7 Li(7 Li, 8 B) 1984A108

Type Author Citation Literature Cutoff Date
Full Evaluation J. E. Purcell, C. G. Sheu ENSDF 23-March-2017

The nucleus $^6\mathrm{H}$ is first reported in this reaction (1984Al08); see (2012Th01). At $\mathrm{E}(^7\mathrm{Li})=82$ MeV from Kurchatov Institute cyclotron, the spectrum of the outgoing $^8\mathrm{B}$ was measured at $\theta_{\mathrm{lab}}=10^\circ$; the cross section was about 60 nb/sr. The energy of the $^6\mathrm{H}$ was deduced and the mass defect of the resonant state, which is assumed to be the $^6\mathrm{H}$ ground state, was found to be 41.9 MeV 4, from which it follows that $^6\mathrm{H}$ is unstable against the decay $^6\mathrm{H} \! \to ^3\mathrm{H} \! + \! 3\mathrm{n}$ by 2.7 MeV 4, and the width is $\Gamma=1.8$ MeV 5, which gives for the $^6\mathrm{H}$ lifetime a value 3.7×10^{-22} s (1984Al08,2012Th01).

⁶H Levels

$$\frac{\text{E(level)}}{0} = \frac{\Gamma}{1.8 \text{ MeV } 5} = \frac{\text{E}_{\text{res}}(^{3}\text{H} + 3\text{n})(\text{MeV})}{2.7 \text{ 4}}$$