\theta(^{6}$ Li)). ⁷Li(³He, α) complete kinematics E=1.5 MeV, ⁶Li deduced levels, decay modes, isospins.
- 1973Ar05: ⁷Li(³He,*a*) measured (particle)(particle)-coin. ⁶Li levels deduced decay modes.
- 1973Br20: ⁷Li(³He, α),(³He, α d) E=1.45 MeV, measured α d-coin. ⁶Li levels deduced d-branching, isospin mixing.
- 1975Sc31: ⁷Li(³He, α d) E=1.8 MeV, measured α d-coin. ⁶Li deduced levels, γ .
- 1976Da24: ⁷Li(³He, α d) E=4.7 MeV, measured α d(θ), σ .
- 1981An24: ⁷Li(³He, α) E=42.9 MeV, measured $\sigma(E_{\alpha},\theta)$, deduced target breakup incident channel dependence.
- 1981Ba38: ⁷Li(pol ³He, α) E=33.3 MeV, measured $\sigma(\theta)$, A(θ). ⁶Li levels deduced S. DWBA, coupled-channels analysis.
- 1983Ar05: ⁷Li(³He, α d) E=2.5 MeV, measured $\sigma(\theta_d, \theta_\alpha)$ vs arc length. ⁶Li levels deduced Γ .
- 1985Da29: ⁷Li(³He,2 α) E=5 MeV measured α ALPHA-, α d-coin, $\sigma(\theta_1, \theta_2)$, deduced reaction mechanism, channel competition.
- 1985Fr01: ⁷Li(³He, α d) E=120 MeV, measured σ (E₁,E₂, θ ₁, θ ₂), deduced residual missing spectra.
- 1988Ar20: ⁷Li(³He, α d) E=11.5 MeV, measured $\sigma(\theta_d, \theta_\alpha)$ vs arc length. ⁶Li levels deduced γ .
- 1991Ar19: ⁷Li(³He, α d) E=5 MeV, measured $\sigma(\theta_d, \theta_\alpha)$ vs arc length. ⁶Li levels deduced spectroscopic parameters.
- **1995Ar14**: ⁷Li(³He, α d) E=4.5, 6 MeV, measured α d-coin. ⁶Li level deduced Γ .

⁶Li Levels

E(level)	J^{π}	T _{1/2}	Comments
0			
$2.17 \times 10^3 2$			
$3.55 \times 10^3 2$			
4.30×10 ³ 9		1.05 MeV 7	E(level): average of 4.3 MeV 1 and 4.3 MeV 2 (2002Ti10) table 6.12.
			Γ: average of 1.6 MeV 3, 1.60 MeV 12 and 0.6 MeV 1 from (2002Ti10) table 6.12.
$5.34 \times 10^3 2$	2^{+}	560 keV 40	T=1; $\Gamma_{\rm p}/\Gamma$ =0.35 10
			No evidence for d decay, $\Gamma_d/\Gamma < 0.02$.
			$\Gamma_{\rm P+N}/\Gamma = 0.65 \ 10.$
$5.65 \times 10^3 \ 20$		1.65 MeV 3	
28.5×10^3			
32.9×10^3			