⁵⁸Ni(n, γ):resonances 2014Zu01

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. Shamsuzzoha Basunia	NDS 151, 1 (2018)	1-Apr-2018				

Others: 2014Le19, 2010Gu19. Target=⁵⁸Ni sample (supplied by Chemotrade) had a mass of 2.069 g, a diameter of 19.91 mm, thickness of 0.72 mm and an enrichment of 99.5%, with impurities reported as 0.48% ⁶⁰Ni, 0.01% ⁶¹Ni, and 0.005% of both ⁶²Ni and ⁶⁴Ni. Study conducted at the neutron time-of-flight facility n_TOF at CERN. Neutrons produced by pulsed beam of 20 GeV/c protons hitting a cylindrical lead (Pb) target. On average, 300 neutrons are produced per proton, resulting in 2×10^{15} neutrons per pulse. Typical beam conditions are a repetition rate in multiples of 1.2 s and a proton pulse width of 7 ns. Prompt capture γ rays detected by two optimized C₆D₆ liquid scintillation detectors.

⁵⁹Ni Levels

E(level) ^{†‡}	J ^{π#}	L#	K (meV) [@]	Comments
9006.0548 6	1/2	1	20 2	$E(n)(Lab)=6.8927$ keV 6. $K_{unc}=2_{stat}$ and I_{syst} .
9011.680 <i>1</i>	1/2	1	25 4	$E(n)(Lab)=12.616 \text{ keV } I. \text{ K}_{unc}=4_{stat} \text{ and } I_{syst}.$
9012.3452 6	1/2	1	601 <i>21</i>	$E(n)(Lab)=13.2927$ keV 6. $K_{unc}=2I_{stat}$ and 33_{syst} .
9012.6585 <i>3</i>	3/2	1	591 <i>17</i>	$E(n)(Lab)=13.6114 \text{ keV } 3. K_{unc}=17_{stat} \text{ and } 33_{syst}.$
9014.367 7	1/2	0	1279 <i>41</i>	$E(n)(Lab)=15.350 \text{ keV } 7. \text{ K}_{unc}=41_{stat} \text{ and } 71_{syst}.$
9016.186 2	1/2	1	38 9	$E(n)(Lab)=17.200 \text{ keV } 2$. $K_{unc}=9_{stat}$ and 2_{syst} .
9017.931 2	5/2	2	71 10	$E(n)(Lab)=18.976 \text{ keV } 2. \text{ K}_{unc}=10_{stat} \text{ and } 4_{syst}.$
9018.925 <i>1</i>	1/2	1	256 18	$E(n)(Lab)=19.987 \text{ keV } I. K_{unc}=18_{stat} \text{ and } 14_{syst}.$
9020.0239 8	3/2	1	663 27	$E(n)(Lab)=21.1051$ keV 8. $K_{unc}=27_{stat}$ and 37_{syst} .
9024.859 2	3/2	1	263 25	$E(n)(Lab)=26.024$ keV 2. $K_{unc}=25_{stat}$ and 15_{syst} .
9025.421 <i>1</i>	3/2	1	864 40	$E(n)(Lab)=26.596 \text{ keV } 1. \text{ K}_{unc}=40_{stat} \text{ and } 48_{syst}.$
9026.381 4	1/2	1	33 14	$E(n)(Lab)=27.573 \text{ keV } 4$. $K_{unc}=14_{stat}$ and 2_{syst} .
9030.936 <i>3</i>	5/2	2	388 39	$E(n)(Lab)=32.207 \text{ keV } 3. K_{unc}=39_{stat} \text{ and } 21_{syst}.$
9031.064 3	1/2	1	1120 74	$E(n)(Lab)=32.337 \text{ keV } 3. K_{unc}=74_{stat} \text{ and } 62_{syst}.$
9032.873 3	3/2	1	689 67	$E(n)(Lab)=34.178 \text{ keV } 3. \text{ K}_{unc}=67_{stat} \text{ and } 38_{syst}.$
9034.736 3	1/2	0	1020 90	$E(n)(Lab)=36.073 \text{ keV } 3. K_{unc}=90_{stat} \text{ and } 56_{syst}.$
9038.096 <i>3</i>	3/2	2	719 62	$E(n)(Lab)=39.492 \text{ keV } 3. \text{ K}_{unc}=62_{stat} \text{ and } 40_{syst}.$
9042.480 4	5/2	2	123 26	$E(n)(Lab)=43.952 \text{ keV } 4$. $K_{unc}=26_{stat}$ and 7_{syst} .
9046.284 <i>3</i>	3/2	1	1128 87	$E(n)(Lab)=47.822 \text{ keV } 3. K_{unc}=87_{stat} \text{ and } 62_{syst}.$
9050.232 5	5/2	2	780 87	$E(n)(Lab)=51.839 \text{ keV } 5. \text{ K}_{unc}=87_{stat} \text{ and } 43_{syst}.$
9050.530 4	3/2	2	830 80	$E(n)(Lab)=52.142 \text{ keV } 4$. $K_{unc}=80_{stat}$ and 46_{syst} .
9053.055 3	3/2	2	235 44	$E(n)(Lab)=54.711 \text{ keV } 3. K_{unc}=44_{stat} \text{ and } I3_{syst}.$
9056.894 4	3/2	1	570 62	$E(n)(Lab)=58.617 \text{ keV } 4$. $K_{unc}=62_{stat}$ and 32_{syst} .
9058.319 7	3/2	1	606 79	$E(n)(Lab)=60.067 \text{ keV } 7. \text{K}_{unc}=79_{stat} \text{ and } 34_{syst}.$
9059.930 7	1/2	1	$11.2 \times 10^{2} $ 12	$E(n)(Lab)=61.706 \text{ keV } 7. K_{unc}=123_{stat} \text{ and } 62_{syst}. K=1115 \text{ meV}.$
9060.9 2	1/2	0	26.2×10^{2} 25	$E(n)(Lab)=62.7 \text{ keV } 2. K_{unc}=248_{stat} \text{ and } 145_{syst}. K=2621 \text{ meV}.$
9064.523 6	3/2	1	565 78	$E(n)(Lab)=66.379 \text{ keV } 6. \text{ K}_{unc}=78_{stat} \text{ and } 31_{syst}.$
9066.6772 8	3/2	2	205 53	$E(n)(Lab)=68.5706 \text{ keV } 8. \text{ K}_{unc}=53_{stat} \text{ and } 11_{syst}.$
9067.898 9	1/2	1	529 76	$E(n)(Lab)=69.813 \text{ keV } 9. K_{unc}=76_{stat} \text{ and } 29_{syst}.$
9075.951 6	1/2	1	238 57	$E(n)(Lab)=78.006 \text{ keV } 6. K_{unc}=57_{stat} \text{ and } I3_{syst}.$
9079.107 <i>1</i>	3/2	2	$10.2 \times 10^{2} $ 15	$E(n)(Lab)=81.217 \text{ keV } I. K_{unc}=146_{stat} \text{ and } 48_{syst}.$
9080.63 1	3/2	1	15.3×10^{2} 19	$E(n)(Lab)=82.77 \text{ keV } I. K_{unc}=193_{stat} \text{ and } 71_{syst}.$
9081.123 8	1/2	0	$5.7 \times 10^{2} $ 13	$E(n)(Lab)=83.268 \text{ keV } 8. \text{ K}_{unc}=133_{stat} \text{ and } 27_{syst}. \text{ K}=571 \text{ meV}.$
9081.64 <i>1</i>	1/2	1	12.8×10^{2} <i>17</i>	$E(n)(Lab)=83.79 \text{ keV } 1. K_{unc}=169_{stat} \text{ and } 59_{syst}. K=1278 \text{ meV}.$
9082.632 4	3/2	2	234 77	$E(n)(Lab)=84.803 \text{ keV } 4. \text{ K}_{unc}=77_{stat} \text{ and } 11_{syst}.$
9087.575 9	3/2	1	$7.1 \times 10^2 $ 13	$E(n)(Lab)=89.832 \text{ keV } 9. \text{ K}_{unc}=128_{stat} \text{ and } 33_{syst}. \text{ K}=705 \text{ meV}.$
9093.2028 5	5/2	2	$10.3 \times 10^2 $ 18	$E(n)(Lab)=95.5580 \text{ keV } 5. \text{ K}_{unc}=175_{stat} \text{ and } 48_{syst}. \text{ K}=1025 \text{ meV}.$
9094.473 6	5/2	2	6.1×10 ² <i>X</i> 14	$E(n)(Lab)=96.850 \text{ keV } 6. \text{ K}_{unc}=137_{stat} \text{ and } 28_{syst}. \text{ K}=606 \text{ meV}.$
9095.07 2	1/2	1	434 93	$E(n)(Lab)=97.46 \text{ keV } 2. K_{unc}=93_{stat} \text{ and } 20_{syst}.$
9098.802 7	5/2	2	1011 98	$E(n)(Lab)=101.255 \text{ keV } 7. K_{unc}=98_{stat} \text{ and } 47_{syst}.$

Continued on next page (footnotes at end of table)

⁵⁸Ni(n,γ):resonances 2014Zu01 (continued)

⁵⁹Ni Levels (continued)

E(level) ^{†‡}	J π #	L#	K (meV) [@]	Comments
9102.772 7	3/2	2	23.2×10 ² 14	E(n)(Lab)=105.294 keV 7. K _{unc} =144 _{stat} and 108 _{syst} .
9104.442 7	1/2	1	5.1×10 ² & 11	$E(n)(Lab)=106.993 \text{ keV } 7. K_{unc}=105_{stat} \text{ and } 23_{syst}. K=506 \text{ meV}.$
9105.078 8	3/2	2	15.5×10 ² & 16	$E(n)(Lab)=107.640 \text{ keV } 8. \text{ K}_{unc}=156_{stat} \text{ and } 72_{syst}. \text{ K}=1549 \text{ meV}.$
9105.87 8	1/2	0	22.6×10 ² & 23	$E(n)(Lab)=108.45 \text{ keV } 8. \text{ K}_{unc}=232_{stat} \text{ and } 105_{syst}. \text{ K}=2256 \text{ meV}.$
9108.014 7	3/2	1	9.9×10 ² & 11	$E(n)(Lab)=110.627$ keV 7. $K_{unc}=113_{stat}$ and 46_{syst} . K=993 meV.
9108.7292 2	5/2	2	697 <i>31</i>	$E(n)(Lab)=111.3547 \text{ keV } 2. \text{ K}_{unc}=3I_{stat} \text{ and } 32_{syst}.$
9113.708 4	1/2	1	180 58	$E(n)(Lab)=116.420 \text{ keV } 4. \text{K}_{unc}=58_{stat} \text{ and } 8_{syst}.$
9114.94 <i>1</i>	3/2	1	11.9×10 ² & 12	$E(n)(Lab)=117.67 \text{ keV } 1. \text{ K}_{unc}=116_{stat} \text{ and } 55_{syst}. \text{ K}=1185 \text{ meV}.$
9116.857 8	5/2	2	23.4×10 ² & 21	E(n)(Lab)=119.624 keV 8. K _{unc} =211 _{stat} and 108 _{syst} . K=2338 meV.
9118.168 8	1/2	1	3.3×10 ² & 12	$E(n)(Lab)=120.958 \text{ keV } 8. K_{unc}=118_{stat} \text{ and } 15_{syst}. K=332 \text{ meV}.$
9118.46 <i>1</i>	3/2	2	13.8×10 ² & 16	$E(n)(Lab)=121.25 \text{ keV } I. K_{unc}=163_{stat} \text{ and } 64_{syst}. K=1377 \text{ meV}.$

[†] Excitation energies obtained from E(n)(c.m. system)+S(n)(⁵⁹Ni), where S(n)(⁵⁹Ni)=8999.28 5 (2017Wa10: AME-2016).
E(n)(c.m. system)=E(n)(lab)[mass of ⁵⁸Ni)/(mass of neutron+mass of ⁵⁸Ni)]. Relative uncertainties are given here with respect to those in neutron energies. For absolute uncertainty in excitation energy add 0.05 keV in quadrature; this uncertainty dominates for most levels. These excitation energies from neutron resonances are not listed in the Adopted Levels.

[‡] Resolved neutron capture resonances, as recorded in the paper, are given as comments to each energy level.

[#] Quoted 2014Zu01 from ENDF/B-VII.1 parameters database.

[@] K=g_s $\Gamma_{n}\Gamma_{\gamma}/(\Gamma_{n}+\Gamma_{\gamma})$. Since the measured resonance widths were in most cases larger than the natural widths due to Doppler broadening and other issues relating to the experimental set-up only the capture kernel (K) could be determined as defined by equation 3 in the paper K=g_s $\Gamma_{n}\Gamma_{\gamma}/(\Gamma_{n}+\Gamma_{\gamma})$ with g_s=(2J+1)/[(2J_n+1)(2J_{58Ni}+1)] as defined by equation 4 in the paper, which reduces to g_s=(2J+1)/2 for J=spin of resonance state, J_n=1/2, and J^{π}(⁵⁸Ni)=0. Statistical (stat) and systematic (syst) uncertainties are listed in 2014Zu01. Evaluator lists only statistical uncertainties, while both (stat) and (syst) uncertainties are listed in comment section.

& Kernel was rounded by evaluator to fit magnitude of uncertainty into column. Measured capture kernel is given in comments.