Adopted Levels

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. E. Purcell, C. G. Sheu	ENSDF	23-March-2017			

$Q(\beta^{-})=24.28\times10^{3}\ 25;\ S(n)=-9.1\times10^{2}\ 27$ 2017Wa10

- In the NUBASE2016 evaluation of nuclear properties (2017Au03), the ground state of ⁶H is listed as having a mass defect of 41880 keV 250, a half-life of 2.90×10^{-22} s 70 and an estimated J^{π} of 2⁻. This corresponds to a resonance energy in the ³H+3n system of 2.72 MeV 25 and a resonance width of 1.57 MeV 38.
- Calculations reported in (1985Po10,1989Go24) obtained the ⁶H ground state to have $J^{\pi}=2^{-}$. However, a calculation reported in (1986Be02) gives $J^{\pi}=1^{+}$ for the ground state.
- Three particle transfer experiments, cited in the articles (1984Al08,1986Be35,2008Ca22), produced ⁶H in the final state and observed a resonance reasonably consistent with the NUBASE2016 evaluation. However, a pion double charge exchange reaction on ⁶Li, reported in (1990Pa25), which led to ⁶H in the final state, showed no sign of a ⁶H resonance. Also, experiments with stopped pions reported in (2003Gu17,2009Gu17) observed ⁶H resonances at higher excitation energies than the one given in the NUBASE2016 evaluation. Earlier experiments with stopped pions by the same group (1987Go25,1990Am04) saw no evidence of ⁶H states, but, as stated in (2003Gu17), that might have been due to poor statistics and energy resolution.

Theory:

- A shell model calculation with $(0+1)\hbar\omega$ model space for ⁶H is reported in (1985Po10). From Fig. 1 in that article, the ground state energy of the p+5n system is about -3 MeV. From Table 1, the four lowest calculated states (using the ground state as E=0.0) are $0.0(2^{-}), 1.78(1^{-}), 2.80(0^{-}), 4.79(1^{+})$ MeV. These would correspond to resonant states in the ³H+3n system at approximately $E(^{3}H+3n)=5.5(2^{-}), 7.3(1^{-}), 8.3(0^{-}), 10.3(1^{+})$ MeV, taking into account the ³H binding energy of 8.5 MeV. In the same article, a shell model calculation with $(0+2)\hbar\omega$ model space is also reported.
- A shell model calculation for A=6 nuclei is reported in (1986Be02). For ⁶H, the calculated ground state has $J^{\pi}=1^+$ and the binding energy is calculated to be 7.144 MeV in p+5n system which corresponds to a resonance at E=1.34 MeV in the ³H+3n system.
- A calculation of H and He isotopes using the method of angular potential functions is reported in (1989Go24). For the ⁶H ground state, an energy of 6.3 MeV in ³H+3n system and $J^{\pi}=2^{-}$ were obtained.
- A study of H and He isotopes using the anti-symmetrized molecular dynamics method is reported in (2004Ao05).

Positive experimental results: (See reaction data sets).

Negative experimental results:

⁹Be(π^{-} ,pd)X,⁷Li(π^{-} ,p)X:

1987Go25,1990Am04: Studies of the reactions ${}^{9}\text{Be}(\pi^-,\text{pd})X$ and ${}^{7}\text{Li}(\pi^-,\text{p})X$ with stopped pions were reported in (1987Go25,1990Am04). An analysis of the outgoing particle spectra showed no evidence of ${}^{6}\text{H}$ states.

Note: The comment was made in (2003Gu17) that the failure to observe ⁶H states in either of the reactions reported in (1987Go25,1990Am04) may have been due to poor statistics and energy resolution.

$^{6}\text{Li}(\pi^{-},\pi^{+})\text{X}:$

1990Pa25: $E(\pi^{-})=220$ MeV beam from the Los Alamos meson physics facility was incident on a ⁶LiH target and a missing mass π^{+} spectrum obtained. No evidence for ⁶H was found in the energy range -10 MeV to +30 MeV in the ³H+3n scale, thus casting doubt on the existence of ⁶H.

Also see (2007Fo05).

⁶H Levels

Cross Reference (XREF) Flags

Α	$^{7}\text{Li}(^{7}\text{Li},^{8}\text{B})$	D	$^{11}B(\pi^{-},P4HE)$
В	$^{9}\text{Be}(\pi^{-},\text{pd})$	Е	¹² C(⁸ He, ⁶ H)
C	${}^{9}\text{Be}({}^{11}\text{B} {}^{14}\text{O})$		

Adopted Levels (continued)

⁶H Levels (continued)

E(level)	T _{1/2}	$E_{res}(^{3}H+3n)(MeV)$	XREF	Comments
0	1.55 MeV 44	2.72 25	ABCDE	E(level): E(3 H+3n)=2.72 MeV 25 from (2017Wa17). The weighted average of reported values is E(3 H+3n)=2.72 MeV +31-23 from E(3 H+3n)=2.70 MeV 40 (1984A108), 2.60 MeV 50 (1986Be35), 2.91 MeV +77-35 (2008Ca22). Γ =1.55 MeV +44-18, from the weighted average of 1.80 MeV 50 (1984A108), 1.30 MeV 50 (1986Be35), and 1.5 MeV +18-4 (2008Ca22). Γ : Γ =1.57 MeV 38, from (2017Au03). J^{π} : J^{π} =2 ⁻ is predicted in (1985Po10) and (1989Go24); see also J^{π} =1 ⁺ predicted in (1986Be02).
4.1×10 ³ 6	5.6 MeV 15	6.8 6	ΒD	 E(level): From weighted average of E(³H+3n)=6.6 MeV 7 ⁹Be(π⁻,pd) and 7.3 MeV 10 ¹¹B(π⁻,p⁴He) (2003Gu17,2009Gu17). Γ: From weighted average of Γ=5.5 MeV 20 ⁹Be(π⁻,pd) and 5.8 MeV 20 ¹¹B(π⁻,p⁴He) (2003Gu17,2009Gu17).
8.0×10 ³ 8	4 MeV 2	10.7 7	В	E(level), Γ : From ⁹ Be(π^- , pd) (2003Gu17, 2009Gu17).
12.3×10 ³ 7	4.2 MeV 15	15.0 6	B D	 E(level): From weighted average of E(³H+3n)=15.3 MeV 7 ⁹Be(π⁻,pd) and 14.5 MeV 10 ¹¹B(π⁻,p⁴He) (2003Gu17,2009Gu17). Γ: From weighted average of Γ=3 MeV 2 ⁹Be(π⁻,pd) and 5.5 MeV 20 ¹¹B(π⁻,p⁴He) (2003Gu17,2009Gu17).
18.7×10 ³ 5	3.9 MeV 9	21.4 4	B D	E(level): From weighted average of E(³ H+3n)=21.3 MeV 4 ⁹ Be(π ⁻ ,pd) and 22.0 MeV 10 ¹¹ B(π ⁻ ,p ⁴ He) (2003Gu17,2009Gu17). Γ: From weighted average of Γ=3.5 MeV 10 ⁹ Be(π ⁻ ,pd) and 5.5 MeV 20 ¹¹ B(π ⁻ ,p ⁴ He) (2003Gu17,2009Gu17).