	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 151, 1 (2018)	1-Apr-2018

 $Q(\beta^{-}) = -4798.4 4$; S(n)=8999.28 5; S(p)=8598.5 11; Q(α)=-6100.3 3 2017Wa10 Other Reactions:

⁵⁶Fe(α ,n):

2000Zh43: $E(\alpha)=12.3$, 16.3, 18.3 MeV; pulsed beam, n tof; measured n evaporation spectra and angular distributions; deduced energy and spin dependence of ⁵⁹Ni level density.

⁵⁶Fe(¹²C,⁹Be):

1998Pa43: E(¹²C)=60 MeV; measured σ (E), $\sigma(\theta)$.

⁵⁹Ni Levels

Cross Reference (XREF) Flags

	A B C D F F G	⁵⁹ Cu ε decay ⁴⁰ Ca(²⁹ Si,2α2p ⁵⁰ Cr(¹² C,2pηγ) ⁵⁶ Fe(α,nγ) ⁵⁶ Fe(⁶ Li,t) ⁵⁸ Ni(n,γ), (pol ⁵⁸ Ni(n,γ) E=2-	γ) n,γ) E=thermal 120 keV	H J K L M N	⁵⁸ Ni(1 ⁵⁸ Ni(1 ⁵⁸ Ni(1 ⁵⁸ Ni(1 ⁵⁸ Ni(1 ⁵⁸ Ni(1 ⁵⁸ Ni(1 ⁵⁸ Ni(2	(γ):resonances bol ⁷ Li, ⁶ Li) ⁴ C, ¹³ C) ⁶ O, ¹⁵ O) (γ , (pol d,p) bol t,d) ⁶ He,2p γ)	O P Q R S T U	${}^{58}\text{Ni}(\alpha, {}^{3}\text{He})$ ${}^{59}\text{Co}(p,n)$ ${}^{59}\text{Co}(p,n\gamma)$ ${}^{60}\text{Ni}(p,d), (pol p,d)$ ${}^{60}\text{Ni}(d,t), (pol d,t)$ ${}^{60}\text{Ni}({}^{3}\text{He},\alpha)$ ${}^{161}\text{Dy}({}^{58}\text{Ni}, {}^{160}\text{Dy}\gamma)$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XRI	EF				Comments
0.0 ^{<i>a</i>}	3/2-	7.6×10 ⁴ y 5	ABCDEFG IJK	LMNOPQ	RSTU	$\% \varepsilon + \% \beta^+ = 100$ I ^{π} : from (pol d	n). I	(d n)-1
339.418 ^c 12	5/2-	68 ps 8	ABCDEFG J	LMNOPQ	RSTU	$\mu = +0.35 \ I5$ J^{π} : From (pol of $T_{1/2}$: Wt. ave. μ : From integra (1974We05.2)	(,p); L d,p); L of 64 al pert	$L(\mathbf{q},\mathbf{p})=1$ $L(\mathbf{q},\mathbf{p})=3$. \mathbf{p} s 7 (\mathbf{p} , $\mathbf{n}\gamma$) and 83 ps 14 (α , $\mathbf{n}\gamma$). \mathbf{n} (\mathbf{p} , $\mathbf{n}\gamma$) and 83 ps 14 (α , $\mathbf{n}\gamma$).
464.945 15	$1/2^{-}$	20 ps 4	A CDEFG IJK	LMNOPQ	RSTU	J^{π} : from (pol d T ₁ α : From (α	,p); L	(d,p)=1.
877.967 14	3/2-	0.46 ps 10	A CD FG J	L NOPQ	RSTU	J^{π} : From (pol α $T_{1/2}$: From (α , +62-24 (n α)	l,p); L hγ), C	L(d,p)=1. Others: 0.49 ps 17 (p,n γ) and 0.43 ps
1188.797 <i>16</i>	5/2-	0.23 ps 4	A CD F JKI	l nopq	R TU	J^{π} : From (pol I) 5^{9} Cu ε decay $T_{1/2}$: Wt. ave. 0.14 ps +6-6	o,d), L 7. of 0.2	$L(p,d)=3; \log ft=7.0 \text{ from } 3/2^- \text{ in}$ 28 ps 6 (α ,n γ), 0.26 ps 6 (p,n γ) and
1301.441 <i>16</i>	1/2-	0.111 ps 24	A DeFG J	L NOPQ	RSTU	J^{π} : From (pol of $T_{1/2}$: Wt. ave.	(1, p); L of 0.2 4 (n. γ	(d,p)=1. 25 ps 5 (α ,n γ), 0.097 ps 24 (p,n γ) and
1337.90 ^{<i>a</i>} 3	7/2-	0.95 ps 24	ABCDeF K	LNPQ	RU	J^{π} : L(d,p)=3; E	E1 γ fi	rom $9/2^+$.
1679.701 <i>21</i>	5/2-	20 ps 4	A D F J I	L NOPQ	RSTU	J^{π} : from (pol d $T_{1/2}$: From (α ,	,p); L nγ). C	(d,p)=3. Other: 0.19 ps 5 (p,n γ).
1734.708 <i>17</i>	3/2-	108 fs 25	A D FG	P LNQ		J ^{π} : from (pol d T _{1/2} : Wt. ave. (p,n γ).	,p); L of 0.1	(d,p)=1. 22 ps 25 (α ,n γ) and 0.090 ps 28

⁵⁹Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		XREF	Comments
1739.24 <i>20</i> 1746.1 <i>10</i>	(9/2 ⁻) 5/2 ⁻ ,7/2 ⁻	76 fs 44	CD	k P LOQ	J ^π : stretched Q γ to $5/2^-$. XREF: O(1760). J ^π : L(α, ³ He)=3.
1767.44 ^c 6	9/2-	0.60 ps 14	BCD	kL N PQ	$T_{1/2}$: From (p,n γ). J ^{π} : 1428.02 γ E2 to 5/2 ⁻ ; 429.58 γ M1+E2 to 7/2 ⁻ ; Band member.
1947.99 8	7/2-	0.119 ps 27	BCDEF	JKLMNOPQRSTU	T _{1/2} : Wt. ave. of 0.56 ps <i>14</i> (<i>α</i> ,n <i>γ</i>) and 0.83 ps <i>32</i> (p,n <i>γ</i>). XREF: S(1980). J^{π} : From (pol d,p); L(d,p)=3. Possible f _{5/2} band member as from (³ He,2p <i>γ</i>) only. T _{1/2} : Wt. ave. of 0.135 ps <i>27</i> (<i>α</i> ,n <i>γ</i>) and 0.10 ps <i>3</i> (p. pr)
23302	5/2-7/2-			0	$(p, n\gamma)$. $I^{\pi} \cdot I (\alpha^{3} H_{e}) = 3$
2414.904 18	$3/2^{-}$, $7/2$ $3/2^{-}$	37 fs 6	A D FG	JL PQ T	$J^{\pi}: L(d,p)=1; J \neq 1/2 \text{ from (pol } n,\gamma).$
2421.96 6	,		F	L	$T_{1/2}$: Wt. ave. of 34 fs 10 (α,nγ) and 38 fs 6 (n,γ). XREF: L(2428).
2480	$(3/2^+, 5/2^+)$			0	J^{π} : L(α , ³ He)=(2).
2530.40 <i>12</i> 2535.50 <i>22</i> 2553 5 <i>10</i>	(9/2)		CD	IN PQ I p N	J^{*} : 1193 γ D+Q to 1/2 ; 2191 γ Q to 5/2 .
2627.06 8	7/2-		eF	L NOPQRSt	J^{π} : from (pol p,d); L(p,d)=3.
2640	$(1/2^-, 3/2^-)$		е	0	J^{π} : L(α , ³ He)=(1).
2679.63 16	(5/2 ⁻)		A F	L N PQ t	J ^{π} : log $f^{1u}t < 8.5$ from $3/2^{-}$ in ⁵⁹ Cu ε decay. L(d,p)=3, J=5/2 from (pol d,p) for probable doublet dominated by this level.
2692 5	11/2-	0.25 mg 8	DCD	L	M_{1} E2 at to 7/2=, 027 68 (M1 + E2) to (0/2)=, Dond
2705.08" 7	11/2	0.35 ps 8	вср	LNPQ	J [*] : E2 γ to $1/2$; 957.08 γ (M1+E2) to (9/2); Band member. T ₁ α : From (α n γ)
2715.02 11			F	LQ	1/2. 110m (a,n/).
2893.563 23	3/2-	30 fs 6	EFG	L P	XREF: L(2901).
					$T_{1/2}$: From (n,γ) .
3025 77 3	1/2-3/2-		F	тт	J [*] : L(d,p)=1; J \neq 1/2 from (pol n, γ). XREF: L (3035)
3023.11 3	1/2 ,5/2		•		J^{π} : L=1 component of L(d,p)=1+3 doublet.
3037.5 20	7/2-			L PQR t	XREF: L(3035). J ^π : (pol p,d); L(p,d)=3.
3054.36 ^b 10	9/2+		Ве	JKL NOP	J^{π} : from (pol d,p) and L(d,p)=4.
3061 5			е	P st	XREF: $s(3090)$.
					$J^{(1)}(1/2)$ from (pol d,t) and $L(d,t)=3$ for 3061 and/or 3125 level(s)
3125.72 12	7/2-		DF	N PQRst	XREF: R(3105)s(3090).
	,				J^{π} : from (pol p,d) and L(p,d)=3; γ to 3/2 ⁻ and (9/2) ⁻ , 434 0 γ from (11/2 ⁻)
3132 10	$(1/2^{-},3/2^{-})$			L	+5+.07 mom (11/2).
3164	7/2-			R	J^{π} : from (pol p,d), L(p,d)=3.
3181.576 18	3/2 ⁽⁻⁾	26 fs 3	F	L oP	J ^{π} : Spin from (pol n, γ), parity suggested by 2013Sc06,2013ScZZ based on cross section ratio in (d,p) and (α , ³ He).
2106.10					$T_{1/2}$: From (n, γ) E=thermal.
3196 <i>10</i> 3206 7-15				L O	
3308.1 20				L PO	
3320 4				L Q	
3343.23 6			F	PQ	

⁵⁹Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{(0)}$	Х	KREF	Comments
3353.5 20 3376.91 ^c 8 3377.27 5	$11/2^{-}$ (1/2 ⁻ ,3/2)		BCD F	L PQ 1 N 1 p	J^{π} : E2(+M1) γ to 11/2 ⁻ ; 2039.1 γ Q to 7/2 ⁻ ; Band member. J^{π} : primary γ from 1/2 ⁺ in (n, γ) E=thermal; γ to 5/2 ⁻ and
3380.6 19	(7/2 ⁻)			L pQR	1/2 . XREF: R(3391).
3413.61 16	(1/2,3/2 ⁻)		F	L P	J [*] : (pol p,d) and L(p,d); γ to $3/2^{-}$ and $1/2^{-}$. J [#] : Primary γ from $1/2^{+}$ (n, γ) Thermal, γ from $(3/2^{+}, 5/2^{+})$, γ to $1/2^{-}$ and $3/2^{-}$ states.
3429 3447 5 3452.46 6	(1/2 ⁺) 3/2 ⁻		F	L OP L O	J ^{π} : probable L=0 component of L=1+0 doublet in (α , ³ He). XREF: L(3461). I ^{π} : from (nol d p): L(d p)=1
3515 5				Ρr	J^{π} : r(3537). J^{π} : r(2 ⁻) from (pol p,d) and L(p,d)=3 for 3515 and/or 3528
3528 <i>3</i>				PQr t	XREF: r(3537). J ^π : γ to 3/2 ⁻ and 5/2 ⁻ . J ^π =7/2 ⁻ from (pol p,d) and L(p,d)=3 for 3515 and/or 3528 level(s).
3537.7 <i>3</i> 3540.04 <i>7</i> 3546.0 <i>3</i>	(9/2 ⁻) 5/2 ⁺	0.21 ps 5	F D	N t L t t	J^{π} : 2348.0 γ Q to 5/2 ⁻ ; 2200.6 γ to 7/2 ⁻ . J^{π} : From (pol d,p); L(d,p)=2. $T_{1/2}$: From (α ,n γ).
3559.45 ^d 8 3562.98 4	$(11/2)^-$ $(1/2^-, 3/2^-)$		BCD F	NP LOt	J^{π} : M1(+E2) γ to 11/2 ⁻ ; γ to 7/2 ⁻ . XREF: L(3573). J^{π} : Primary γ from 1/2 ⁺ in (n, γ) Thermal; γ to 1/2 ⁻ and $3/2^{-}$ states
3600 <i>10</i> 3640 <i>4</i>	5/2-			L L P	J^{π} : from (pol d,p); L(d,p)=3. E(level): weighted average of 3638 5 in (p,n) and 3648 10 in
3686.146 24	$(3/2^+)$		F	L	(d,p). J^{π} : 3/2,5/2 from (pol n, γ); L(d,p)=(2); γ to 1/2 ⁻ ; γ from $1/2^+$ (capture state (n γ))
3730 10	7/2-			1 R T	J^{π} : From (pol p.d), L(p,d)=3. E(eyel): Erom (³ He α), 3730, 20 or 3697 in (p.d)
3730.27 4	(1/2 ⁻ ,3/2)		F	1	J^{π} : γ to $1/2^-$ and $5/2^-$; primary γ from $1/2^+$ in (n,γ) E=thermal.
3745 10 3791 10 3807 3818	(2/2=)		_	L L o L o L o	J ^{π} : L(α , ³ He)=1 for one or more of 3791, 3807, 3818 levels. J ^{π} : L(α , ³ He)=1 for one or more of 3791, 3807, 3818 levels. J ^{π} : L(α , ³ He)=1 for one or more of 3791, 3807, 3818 levels.
3853.67 5	(3/2)		F	L .	XREF: L(3866). J^{π} : from (pol d,p); L(d,p)=1.
3889.73 6 3910 10 3944 10 4005 10			F	L L L	XREF: L(3898).
4021.95 5 4036 10 4087 10	(1/2 ⁻ ,3/2 ⁻) (3/2) ⁻		F	L L	J ^{π} : fed by primary γ in (n, γ) E=thermal. J ^{π} : L(d,p)=1, J=3/2 from (pol d,p).
4103.04 <i>17</i> 4120 <i>10</i> 4133 <i>10</i>	(11/2 ⁺)			N L L	$J^{\pi}: \gamma \text{ to } (9/2)^{-}.$
4140.28 3	(3/2 ⁻ ,1/2 ⁻)	4.5 fs 10	F		J^{π} , $T_{1/2}$: from (n, γ) E=thermal. Fed by primary γ ; γ to $1/2^{-}$, $5/2^{-}$, $7/2^{-}$. Weaker 1513.0 γ to $7/2^{-}$ favors $3/2^{-}$.
4141.07 ^d 8 4154 <i>10</i>	(13/2) ⁻ 1/2 ⁻ ,3/2 ⁻		BCD	N L	J^{π} : Q γ to (9/2) ⁻ ; M1(+E2) γ to (11/2) ⁻ . J^{π} : L=1 in (p,d).

⁵⁹Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	X	REF		Comments
4160 20	7/2-			Rt	J^{π} : from (pol p,d); L(p,d)=3. Other F: 4104 (also from (p,d)).
4177 <i>10</i> 4213 <i>10</i> 4230 <i>20</i>	(1/2 ⁻ ,3/2 ⁻) (3/2 ⁺ ,5/2 ⁺) 7/2 ⁻		L L	Rt	J^{π} : From (pol p,d); L(p,d)=3.
4252.88 6	(3/2 ⁻)	F	L		XREF: L(4264). J^{π} : L(d,p)=(1); γ to $(5/2)^+$.
4290 10	7/2-		L	RΤ	XREF: $R(4253)$. E(level),J ^{π} : Energy: wt. ave. of 4286 <i>10</i> (³ He, α) and 4293 <i>10</i> (d,p), (pol d,p). J ^{π} from (pol p,d), L=3 (p,d).
4328 10	(7/2 ⁻)		L	R	XREF: R(4356). J^{π} : (pol p,d) and L(p,d).
4352.44 6 4397 <i>11</i>	(1/2 ⁻ ,3/2)	F	L L	Т	J ^{π} : primary γ from 1/2 ⁺ in (n, γ) E=thermal; γ to 1/2 ⁻ and 5/2 ⁻ . XREF: L(4407)T(4386). E(level): Weighted average of 4407 10 (d p) (pol d p) and 4386 10 (³ He α)
4418.38 16	$(13/2^{-})$		N		$J^{(c)}(\gamma)$ (11/2) ⁻ and (9/2) ⁻ .
4419 10	$(1/2^+)$		L	R	E(level): From ³⁶ N ₁ (d,p), (pol d,p). J^{π} : L(p,d)=(0).
4441 10	5/2-,7/2-			RΤ	XREF: R(4479). J^{π} : L(³ He, α)=3.
4455.14 ^b 14 4470 10	13/2 ⁺ (7/2 ⁻)	BCD	N L	R	J ^{π} : E1+M2 γ to 11/2 ⁻ ; Q γ to 9/2 ⁺ ; Band member. XREF: R(4479). I ^{π} : From (nol n d) and L (n d)=3. Other: L=2 (α ³ He)
4494.12 <i>13</i>	5/2+	F	L O		Other E: 4560 20 in one (p,d) study. XREF: L(4506)O(4470). $I^{T_{1}}$ from (pol d p) L(d p)=2
4532.8 4		F			J . from (pol u, p), $L(u, p) - 2$.
4542 10	5/2-,7/2-		L	Т	E(level): Weighted average of 4543 10 (d,p),(pol d,p) and 4541 10 (³ He, α). J ^{π} : L(³ He, α)=3.
4557 <i>10</i> 4615	7/2-		L	R	J^{π} : from (pol p,d) and L(p,d)=3. Other E: 4690 20, also from (p,d).
4615.78 23	(9/2+)		LN		J ^π : γ to 9/2 ⁺ ; γ(θ) interpreted in (³ He,2pγ) as that of a D, Δ J=0 transition.
4648 4650 <i>10</i>	(1/2 ⁺) 5/2 ⁻ ,7/2 ⁻		L	R T	J^{π} : from (pol p,d) and L(p,d)=0. XREF: T(4639). I^{π} : L (³ He α)=3
4709 <i>10</i> 4709 <i>10</i>	5/2 ⁻ ,7/2 ⁻ 9/2 ⁺		L	Т	J^{π} : $L({}^{3}He,\alpha)=3$. J^{π} : $L({}^{3}He,\alpha)=3$. J^{π} : from (pol d p) and $L(d,p)=4$.
4715.35 6	(3/2)-	F	L		XREF: L(4728). J^{π} : primary γ from 1/2 ⁺ in (n, γ) E=thermal; γ to 1/2 ⁻ and 7/2 ⁻ . L=1 (d,p).
4769 4782.6 3 4799 10 4822 10 4856 10 4869 10 4887 10 4920 10 4939 10	(1/2 ⁻ ,3/2 ⁻) 5/2 ⁺	F	L L L L L L L L		J ^{π} : Primary γ from 1/2 ⁺ (n, γ) Thermal, γ to 1/2 ⁻ . J ^{π} : from (pol d,p) and L(d,p)=2.
4947.17 ^d 11 4949.22 9	$(15/2)^-$ $(1/2^-, 3/2)$	BCD F	N L		J ^{π} : M1+E2 γ to (13/2) ⁻ . XREF: L(4960). J ^{π} : Primary γ from 1/2 ⁺ (n γ) Thermal γ to 5/2 ⁻
4968.94 <i>4</i>	(1/2 ⁻ ,3/2)	F	L		XREF: L(4980).

⁵⁹Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$		XI	REF		Comments
						J ^{π} : Primary γ from 1/2 ⁺ (n, γ) Thermal, γ to 5/2 ⁻ .
4977	7/2-				R	J^{π} : from (pol p,d) and L(p,d)=3.
5029				L		
5044				L		
5062				L		
5069.04 6	$(1/2^{-},3/2)$		F	L		XREF: L(5080).
5007 72 16	(10/0-)					J [*] : Primary γ from 1/2 ⁺ (n, γ) Thermal, γ to 5/2.
5097.73 10	(13/2)			N	р	J^{Λ} : γ to (11/2) and (13/2). \overline{M} : from (not n d) and \overline{L} (n d) = (0)
513174	(1/2) $(1/2^{-} 3/2^{-})$		F	1	ĸ	J [*] . If the p(u) and L(p,u)=(0). I^{π} : Primary α from $1/2^+$ (n α) Thermal. α to $3/2^-$
5149 10	(1/2, 3/2) $1/2^+$		r	ī	т	F(level): From $(d \mathbf{n})$ (nol $d \mathbf{n}$)
5201	7/2-			-	R	I^{π} : from (nol n,d) and $L(n,d)=3$.
5213 10	5/2+			L		J^{π} : from (pol d,p) and L(d,p)=2.
5251.45 ^b 17	$17/2^+$	BC		N		I^{π} : E2 γ to $13/2^+$: Band member.
5258 10	$7/2^{-}.5/2^{-}$	20		L	RТ	XREF: R(5249)T(5264).
020010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-		I^{π} : L=3 in (³ He α).
5269				L		
5292 10	$(1/2^{-},3/2^{-})$			L		
5292.99 22	$(15/2^{-})$			N		J^{π} : γ to $(13/2)^{-}$.
5349					R	
5372 10	7/2-			L	R	XREF: R(5410).
5201 20 15	(15/0+)					J^{π} : from (pol p,d) and L(p,d)=3.
5381.30 15	$(15/2^{+})$ $(2/2^{+}, 5/2^{+})$		F	, N		J [*] : γ to (13/2) and (11/2 ⁺).
5564.72 0	(3/2, 3/2)		г	L		AREF. L(3.95). I^{π} : L (d p)=2: α to $1/2^{-}$ and $7/2^{-}$
5429 10	$(9/2)^+$			L		J^{π} : from (pol d.p) and L(d.p)=4.
5444.16 20	$3/2^+, 5/2^+$		F	-		v i nom (por e,p) and 2(e,p) in
5451	7/2-				R	J^{π} : from (pol p,d) and L(p,d)=3.
5458 10	$(5/2)^+$			L		J^{π} : from (pol d,p) and L(d,p)=2.
5494.23 24			F			
5508 10				L		
5528 10	1/2+			L	R	XREF: R(5529).
55(0.10	$(1/2^{+})$					J^{*} : from (pol p,d) and L(p,d)=0.
5509 10	$(1/2^{+})$			L	rt rt	AKEF: $I(3387)I(3380)$. XREF: $r(5587)I(5586)$
5617 27 8	$(1/2^{-} 3/2)$		F	L	1 (I^{π} : fed by primary γ from $1/2^+$ in $(n \gamma)$ E=thermal: γ to $5/2^-$
5632.14 5	$(1/2^{-},3/2)$		F	L		XREF: L(5629).
	(-1- ,-1-)		-	_		J^{π} : fed by primary γ from $1/2^+$ in (n,γ) E=thermal; γ to $5/2^-$.
5648 10	$1/2^{+}$			L	R	E(level), J^{π} : Energy (d,p), (pol d,p) and J^{π} from L(p,d)=0.
5676.93 19	$1/2^{+}$		F	L		XREF: L(5692).
5702.18 7	$(1/2^{-}, 3/2)$		F			J ^{π} : fed by primary γ from 1/2 ⁺ in (n, γ) E=thermal; γ to 1/2 ⁻ and 5/2 ⁻ .
5747 10	(1 (2 - 2 (2))		_	L	r t	XREF: r(5758).
5754.47 15	(1/2, 3/2)		F	L	rt	XREF: $L(5/62)r(5/58)$.
5771				т		J [*] : fed by primary γ from 1/2 ⁺ in (n, γ) E=thermal; γ to 1/2 and 5/2.
5783 10				L T	гt	AKE Γ . 1(<i>J1J</i> 0).
5805 10	$(3/2^+, 5/2^+)$			L		
5808.8.3	(3/2 ,3/2)		F	ĩ	r	XREF: L(5821)r(5830).
5821 10			-	L	r	XREF: r(5830).
						$J^{\pi}=3/2^+$ from (pol p,d) and L(p,d)=(2) for 5821 and/or 5844 level(s).
5844 10	$(3/2^+, 5/2^+)$			L	r	XREF: r(5830).
						$J^{\pi}=3/2^{+}$ from (pol p,d) and L(p,d)=(2) for 5821 and/or 5844 level(s).
5872 10	1/2+,3/2+,5/2+			L	r T	XREF: r(5892).
						J^{π} : L(³ He, α)=0,2.
5894 10	$(5/2)^+$			L	r	XREF: r(5892).
						J": trom (pol d,p) and $L(d,p)=2$.

⁵⁹Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$		XRE	F		Comments
5924 10			L		r	XREF: r(5892).
5944.2 ^d 10		В				
5946 10	$(7/2^{-})$		L		R	XREF: R(5941).
						J^{π} : from (pol p,d) and L(p,d)=(3).
5957.12 9	$1/2^{+}$		F L			XREF: L(5967).
5988 10	1/2-,3/2-		L			J^{π} : L=1 in (d,p).
5989.06 25	$(17/2^{+})$			N	D	J [*] : If band assignment is correct; γ to $(13/2)^+$ level.
0013 10	(7/2)		L		ĸ	AKEF: $K(0025)$. I: from (nol n d) and I (n d)=(3)
6030 47 6	1/2-3/2-		F I			J . from (pot p,d) and $L(p,d) = (5)$.
6071 10	1/2 ,5/2		L		R	XREF: R(6082).
						E(level): from (d,p).
6076.09 16	$(15/2^{-}, 17/2^{-})$			N		J^{π} : M1,E2 γ to $(13/2)^{-}$; γ to $(15/2)^{-}$.
6101.90 22	$3/2^+, 5/2^+$		F L			XREF: L(6114).
6106.80 12			F			
6141.87 <i>13</i>	$1/2^{-}, 3/2^{-}$		F L			XREF: L(6149).
6164	$(3/2^{+})$		г. т.		R	J ^{\wedge} : From (pol p,d) and L(p,d)=(2).
6206 10	$(5/2)^+$		r L I			AKEF: $L(0109)$. I^{π} : From (nol d n) and $I(d n)=2$
6225 10	(3/2) $3/2^+$ $5/2^+$		L			J . From (por \mathbf{u}, \mathbf{p}) and $\mathbf{E}(\mathbf{u}, \mathbf{p}) = 2$.
6245 10	5/2 ,5/2		Ĺ			
6269 10			L			
6279.99 <i>13</i>			F L			XREF: L(6284).
6305 10	$(5/2)^+$		L			J^{π} : From (pol d,p) and L(d,p)=2.
6339 10	$3/2^+, 5/2^+$		L			
6354 10	1/0+		L			
6380 10	1/21					
0431.3 3 6454 10	3/2+ 5/2+		F L			
6481 10	$3/2^+$ $5/2^+$		L			
6498.20 18	$3/2^+, 5/2^+$		F L			XREF: L(6507).
6502.39 19	$(19/2^{-})$			N		J^{π} : Q γ to (15/2) ⁻ .
6521 10			L			
6535 10			L			
6562.1 4			F L			XREF: L(6567).
6583 10	(2)(2 + 5)(2 + 3)		L		t	
6598.66 11	$(3/2^+, 5/2^+)$		F L		t	XREF: L(6605).
6679 <i>10</i>	$\frac{5/2}{(1/2^+)}$		L			
6690 10	$(3/2^+ 5/2^+)$		L			
6709 10	$3/2^+, 5/2^+$		Ĺ			
6726 10	$3/2^+, 5/2^+$		L			
6749 10	$3/2^+, 5/2^+$		L			
6771 10			L			
6788 10			L			
6806 10	2/0+ 5/0+		L			
6850 10	3/2, 3/2		L			
6873 7 4			FI			XREF: L (6880)
6895			- L			······································
6919 10	$1/2^{+}$		Ĺ			
6942	7/2-				R	J^{π} : from (pol p,d) and L(p,d)=3.
6948.0 <i>4</i>	$1/2^{+}$		F L			XREF: L(6955).
6978			L			
6994 10			L			
1023-10			L			

⁵⁹Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
7042 10	7/2-,5/2-	L T	XREF: T(7068).
			$L({}^{3}He, \alpha) = 3.$
7073 10	1/2+,3/2+,5/2+	L	J^{π} : L(d,p)=0+2.
7092 10		L	
7111 10		L	
7141 10		Ĺ	
7160 10	$1/2^{+}$	L	
7163.9 <i>3</i>	(19/2 ⁻ ,21/2 ⁻)	N	J^{π} : γ to (19/2 ⁻).
7187.4 5		F L	
7204 10	$1/2^+, 3/2^+, 5/2^+$	L	J^{n} : L(d,p)=0+2.
1257 10	5/2 ,5/2	LK	AREF: $R(/207)$. E(level): from (d n)
7263 10	$(7/2)^{-}$	LR	XREF: R(7305).
			J^{π} : L(p,d)=3; probable ⁵⁹ Co(g.s.) analogue fragment.
			E(level): from (d,p). 36.2 keV 2 below strongest analogue fragment in
			(p,d).
7270.51 12	$(1/2^+, 3/2)$	F	J^{π} : fed by primary γ from $1/2^+$ in (n,γ) E=thermal; γ to $5/2^+$.
7282 10	3/2*,5/2*	L K	$\begin{array}{l} \text{XKEF: } R(7330). \\ F(\operatorname{leval}): \text{ from } (d, \mathbf{n}) \end{array}$
7302.9	7/2-	I. PRT	XREF R(7341)T(7330)
1502 >	1/2	2	J^{π} : L(d,p)=3; (pol p,d), ⁵⁹ Co(g,s,) analogue, from (p,p). Strongest
			analogue fragment in (p,d).
7324 10	$(7/2)^{-}$	L R	XREF: R(7359).
			J^{π} : L(p,d)=3; probable ⁵⁹ Co(g.s.) analogue fragment.
			E(level): from (d,p). 17.7 keV 3 above strongest analogue fragment in
7252 10	2/2+ 5/2+	т	(p,d).
7384 10	3/2, $3/23/2^+ 5/2^+$	L	XREF: R(7414)
750110	5/2 ,5/2	2 1	E(level): from (d,p).
7408 10	3/2+,5/2+	L	
7434 10	3/2+,5/2+	L	
7455 10	3/2+,5/2+	L	
74/8 10		L	
7504 10		L	
7521 10		L	
7539 10	3/2+,5/2+	L	
7564	$1/2^{+}$	L	
1514		L	
7584 7604	3/2+ 5/2+	L	
7626	$3/2^+, 7/2^+$	Ĺ	
7654	$3/2^+, 5/2^+$	L	
7684	3/2+,5/2+	L	
7707		L	
7733		L	
7775		L	
7802	$3/2^+, 5/2^+$	Ĺ	
7825	3/2+,5/2+	L	
7845		L	
7865	$1/2^+$	L	
/884 7014	3/2 ' , 3 /2 ⁺	L	
7930		L L	
		-	

⁵⁹Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$		XREF	Comments
7950.4 <i>4</i> 7972 8019 8055	$(19/2^{-},21/2^{-})$ $3/2^{+},5/2^{+}$ $3/2^{+},5/2^{+}$ $3/2^{+},5/2^{+}$		N L L L	J^{π} : γ to $(19/2^{-}, 21/2^{-})$.
8129.5 ^{<i>e</i>} 11 8129.5+x ^{<i>e</i>}	$(21/2^+)^n$ $(21/2^+)$	B B		Additional information 1. E(level): This level is likely the same as 8129.5, i.e. X=0. There is a small possibility that unobserved weak and multipath connecting transitions from this level to the normal bands may exist, noted in 2002Yu01.
8183 8216	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺		L L	
8240	$3/2^+, 5/2^+$		L	
8269	$3/2^+, 5/2^+$		L	
8296	$3/2^+, 5/2^+$		L	
8337	$3/2^+, 5/2^+$		L	
8377 8417	$\frac{3}{2}, \frac{3}{2}, \frac$		L	
8469	3/2, $3/23/2^+ 5/2^+$		L	
8482	$(3/2)^{-}$		т	$I^{\pi} \cdot I({}^{3}\text{He}\alpha) = 1$
0.02	(0/=)			Possible ⁵⁹ Co(1099 level) analogue.
9081	$(7/2)^{-}$		Т	$J^{\pi}: L({}^{3}\text{He}.\alpha)=3.$
	(Possible 59 Co(1745 level) analogue, in which case J=7/2.
$9896.3 + x^{e}$ 9	$(25/2^+)^{\#}$	В		
10085	$(1/2)^+$	-	Т	J ^{π} : L(³ He, α)=0,2; possible ⁵⁹ Co(2713 level) analogue, in which case J=1/2.
$10417.2 + x^{f} 9$	$(23/2)^{\#}$	В		,
10527	$(3/2)^+$	-	Т	J ^{π} : L(³ He, α)=0,2; possible ⁵⁹ Co(3161 level) analogue, in which case J=3/2.
10600	$1/2^{+}$		R	$J^{\pi}: L(p,d)=0.$
11641.1+x ^f 10	$(27/2)^{\#}$	В		
11906.6+x ^e 12	$(29/2^+)^{\#}$	В		
13224.9+x ^f 12	$(31/2)^{\#}$	В		
$14278.7 + x^{e}.16$	$(33/2^+)^{\#}$	R		
$15175.9 \pm x \int 16$	$(35/2)^{\#}$	R		
16463.7 + x 19	(33/2)	B		
17.04×10^3 30	$(3/2^{-})$	_	Р	J^{π} : probable analogue of ⁵⁹ Fe(g.s.).
$17581.7 + x^{e}.19$	$(37/2^+)^{\#}$	В		
$17682.0 \pm x \int 19$	$(39/2)^{\#}$	R		
$21100.1 \pm x \int 21$	$(32/2)^{\#}$	D		
$21100.1+x^{3}$ 21	(43/2)	D		
1771. h		Б		
$1//1+y^{\prime\prime}$		В		
2704.1 + y 18		D		
3652.1+y ^h 15		В		
5802.1 + y'' 18		В		
$8379.2 + y''_{h} 20$		В		
11439.3+y ⁿ 23		В		
Z		B		
$5/9.0+z^{8}$ 15		В		
$10/3.0+2^{\circ}$ 10 3608 1 $\frac{28}{15}$ 15		D R		
3000.1+Z ^o 13		D		

⁵⁹Ni Levels (continued)

	XREF
В	
В	
В	
В	
	B B B B

[†] E(level) up to 21100.4+x is from least-squares adjustment of Eγ for levels for which Eγ data are available, unless indicated otherwise. 2200.6γ and 2348.0γ from 3537.7 keV level had a poor fit (more than 4 standard deviation) – so uncertainty doubled for these two γ-ray energies during the fit. Energy for levels above 21100.4+x from corresponding dataset. For E>8500, levels reported in (d,p) are not tabulated here. Their energies and J^π assignments (based on L(d,p)) are as follows: 8512 [3/2⁺,5/2⁺]; 8536; 8578 [3/2⁺,5/2⁺]; 8649 [3/2⁺,5/2⁺]; 8644 [3/2⁺,5/2⁺]; 8713 [3/2⁺,5/2⁺]; 8728 [3/2⁺,5/2⁺]; 8768 [3/2⁺,5/2⁺]; 8808 [3/2⁺,5/2⁺]; 8839 [3/2⁺,5/2⁺]; 8855 [3/2⁺,5/2⁺]; 8871 [3/2⁺,5/2⁺]; 8895 [3/2⁺,5/2⁺]; 8950 [3/2⁺,5/2⁺]; 8950 [3/2⁺,5/2⁺]; 8954; 9028 [3/2⁺,5/2⁺]; 9062 [3/2⁺,5/2⁺]; 9113 [3/2⁺,5/2⁺]; 9167; 9206 [3/2⁺,5/2⁺]; 9247 [3/2⁺,5/2⁺]; 9276 [3/2⁺,5/2⁺]; 9299 [3/2⁺,5/2⁺]. Another 51 excitation energies from 9006.05- to 9118.46-keV can be seen in ⁵⁸Ni(n,γ):resonances dataset.

[‡] From L(d,p), except as noted.

[#] From ${}^{40}Ca({}^{29}Si,2\alpha 2p\gamma)$; based on DCO measurements and deduced band structure.

- [@] Uncertainty of weighted average data is the lowest uncertainty of the experimental input.
- [&] From 1981Ni08. Others: 7.5×10^4 y *13* (1951Br05), 75×10^4 y (1951Wi14), 10.0×10^4 y *25* (1956Sa32), 29×10^4 y *10* (1991No08), 9.7×10^4 y *9* (From 2008WaZW, which is a revised value of 10.8×10^4 y *13* 1994Ru19).
- ^{*a*} Seq.(E): $3/2^{-}$ band.
- ^{*b*} Seq.(F): $9/2^+$ band.
- ^{*c*} Seq.(G): $5/2^{-}$ band.
- ^d Seq.(H): Based on $11/2^{-}$.
- ^{*e*} Band(A): Highly-deformed band-1, based on $(21/2^+)$. Proposed configuration= $\pi[(f_{7/2})_6^{-2}(p_{3/2}f_{5/2})_4^2] \otimes \nu[(p_{3/2}f_{5/2})_4^2(g_{9/2})].$ Q(transition)=1.5 to 1.1.
- ^{*f*} Band(B): Highly-deformed band-2, based on (23/2). Proposed configuration= $\pi[(f_{7/2})_6^{-2}(p_{3/2} \text{ or } f_{5/2})(g_{9/2})] \otimes v[(p_{3/2}f_{5/2})_4^2g_{9/2}]$. Q(transition)=2.0 to 1.1.
- ^g Band(C): Highly-deformed band-3.
- ^{*h*} Band(D): Highly-deformed band-4.

					Adopte	d Levels, G	ammas (continu	ued)
						$\gamma(59)$	⁹ Ni)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^f	δ^{fi}	α^{h}	Comments
339.418	5/2-	339.418 15	100	0.0 3/2	M1(+E2)	0.00 2	0.00213	$\alpha(K)=0.00191 \ 3; \ \alpha(L)=0.000189 \ 3; \ \alpha(M)=2.67\times10^{-5} \ 4 \ \alpha(N)=1.142\times10^{-6} \ 16 \ B(M1)(W.u.)=0.0083 \ 10 \ \delta; \ weighted average of -0.04 \ 27 \ from (^{3}He.2pv), -0.11 \ 4$
464.945	1/2-	464.94 <i>3</i>	100	0.0 3/2	- [M1]		1.03×10 ⁻³	from (C,2pny), 0.00 <i>l</i> , +0.11 <i>3</i> , -0.05 <i>5</i> from (α ,ny). α (K)=0.000923 <i>l</i> 3; α (L)=9.08×10 ⁻⁵ <i>l</i> 3; α (M)=1.280×10 ⁻⁵ <i>l</i> 8 α (N)=5.50×10 ⁻⁷ 8 B(M1)(W.u.)=0.0109 22
877.967	3/2-	412.96 <i>9</i> 538.54 <i>4</i>	0.20 <i>2</i> 1.38 <i>2</i>	464.945 1/2 ⁻ 339.418 5/2 ⁻	-			I _{γ} : Weighted average of data from (n, γ) E=thermal, ⁵⁹ Cu ε
		877.94 <i>3</i>	100.0 9	0.0 3/2	- M1+E2	+0.08 3	2.60×10 ⁻⁴	accay, and (α,nγ). Other: 4.2.4 (p,nγ). $\alpha(K)=0.000234 4$; $\alpha(L)=2.28\times10^{-5} 4$; $\alpha(M)=3.22\times10^{-6} 5$ $\alpha(N)=1.392\times10^{-7} 20$ B(M1)(W.u.)=0.069 15; B(E2)(W.u.)=1.1 9 E _γ : from (n,γ) E=thermal. δ: from (α,nγ).
1188.797	5/2-	310.78 <i>4</i> 723.93 7	3.93 <i>9</i> 1.33 <i>8</i>	877.967 3/2 ⁻ 464.945 1/2 ⁻	-			Mult.: M1 from (³ He,2p γ), D(+Q) from (α ,n γ). I $_{\gamma}$: Others: 5.3 5 (p,n γ), 2.0 20 (α ,n γ).
		849.36 4 1188.77 <i>3</i>	4.712 100.010	0.0 3/2	- M1+E2	-0.43 9	1.50×10 ⁻⁴ 3	
1301.441	1/2-	423.465 19	18.7 11	877.967 3/2	-			δ: from $(\alpha, n\gamma)$. I_{γ} : Wt. ave. data from ε decay, (n, γ) Thermal, $(\alpha, n\gamma)$, and $(n, n\gamma)$
		836.48 <i>3</i>	14.9 9	464.945 1/2	- [M1]		2.87×10 ⁻⁴	$\alpha(K)=0.000258 \ 4; \ \alpha(L)=2.52\times10^{-5} \ 4; \ \alpha(M)=3.55\times10^{-6} \ 5 \ \alpha(N)=1.535\times10^{-7} \ 22 \ B(M1)(W.u.)=0.038 \ 9 \ I_{\gamma}: \ Wt. \ ave. \ of \ data \ from \ \varepsilon \ decay, \ (n,\gamma) \ Thermal, \ (\alpha,n\gamma), \ \alpha,n\gamma),$
		962.00 19	0.39 7	339.418 5/2	- [E2]		2.65×10 ⁻⁴	and (p,ny). $\alpha(K)=0.000238 \ 4; \ \alpha(L)=2.34\times10^{-5} \ 4; \ \alpha(M)=3.29\times10^{-6} \ 5$ $\alpha(N)=1.411\times10^{-7} \ 20$ B(E2)(W.u.)=1.3 4 I_{γ} : Wt, ave. of data from ε decay and (n,γ) Thermal.
1337.90	7/2-	1301.44 <i>3</i> 998.50 <i>3</i>	100.0 <i>10</i> 100.0 22	0.0 3/2 339.418 5/2	- - M1+E2	+4.6 6	2.41×10 ⁻⁴	α(K)=0.000216 3; α(L)=2.12×10-5 3; α(M)=2.98×10-6 5 α(N)=1.279×10-7 19 B(M1)(W.u.)=0.0007 3; B(E2)(W.u.)=30 8 δ: weighted average of +4.8 +9-8 (α,nγ) and +4.3 8 (3He,2pγ). Other: +9 3 (C,2pnγ).

From ENSDF

⁵⁹₂₈Ni₃₁-10

Т

	Adopted Levels, Gammas (continued)												
						$\gamma(^{59}]$	Ni) (continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.f	$\delta f i$	α^{h}	Comments				
1337.90	7/2-	1337.87 5	41.7 20	0.0	3/2-	E2		1.63×10 ⁻⁴	$\begin{aligned} \alpha(\text{K}) = 0.0001127 \ 16; \ \alpha(\text{L}) = 1.098 \times 10^{-5} \ 16; \\ \alpha(\text{M}) = 1.547 \times 10^{-6} \ 22 \\ \alpha(\text{N}) = 6.67 \times 10^{-8} \ 10; \ \alpha(\text{IPF}) = 3.74 \times 10^{-5} \ 6 \\ \text{B(E2)(W.u.)} = 3.0 \ 8 \\ \text{I}_{\gamma}: \text{ Weighted average of data from } (n,\gamma) \text{ E=thermal,} \\ \frac{^{59}\text{Cu } \varepsilon \text{ decay, and } (p,n\gamma). \text{ Other: } 30.1 \ 22 \\ \binom{^{29}\text{Si}, 2\alpha2p\gamma}{2}. \end{aligned}$				
1679 701	5/2-	801 78 15	1 25 15	877 967	3/2-				δ : from (α ,n γ), δ (Q,O)=+0.10 10.				
1017.101	5/2	1214.7 <i>4</i>	2.14 ^e 5	464.945	1/2-	[E2]		1.66×10 ⁻⁴	$\alpha(K)=0.0001389\ 20;\ \alpha(L)=1.356\times10^{-5}\ 19;\ \alpha(M)=1.91\times10^{-6}\ 3$ $\alpha(N)=8.22\times10^{-8}\ 12;\ \alpha(IPF)=1.113\times10^{-5}\ 17$ B(E2)(W.u.)=0.014 3				
		1340.28 3	100.0 11	339.418	5/2-								
		1679.65 [‡] 7	17.1 ^e 8	0.0	3/2-	(M1+E2)	-1.6 +7-22	2.30×10 ⁻⁴ 12	$ α(K)=6.97\times10^{-5} 16; α(L)=6.77\times10^{-6} 16; α(M)=9.54\times10^{-7} 22 $ $ α(N)=4.13\times10^{-8} 10; α(IPF)=0.000152 10 $ $ B(M1)(W.u.)=9.E-6 7; B(E2)(W.u.)=0.016 5 $ Mult.: D+Q from (α,nγ); adopted Δπ=no. δ: from (α, nγ).				
1734.708	3/2-	545.87 5	18.7 <i>3</i>	1188.797	$5/2^{-}$				I_{γ} : Wt. ave. of data from ε decay and (n,γ) Thermal.				
		1269.74 <i>3</i>	19.0 <i>16</i>	464.945	$1/2^{-}$				I _y : Unweighted ave. of data from ε decay and (n,γ) Thermal. Others: 30 16 $(\alpha,n\gamma)$, 28 3 $(p,n\gamma)$.				
		1395.27 3	27.8 4	339.418	5/2-				I _γ : Others: 38 6 (α ,n γ), 40 4 (p,n γ), 28.6 21 (ε decay).				
		1734.70 3	100.0 13	0.0	3/2-								
1739.24 1746.1	$(9/2^{-})$ $5/2^{-}.7/2^{-}$	1399.8 [#] 2 1746.1 ^c 10	100 100	339.418 0.0	$5/2^{-}$ $3/2^{-}$	Q			Mult.: From (C, $2pn\gamma$).				
1767.44	9/2 ⁻	429.58 [#] 9	11.1 [#] 11	1337.90	7/2-	M1+E2	-0.10 4	1.24×10 ⁻³ 2	$\begin{aligned} &\alpha(\text{K}) = 0.001118 \ 20; \ \alpha(\text{L}) = 0.0001102 \ 20; \\ &\alpha(\text{M}) = 1.55 \times 10^{-5} \ 3 \\ &\alpha(\text{N}) = 6.67 \times 10^{-7} \ 12 \\ &\text{B}(\text{M1})(\text{W.u.}) = 0.046 \ 13; \ \text{B}(\text{E2})(\text{W.u.}) = 5 \ 4 \\ &\delta: \ \text{weighted average of } -0.03 \ 7, \ -0.09 \ 5 \ \text{from } (\alpha, n\gamma) \\ &\text{and } -0.18 \ +7-5 \ \text{from } (^{3}\text{He,}2p\gamma). \ \text{Other: } -1.28 \ 15 \\ &(\text{p,n}\gamma) \ - \ \text{discrepant datum } - \ \text{an unweighted ave of} \\ &\text{all data would result } \delta = -0.4 \ 3. \end{aligned}$				
		1428.02 [#] 9	100 [#] <i>10</i>	339.418	5/2-	E2		1.71×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 9.83 \times 10^{-5} \ 14; \ \alpha(\mathbf{L}) = 9.57 \times 10^{-6} \ 14; \\ &\alpha(\mathbf{M}) = 1.348 \times 10^{-6} \ 19 \\ &\alpha(\mathbf{N}) = 5.82 \times 10^{-8} \ 9; \ \alpha(\mathbf{IPF}) = 6.22 \times 10^{-5} \ 9 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 10 \ 3 \\ &\delta(\mathbf{Q},\mathbf{O}) = +0.01 \ 4 \ \text{from} \ (\alpha, \mathbf{n}\gamma) \ \text{and} \ +0.4 \ 5 \ (\mathbf{p}, \mathbf{n}\gamma). \end{aligned}$				

⁵⁹₂₈Ni₃₁-11

					A	dopted Level	s, Gammas (conti	nued)	
						γ ⁽⁵⁹ N	(continued)		
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^f	$\delta f i$	α^h	Comments
1947.99	7/2-	$610.0^{d} 2$ 759.0 ^d 2	10.6 ^d 25 5	1337.90 1188.797	7/2 ⁻ 5/2 ⁻	(M1+E2) ^g	+0.27 +13-10	3.61×10 ⁻⁴ 11	α (K)=0.000324 <i>10</i> ; α (L)=3.17×10 ⁻⁵ <i>10</i> ; α (M)=4.47×10 ⁻⁶ <i>14</i> α (N)=1.93×10 ⁻⁷ 6 B(M1)(W.u.)=0.049 <i>16</i> ; B(E2)(W.u.)=12 <i>11</i> I _{γ} : Unweighted ave. of data from (³ He,2p γ),
		1070.2 ^{<i>d</i>} 2	3.03 ^d	877.967	3/2-	[E2]		2.06×10 ⁻⁴	(n, γ) Thermal, and (p,n γ). α (K)=0.000185 3; α (L)=1.81×10 ⁻⁵ 3; α (M)=2.55×10 ⁻⁶ 4 α (N)=1.095×10 ⁻⁷ 16 B(F2)(W u)=3.7.9
		1608.50 <i>23</i>	63 13	339.418	5/2-				E_{γ},I_{γ} : Energy – weighted average – intensity – unweighted average of data from (n,γ) E=thermal, $(p,n\gamma)$, and $(\alpha,n\gamma)$. Other: 100 <i>12</i> $(^{29}Si,2\alpha 2p\gamma)$.
		1948.11 20	100 [#] 4	0.0	3/2-	E2		3.46×10 ⁻⁴	$\alpha(K)=5.36 \times 10^{-5} 8; \ \alpha(L)=5.20 \times 10^{-6} 8; \ \alpha(M)=7.33 \times 10^{-7} 11 \ \alpha(N)=3.18 \times 10^{-8} 5; \ \alpha(IPF)=0.000287 4 \ B(E2)(W.u.)=6.2 15 \ E_{\gamma}: Weighted average of data from (\alpha,n\gamma), (^{3}He,2p\gamma), (n,\gamma) Thermal, and (^{12}C,2pn\gamma). \ Mult.: M1,E2 from \alpha(K)exp in (3He,2p\gamma); Q from (\alpha,n\gamma).$
2414.904	3/2-	735.2 <i>4</i> 1113.38 <i>6</i> 1226.08 <i>3</i> 1536.90 <i>3</i> 1949.92 <i>3</i> 2414.92 <i>6</i>	0.22 7 3.33 10 26.5 4 40.4 6 100.0 21 26.6 4	1679.701 1301.441 1188.797 877.967 464.945 0.0	5/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 1/2 ⁻ 3/2 ⁻				
2421.96		2421.89 6	100	0.0	3/2-				E_{γ} : also alternative placement: 6562–->4140 transition (2004Ra23 (n, γ)).
2530.40	(9/2 ⁻)	$ \begin{array}{r} 1192.5^{d} 2 \\ 1341^{d} \\ 2191.10^{d} 20 \end{array} $	45^{d} 100^{d} 42^{d}	1337.90 1188.797 339.418	7/2 ⁻ 5/2 ⁻ 5/2 ⁻	D+Q O	-0.9 +6-13		
2535.50		796.26 9	100	1739.24	(9/2 ⁻)	×			E_{γ} : from $(\alpha, n\gamma)$ for doublet. Mult : O for doubly-placed γ in $({}^{12}C 2nn\gamma)$
2553.5 2627.06	7/2-	2214 ^d 2287.40 <i>17</i>	100 85 <i>10</i>	339.418 339.418	5/2 ⁻ 5/2 ⁻				E _y : weighted average from (³ He,2p γ) and (n, γ)
		2626.95 20	100 11	0.0	3/2-	Q			E _{γ} : Weighted average from (³ He,2p γ), (p,n γ), and (n, γ) thermal.

 $^{59}_{28}\text{Ni}_{31}$ -12

					Ad	lopted Levels,	Gammas (contin	ued)	
						γ (⁵⁹ Ni)) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. ^f	δ^{fi}	$\alpha^{\boldsymbol{h}}$	Comments
2679.63	(5/2 ⁻)	1490.6 <i>3</i> 1802.0 <i>3</i> 2680.8 <i>9</i>	71 <i>12</i> 100 <i>14</i> 95 <i>13</i>	1188.797 877.967 0.0	5/2 ⁻ 3/2 ⁻ 3/2 ⁻				E _{γ} : Using the method of limitation of statistical weight of data from ε decay, (p,n γ) and (n, γ) thermal
2705.08	11/2-	937.68 21	11.3 [#]	1767.44	9/2-	(M1+E2) ^g	-0.95 +17-60	2.53×10 ⁻⁴ 14	$ α(K)=0.000228 12; α(L)=2.23×10^{-5} 12; α(M)=3.14×10^{-6} 17 α(N)=1.35×10^{-7} 7 B(M1)(W.u.)=0.0041 12; B(E2)(W.u.)=7.9 24 Eγ: Unweighted average of data from (α,ηγ), (12C,2pηγ), and (3He,2pγ). δ: from (α,ηγ). Other: -0.9 +5-9 (3He,2pγ).$
		1367.02 [#] 9	100	1337.90	7/2-	E2		1.65×10 ⁻⁴	$\alpha(K)=0.0001077 \ I5; \ \alpha(L)=1.049\times10^{-5} \ I5; \ \alpha(M)=1.478\times10^{-6} \ 2I \ \alpha(N)=6.38\times10^{-8} \ 9; \ \alpha(IPF)=4.48\times10^{-5} \ 7 \ B(E2)(W.u.)=22 \ 5 \ Mult. \delta; \ from (\alpha, n\chi), \ \delta(Q,Q)=0.00 \ 4.$
2715.02	2 /2-	1836.97 12	100	877.967	3/2-				Man, o. nom (a, m). o(2, o) 0.00 n
2893.563	3/2	1158.6 3	0.42 8	1/34./08	3/2 5/2-				
		1555.8 3	0.94 14	1337.90	$7/2^{-}$				E_{γ} : alternative placement: 5808>4252 transition (2004Ra23 (n, γ)).
		1592.06 8	2.52 13	1301.441	$1/2^{-}$				
		1704.78 9	6.87 21	1188.797	5/2-				
		2015.62 9	27.1 3	877.967	$3/2^{-}$				
		2428.53 4	15.5 19	404.945	1/2				
		2893 3 3	11 7 12	0.0	3/2-				
3025.77	$1/2^{-}.3/2^{-}$	1688.00 14	6.12.57	1337.90	5/2 7/2 ⁻				
	-/_ ,=/_	1724.17 12	42.10 51	1301.441	$1/2^{-}$				
		2147.77 3	98.1 <i>11</i>	877.967	3/2-				
		3025.67 5	100.0 11	0.0	$3/2^{-}$				
3037.5	7/2-	2698 ^c 2	100	339.418	5/2-				
3054.36	9/2+	349.1 ^{<i>d</i>} 2	1.85 ^d	2705.08	$11/2^{-}$				
		427.0 ^d 2	16.7 ^d	2627.06	$7/2^{-}$				
		1106.6 ^{<i>d</i>} 2	100 7	1947.99	7/2-	E1		9.69×10 ⁻⁵ 14	$\alpha = 9.69 \times 10^{-5} \ 14; \ \alpha(\text{K}) = 7.79 \times 10^{-5} \ 11; \\ \alpha(\text{L}) = 7.56 \times 10^{-6} \ 11; \ \alpha(\text{M}) = 1.064 \times 10^{-6} \ 15 \\ \alpha(\text{N}) = 4.60 \times 10^{-8} \ 7; \ \alpha(\text{IPF}) = 1.037 \times 10^{-5} \ 16 \\ \text{I}_{\gamma}: \text{ From } (^{29}\text{Si}, 2\alpha 2\text{p}\gamma). \\ \delta(\text{D}, \text{O}) = -0.03 \ 3 \ \text{from } (^{3}\text{He}, 2\text{p}\gamma).$
		1716.4 ^d 2	59 6	1337.90	7/2-	E1		4.69×10^{-4}	$\alpha(K)=3.70\times10^{-5} 6; \alpha(L)=3.58\times10^{-6} 5;$

 ${}^{59}_{28}\mathrm{Ni}_{31}$ -13

Т

					Ado	pted Levels,	Gammas (cor	ntinued)
						γ ⁽⁵⁹ Ni)	(continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. ^f	$\alpha^{\boldsymbol{h}}$	Comments
								α (M)=5.04×10 ⁻⁷ 7 α (N)=2.18×10 ⁻⁸ 3; α (IPF)=0.000427 6 I _{γ} : From (²⁹ Si,2 α 2p γ). Mult.: from α (K)exp<4.8×10 ⁻⁵ in (³ He,2p γ). δ (D,Q)=-0.03 +7-5.
3125.72	7/2-	1358.0 ^d 2 2248.2 3 2786.15 23 3125.6 6	<36 ^d 74 <i>12</i> 100 <i>13</i> 75 <i>17</i>	1767.44 877.967 339.418 0.0	9/2 ⁻ 3/2 ⁻ 5/2 ⁻ 3/2 ⁻			E_{γ} : alternative placement: 6101–->3853 transition (2004Ra23 (n, γ)). E_{γ} : Weighted average of data from (³ He,2p γ) and (n, γ) thermal. I_{γ} : 16 in (p,n γ).
3181.576	3/2 ⁽⁻⁾	766.65 4 1446.85 4 1501.84 3 1880.19 7 1992.76 4 2303.53 5 2716.62 6 2842.10 4 3181.45 6	5.32 12 22.08 24 31.6 3 8.34 19 31.5 3 8.83 21 5.27 21 100.0 10 23.03 25	2414.904 1734.708 1679.701 1301.441 1188.797 877.967 464.945 339.418 0.0	3/2 ⁻ 3/2 ⁻ 5/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻			
3296.7		2106 ^c 2 2959 ^c 2	92 ^c 100 ^c	1188.797 339.418	5/2 ⁻ 5/2 ⁻			
3308.1 3320		$3308^{\circ} 2$ $2440^{\circ} 5$ $2982^{\circ} 5$	$100 \\ 32^{\circ} 16 \\ 100^{\circ} 32$	0.0 877.967 339.418	3/2 ⁻ 3/2 ⁻ 5/2 ⁻			
3343.23		450.0 3 1663.7 8 2154.3 4 2878.22 18 3003.9 9	100 52 15 3 12 5 30 6 81 10 100 26	2893.563 1679.701 1188.797 464.945 339.418	3/2 ⁻ 5/2 ⁻ 5/2 ⁻ 1/2 ⁻ 5/2 ⁻			
3353.5 3376.91	11/2-	3014 [°] 2 671.80 [#] 9	100 77 [#] 7	339.418 2705.08	5/2 ⁻ 11/2 ⁻	E2(+M1)	0.00057 12	$\alpha(K)=0.00051 \ 11; \ \alpha(L)=5.0\times10^{-5} \ 11; \ \alpha(M)=7.1\times10^{-6} \ 15 \ \alpha(N)=3.0\times10^{-7} \ 6$
		1609.5 ^{<i>d</i>} 2	100 12	1767.44	9/2-	D		I_{γ} : From (²⁹ Si,2 α 2p γ). Mult.: from (C,2pn γ).
3377.27	(1/2 ⁻ ,3/2)	2039.1 ^{<i>d</i>} 2 2499.18 <i>11</i>	9.26 ^d 39 4	1337.90 877.967	7/2 ⁻ 3/2 ⁻	Q		
3380.6	(7/2 ⁻)	2911.7 8 3037.73 6 1432 ^c 2 2284 ^c 5	13 <i>4</i> 100.0 <i>23</i>	464.945 339.418 1947.99	1/2 ⁻ 5/2 ⁻ 7/2 ⁻			E_{γ} : alternative placement: 6598–->3686 transition – 2004Ra23 (n, γ).
3413.61	(1/2,3/2 ⁻)	2112.0 <i>3</i> 2535.3 <i>4</i> 2948.3 <i>3</i>	57 7 59 9 100 9	1301.441 877.967 464.945	3/2 1/2 ⁻ 3/2 ⁻ 1/2 ⁻			

 ${}^{59}_{28}\mathrm{Ni}_{31}$ -14

From ENSDF

					Adop	ted Levels, G	Gammas (co	ontinued)	
						γ ⁽⁵⁹ Ni) ((continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.f	δfi	$\alpha^{\boldsymbol{h}}$	Comments
3452.46	3/2-	1717.65 21	71 8	1734.708	3/2-				
		2263.35 25	86 13	1188.797	5/2-				E_{γ} : alternative placement: 5676>3413 transition – 2004Ra23 (n, γ).
		2574.55 11	93 10	877.967	$3/2^{-}$				E : alternative placement: 5702 > 2715 transition
		2987.5 5	51 0	404.943	1/2				E_{γ} : anternative placement: $5702> 2715$ transition – 2004Ra23 (n, γ).
		3112.8 <i>3</i>	38 12	339.418	$5/2^{-}$				
		3452.32 8	100 10	0.0	3/2-				E_{γ} : alternative placement: 5131>1679 transition – 2004Ra23 (n, γ).
3528		31880 5	35° 14	339.418	5/2-				
2527 7	$\langle 0 0 \rangle$	$3528^{\circ} 3$	100°	0.0	3/2				
3537.7	(9/2)	2200.6^{d} 2	40 ^d	1337.90	1/2	0			
2540.04	5/2+	2348.0^{42} 2	100 ⁴ 8 2 27	1188.797	5/2-	Q			
3340.04	3/2	3200.54 7	8.2 27 100.0 25	339.418	5/2 5/2 ⁻				
3546.0		1778.5" 3	100	1767.44	9/2-				
3559.45	$(11/2)^{-}$	434.700 50	19.0	3125.72	7/2-				-
		854.3 ^{<i>a</i>} 2	65 24	2705.08	11/2-	M1(+E2)	-0.07 5	2.75×10^{-4}	$\alpha(K)=0.000247 4; \alpha(L)=2.41\times10^{-5} 4; \alpha(M)=3.40\times10^{-6} 5$ $\alpha(N)=1.472\times10^{-7} 21$
		1029.2 ^d 2	15 <i>3</i>	2530.40	(9/2-)	D			$\delta(D,Q) = 0.00 \ 4.$
		1611.3 ^d 2	26 5	1947.99	7/2-				
		1792.10 ^d 20	100 29	1767.44	9/2-	M1+E2	+0.12 4	2.36×10^{-4}	$\alpha(K)=5.92\times10^{-5}$ 9; $\alpha(L)=5.74\times10^{-6}$ 8; $\alpha(M)=8.08\times10^{-7}$ 12
									α (N)=3.51×10 ⁻⁸ 5; α (IPF)=0.0001701 25 Mult.: D+Q from $\gamma(\theta)$; M1,E2 from α (K)exp in (³ He,2p γ).
		2222.0^{d} 2	15 <i>3</i>	1337.90	$7/2^{-}$				
3562.98	$(1/2^{-}, 3/2^{-})$	1147.98 10	4.00 31	2414.904	3/2-				
		1827.8 5	1.4 4	1734.708	3/2-				
		2261.44 15	15.13 94	1301.441	1/2-				
		2684.97 5	100.0 19	877.967	$3/2^{-}$				
2686 146	$(2/2^{+})$	3562.87 /	56.9 <i>19</i>	0.0	$\frac{3}{2}$				
5080.140	(3/2)	1000.5 4	1.02 23 3 80 40	2079.03	(3/2)				
		2384.64 4	46.4 7	1301.441	$1/2^{-}$				
		2497.41 7	38.8 7	1188.797	5/2-				
		2808.15 5	57.0 9	877.967	3/2-				E_{γ} : alternative placement: 6948–->4140 transition.
		3221.04 5	100.0 14	464.945	$1/2^{-}$				· –
		3346.62 5	43.4 7	339.418	5/2-				
2720.07	(1/0= 2/0)	3685.98 15	78.0 40	0.0	3/2-				
5/50.2/	(1/2, 3/2)	1051.0 0	2.3 ð	20/9.03	(3/2)				

 $^{59}_{28}\text{Ni}_{31}$ -15

From ENSDF

⁵⁹₂₈Ni₃₁-15

					Adopted	Levels, Gam	<mark>mas</mark> (contir	nued)	
						γ (⁵⁹ Ni) (cont	tinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.f	δfi	$\alpha^{\boldsymbol{h}}$	Comments
3730.27	$(1/2^{-}, 3/2)$	1103.2 4	2.8 6	2627.06	7/2-				
		2541.45 12	15.4 15	1188.797	5/2-				
		2852.2 4	9.8 15	877.967	3/2-				
		3265.27 6	100.0 21	464.945	1/2-				
		3390.6 4	20.1 26	339.418	5/2-				
2952 (7	$(2/2^{-})$	3/30.11 5	26.4	0.0	3/2				
3833.07	(3/2)	828.2 J 1429 59 10	0.8 21	3023.77 2414.004	$\frac{1}{2}, \frac{3}{2}$				
		2664 80 19	63.7 <i>34</i> 50 2 <i>4</i> 6	1188 707	5/2 5/2-				
		3388.79 13	41 9	464.945	$1/2^{-}$				
		3514.06 7	91.1 76	339.418	$5/2^{-}$				
		3853.72 9	100.0 76	0.0	3/2-				
3889.73		1210.5 4	12.1 26	2679.63	$(5/2^{-})$				
		1474.81 9	45.1 23	2414.904	3/2-				
		3889.53 8	100 6	0.0	3/2-				
4021.95	$(1/2^-, 3/2^-)$	840.8 <i>3</i>	11.6 20	3181.576	$3/2^{(-)}$				
		1599.8 6	7.3 20	2421.96	a /a -				
		1607.07 16	40 3	2414.904	3/2-				
		2833.18 11	90.4	1188./9/	5/2 2/2-				
		3143.84 0 4021.85 18	100 J 57 5	0.0	3/2 3/2-				
4102.04	(11/2+)	4021.05 10	100	1767.44	5/2 0/2-				
4103.04	$(11/2^{-1})$ $(3/2^{-1}/2^{-1})$	2333.0 2	2 46 13	1/0/.44	9/2				
4140.20	(3/2, 1/2)	1513.0.4	2.40 13	2627.06	7/2-				
		1725.33 21	10.2.20	2027.00	$3/2^{-}$				E_{ac} : alternative placement: 4352->2627 transition -
		24(0)(5,20	10.2 20	1670 701	5/2				$2004Ra23 (n,\gamma).$
		2460.67 20	1.1 1	16/9./01	5/2-				
		2838.67 11	10.2 4	1301.441	$\frac{1}{2}$				E : alternative placement: 60.49 $>$ 2696 transition
		5202.24 14	4.0 4	877.907	5/2				E_{γ} . anemative pracement. 0948–>3080 transition – 2004Ra23 (n, γ).
		3675.23 4	100.0 13	464.945	$1/2^{-}$				
		3800.79 7	7.7 6	339.418	5/2-				
		4140.07 7	25.4 10	0.0	3/2-				E_{γ} : alternative placement: 6562–>2421 transition – 2004Ra23 (n, γ).
4141.07	(13/2) ⁻	581.80 [#] 10	100 12	3559.45	(11/2)-	M1(+E2)	+0.07 5	6.25×10 ⁻⁴ 10	$\alpha(K)=0.000562 \ 9; \ \alpha(L)=5.51\times10^{-5} \ 9; \ \alpha(M)=7.76\times10^{-6} \ 12 \ \alpha(N)=3.35\times10^{-7} \ 5$
		764.17 [@] 10	92 13	3376.91	11/2-	M1		3.46×10 ⁻⁴	$\alpha(K)=0.000311 5; \alpha(L)=3.04\times10^{-5} 5; \alpha(M)=4.29\times10^{-6} 6 \alpha(N)=1.85\times10^{-7} 3$
		in a start -							Mult.: $W1,E2$ from ($^{\circ}He,2p\gamma$); D from (C,2pn γ).
		1436.1 ^{<i>a</i>} 2	1.9 9	2705.08	$11/2^{-}$				

⁵⁹₂₈Ni₃₁-16

From ENSDF

⁵⁹₂₈Ni₃₁-16

					Adopted	l Levels, Ga	ammas (cor	ntinued)	
						γ(⁵⁹ Ni) (c	continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult.f	δfi	α ^h	Comments
4141.07 4252.88	(13/2) ⁻ (3/2 ⁻)	2373.4 ^{<i>d</i>} 2 2951.3 <i>3</i> 3063.85 <i>11</i>	9.4 <i>19</i> 77 <i>4</i> 100 <i>5</i>	1767.44 1301.441 1188.797	9/2 ⁻ 1/2 ⁻ 5/2 ⁻	Q			E_{γ} : alternative placement: 5957->2893 transition -
4352.44	(1/2 ⁻ ,3/2)	3374.9 7 3787.85 8 3913.2 3 1008.9 4 1937.7 3 3051.21 15 3163.55 11 4352.19 8	21 6 39 6 17 5 9.9 23 42 6 37 7 50 9 100 9	877.967 464.945 339.418 3343.23 2414.904 1301.441 1188.797 0.0	3/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻				2004Kd25 (II, y).
4418.38	(13/2 ⁻)	858.5 ^d 2 2651.3 ^d 2	11.8 <i>24</i> 100 <i>18</i>	3559.45 1767.44	$(11/2)^{-}$ 9/2 ⁻				
4455.14	13/2+	$1400.5^{d} 2$ $1750.15^{@} 20$	100 <i>19</i> 81 <i>16</i>	3054.36 2705.08	9/2 ⁺ 11/2 ⁻	Q E1+M2	-0.18 5	4.83×10 ⁻⁴ 9	$\alpha(K)=3.83\times10^{-5} \ 16; \ \alpha(L)=3.71\times10^{-6} \ 15; \\ \alpha(M)=5.22\times10^{-7} \ 22 \\ \alpha(N)=2.26\times10^{-8} \ 10; \ \alpha(IPF)=0.000441 \ 10 $
									δ: Weighted average of -0.22 5 (C,2pnγ) and -0.11 7 (³ He,2pγ).
4494.12	5/2+	1778.92 20 2545.7 4 3156.28 16 4067 4 6	59 6 50 9 100 8 100	2715.02 1947.99 1337.90 464.945	7/2 ⁻ 7/2 ⁻ 1/2 ⁻				
4615.78	$(9/2^+)$	1561.4^{d} 2	100	3054.36	$9/2^+$				
4715.35	(3/2)-	3377.34 <i>17</i> 3525.8 8 4250.6 5 4715.16 6	22.6 <i>15</i> 3.2 <i>10</i> 13.3 <i>25</i> 100 <i>3</i>	1337.90 1188.797 464.945 0.0	7/2 ⁻ 5/2 ⁻ 1/2 ⁻ 3/2 ⁻				
4782.6	$(1/2^{-}, 3/2^{-})$	4317.5 3	100	464.945	1/2-	M1 - F2	.0.22.4	2 15 10-4	(X) 0.000292 5 (X) 0.77. (10-5.5
4947.17	(15/2)	806.20 ^{cc} 10	100 21	4141.07	(13/2)	MI+E2	+0.23 4	3.15×10 +	$\alpha(K)=0.000283 \text{ S}; \ \alpha(L)=2.77\times10^{-5} \text{ S}; \ \alpha(M)=3.90\times10^{-6} \text{ 6} \ \alpha(N)=1.69\times10^{-7} \text{ 3} \ \delta<0.1 \text{ in (C.2nny)}$
4949.22	(1/2 ⁻ ,3/2)	1569.3 ^{<i>d</i>} 2 1572.1 5 1923.4 4 3214.7 4 3268.8 4 4071.5 4 4609.3 4	2.6 13 2.0 6 6.3 11 4.7 9 7.6 10 7.7 13 5.6 12	3376.91 3376.91 3025.77 1734.708 1679.701 877.967 339.418	11/2 ⁻ 11/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 3/2 ⁻ 5/2 ⁻ 3/2 ⁻ 5/2 ⁻				с «от ш (с,2ри).

From ENSDF

 $^{59}_{28}\mathrm{Ni}_{31}$ -17

					Adopted	l Levels, G	ammas (cont	inued)
						γ(⁵⁹ Ni) (continued)	
E _i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^f	α^{h}	Comments
4949.22 4968.94	$(1/2^-, 3/2)$ $(1/2^-, 3/2)$	4949.02 <i>10</i> 1405.7 8 1943.3 4 2075.37 6 3234.08 <i>18</i> 3289.3 4 3667.42 8 3779.94 7 4090.79 <i>15</i> 4629.3 <i>3</i>	100 4 1.6 7 7.0 13 33.1 12 5.7 11 6.4 11 17.3 14 100 3 6.4 14 5.9 14	0.0 3562.98 3025.77 2893.563 1734.708 1679.701 1301.441 1188.797 877.967 339.418	3/2 ⁻ (1/2 ⁻ ,3/2 ⁻) 1/2 ⁻ ,3/2 ⁻ 3/2 ⁻ 3/2 ⁻ 5/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 5/2 ⁻ 5/2 ⁻			E_{γ} : alternative placement: 4782–>3377 transition – 2004Ra23 (n, γ).
5069.04	(1/2 ⁻ ,3/2)	4968.6 4 816.3 5 1616.1 9 2653.90 18 3334.59 25 3767.43 9 3880.1 3 4191.04 10 4604.0 4 4729.19 15 5068.80 17	17.2 22 6.1 11 6.1 15 33.3 25 8.3 25 17 3 12 3 100 4 9 3 18 3 95 5	$\begin{array}{c} 0.0\\ 4252.88\\ 3452.46\\ 2414.904\\ 1734.708\\ 1301.441\\ 1188.797\\ 877.967\\ 464.945\\ 339.418\\ 0.0 \end{array}$	3/2- (3/2-) 3/2- 3/2- 3/2- 1/2- 5/2- 3/2- 1/2- 5/2- 3/2- 3/2-			
5097.73	(13/2 ⁻)	958 ^d 1538.7 ^d 2 2392.1 ^d 2	71 <i>14</i> 100 <i>20</i> 57 <i>11</i>	4141.07 3559.45 2705.08	$(13/2)^{-}$ $(11/2)^{-}$ $11/2^{-}$			
5131.7 5251.45	(1/2 ⁻ ,3/2 ⁻) 17/2 ⁺	4253.6 <i>4</i> 796.3 ^{&} 1	100 100	877.967 4455.14	3/2 ⁻ 13/2 ⁺	E2	4.29×10 ⁻⁴	$\alpha(K)=0.000385\ 6;\ \alpha(L)=3.79\times10^{-5}\ 6;\ \alpha(M)=5.34\times10^{-6}\ 8$ $\alpha(N)=2.28\times10^{-7}\ 4$ $\delta;\ \delta(Q,Q)=+0.07\ 12.$
5292.99 5381.30	(15/2 ⁻) (15/2 ⁺)	1151.9 ^d 2 926.0 ^d 2 1240.3 ^d 2 1278.3 ^d 2	100 38 8 63 <i>13</i> 100 20	4141.07 4455.14 4141.07 4103.04	$(13/2)^{-}$ $13/2^{+}$ $(13/2)^{-}$ $(11/2^{+})$			
5384.72 5444.16 5494.23	(3/2 ⁺ ,5/2 ⁺) 3/2 ⁺ ,5/2 ⁺	2042.0 7 2757.59 9 3705.3 5 4083.23 11 4919.54 11 5044.89 11 5384.52 13 3029.17 20 3072.2 4	39 <i>12</i> 100 <i>5</i> 22 <i>5</i> 29 <i>6</i> 52 <i>8</i> 42 <i>7</i> 31 <i>9</i> 100 45 <i>8</i>	3343.23 2627.06 1679.701 1301.441 464.945 339.418 0.0 2414.904 2421.96	7/2 ⁻ 5/2 ⁻ 1/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 3/2 ⁻			E_{γ} : alternative placement: 3343->1301 transition - 2004Ra23 (n, γ).

⁵⁹₂₈Ni₃₁-18

From ENSDF

⁵⁹₂₈Ni₃₁-18

$\gamma(^{59}\text{Ni})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
5494.23		4305.2 3	100 11	1188.797	5/2-	
		5029.6 9	27 13	464.945	$1/2^{-}$	
5617.27	$(1/2^{-},3/2)$	2491.3 4	16.1 26	3125.72	7/2-	E_{γ} : alternative placement: 5384->2893 transition - 2004Ra23 (n, γ).
		2723.93 23	12 <i>3</i>	2893.563	3/2-	
		3937.49 18	13 <i>3</i>	1679.701	5/2-	
		4428.24 19	55 5	1188.797	5/2-	
		5277.35 15	27 5	339.418	5/2-	
		5617.07 12	100 5	0.0	3/2-	
5632.14	$(1/2^{-}, 3/2)$	1379.00 13	34 <i>3</i>	4252.88	$(3/2^{-})$	
		1492.3 4	32 7	4140.28	$(3/2^{-}, 1/2^{-})$	
		1901.75 18	50 9	3730.27	$(1/2^{-}, 3/2)$	
		2254.68 17	66 5	3377.27	$(1/2^{-}, 3/2)$	
		2450.52 19	15 4	3181.576	$3/2^{(-)}$	
		2738.70 13	41 6	2893.563	3/2-	
		3897.11 19	34 10	1734.708	3/2-	
		3952.24 9	74 11	1679.701	5/2-	
		5292.69 12	100 13	339.418	5/2-	
		5631.99 22	32 10	0.0	3/2-	
5676.93	$1/2^{+}$	4375.31 19	100	1301.441	1/2-	
5702.18	$(1/2^{-}, 3/2)$	4823.91 11	579	877.967	3/2-	
		5362.67 11	100 11	339.418	5/2-	
		5701.76 14	72 9	0.0	3/2-	
5754.47	$(1/2^{-},3/2)$	1864.2 <i>3</i>	58 10	3889.73		
		3339.2 5	53 <i>13</i>	2414.904	3/2-	
		5754.36 17	100 26	0.0	3/2-	
5808.8		1275.9 4	76 19	4532.8		
		2465.5 4	57 12	3343.23		E_{γ} : alternative placement: 3343->877 transition - 2004Ra23 (n, γ).
		3393.8 5	90 18	2414.904	3/2-	
		5469.4 6	100 24	339.418	5/2-	
5944.2		997 <mark>4</mark>	100	4947.17	$(15/2)^{-}$	
5957.12	$1/2^{+}$	2505.1 5	14 4	3452.46	3/2-	
		5078.92 12	38.6	877.967	3/2=	
		5492.1 6	27.6	464.945	1/2-	
		5956.75 12	100 12	0.0	3/2-	
5989.06	$(17/2^+)$	1533.9 ^{<i>a</i>} 2	100	4455.14	$13/2^{+}$	
6030.47	$1/2^{-}, 3/2^{-}$	2177.3 9	9 <i>3</i>	3853.67	$(3/2^{-})$	
		3005.2 5	100 17	3025.77	$1/2^{-}, 3/2^{-}$	
		3136.75 9	33 4	2893.563	3/2-	
		4295.55 12	30 5	1734.708	3/2-	
		4841.20 19	18 5	1188.797	5/2-	
		5152.30 10	62 5	877.967	3/2-	E_{γ} : alternative placement: 5617->464 transition - 2004Ra23 (n, γ).
		6030.34 <i>14</i>	58 6	0.0	3/2-	
6076.09	$(15/2^-, 17/2^-)$	1129.0 ^{<i>a</i>} 2	30	4947.17	$(15/2)^{-}$	

19

					Adopted Lev	vels, Gamı	mas (continue	ed)		
					$\gamma(5)$	⁵⁹ Ni) (cont	inued)			
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger} I_{γ}^{\dagger}		\mathbf{E}_{f}	J_f^π	Mult.f	$\alpha^{\boldsymbol{h}}$	Comments		
6076.09	(15/2 ⁻ ,17/2 ⁻)	1935.1 ^{<i>d</i>} 2	100	4141.07	(13/2)-	M1,E2	0.00031 3	$\alpha(K)=5.29\times10^{-5}$ 16; $\alpha(L)=5.13\times10^{-6}$ 16; $\alpha(M)=7.23\times10^{-7}$ 22 $\alpha(N)=3.14\times10^{-8}$ 9; $\alpha(IPF)=0.00025$ 3		
6101.90	3/2+,5/2+	1386.8 <i>3</i> 3679.2 <i>5</i>	29 6 100 <i>15</i>	4715.35 2421.96	(3/2) ⁻					
6106.80		4912.8 <i>4</i> 2763.93 <i>23</i>	38 <i>14</i> 20 <i>3</i>	1188.797 3343.23	5/2-					
		2980.2 4	20 3	3125.72	7/2-			E_{γ} : alternative placement: 4715->1734 transition - 2004Ra23 (n, γ).		
		4805.03 16 5228.6 7	100 6 14 4	1301.441 877.967	$\frac{1}{2}$ $\frac{3}{2}^{-}$					
		5641.65 25	73 7	464.945	1/2-					
6141.87	$1/2^{-}, 3/2^{-}$	1889.13 <i>17</i>	79 7	4252.88	(3/2 ⁻)					
		2689.0 4	36 5	3452.46	3/2-					
		3/19.1 0	32.8	2421.96	2/2-					
6183 /		0141.42 23 58/3 7 7	100.8	0.0 330 /18	5/2 5/2-					
6279.99		2258.03 13	100 7	4021.95	$(1/2^{-},3/2^{-})$					
02//////		3857.8 3	99 12	2421.96	(1/2 ,0/2)					
		6279.0 9	28 12	0.0	3/2-					
6431.5		3250.0 <i>4</i> 5553.0 <i>4</i>	71 <i>10</i> 100 <i>14</i>	3181.576 877.967	3/2 ⁽⁻⁾ 3/2 ⁻					
6498.20	$3/2^+, 5/2^+$	3045.66 17	100	3452.46	3/2-					
6502.39	$(19/2^{-})$	426.5 ^d 2	100 ^d	6076.09	$(15/2^-, 17/2^-)$					
		1555.0 ^d 2	78 <mark>d</mark> 20	4947.17	$(15/2)^{-}$	Q				
6562.1		5224.0 4	100 16	1337.90	7/2-					
(500 (((2)(2+ 5)(2+)	6561.7 8	83 23	0.0	3/2-					
6598.66	$(3/2^+, 5/2^+)$	3184.56 25	474	3413.61	(1/2,3/2)			E_{γ} : alternative placement: 6562->3377 transition.		
		6258 74 15	23 J 45 5	339 418	$5/2^{-}$					
		6598.76 19	100 9	0.0	$3/2^{-}$					
6873.7		3496.9 6	49 11	3377.27	$(1/2^{-},3/2)$					
		4452.3 9	28 11	2421.96						
		6408.0 5	100 16	464.945	1/2-					
6048 0	1/2+	6872.88 6047.64	59 <i>14</i>	0.0	5/2 2/2-					
0940.0	1/2	$(61.5d)^{2}$	100	0.0	$\frac{3}{2}$					
/103.9 7187 /	(19/2 ,21/2)	001.5°° 2 3734.0.0	100 34 16	3452 46	(19/2)					
/10/.4		4507.9.5	100.31	2679.63	$(5/2^{-})$					
7270.51	(1/2+,3/2)	3730.35 10	100 11	3540.04	5/2+			I_{γ} : inferred from the intensity balance requirement for the 7270 level.		
		6391.9 5	41 6	877.967	3/2-					

From ENSDF

 ${}^{59}_{28}\mathrm{Ni}_{31}$ -20

γ ⁽⁵⁹Ni) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. ^J
8129.5	$(21/2^+)$	2878 ^a 1	100	5251.45	$17/2^{+}$	
9896.3+x	$(25/2^+)$	1767 ^a 1	100	8129.5+x	$(21/2^+)$	Q
10417.2+x	(23/2)	2288 ^a 1	100	8129.5+x	$(21/2^+)$	D
11641.1+x	(27/2)	1224 ^{<i>a</i>} 1	76 ^a 8	10417.2+x	(23/2)	Q ^a
		1745 ^a 1	100 a 16	9896.3+x	$(25/2^+)$	Da
11906.6+x	$(29/2^+)$	2010 ^a 1	100	9896.3+x	$(25/2^+)$	Q ^a
13224.9+x	(31/2)	1318 ^a 1		11906.6+x	$(29/2^+)$	
		1584 ^a 1	100 ^a 12	11641.1+x	(27/2)	Q^a
14278.7+x	$(33/2^+)$	2372 ^a 1	100	11906.6+x	$(29/2^+)$	Q^{a}
15175.9+x	(35/2)	897 <mark>a j</mark> 1		14278.7+x	$(33/2^+)$	
		1951 ^a 1	100 a 11	13224.9+x	(31/2)	0 ^a
16463.7+x		2185 ^a 1	100	14278.7+x	$(33/2^+)$	
17581.7+x	$(37/2^+)$	3303 ^a 1	100	14278.7+x	$(33/2^+)$	Q^{a}
17682.0+x	(39/2)	2506 ^a 1	100	15175.9+x	(35/2)	Q^{a}
21100.1+x	(43/2)	3418 ^a 1	100	17682.0+x	(39/2)	Q^{a}
1771+v		1771 ^{aj} 1	100	v		
3652.1+y		948 ^a 1	73 ^a 7	2704.1+y		
,		1881 ^a 1	100 ^{<i>a</i>} 7	1771+y		Q ^a
5802.1+y		2150 ^a 1	100	3652.1+y		\tilde{Q}^{a}
8379.2+y		2577 ^a 1	100	5802.1+y		Q^{a}
11439.3+y		3060 ^a 1	100	8379.2+y		
1873.0+z		1294 ^a 1	100 ^a 11	579.0+z		Q^{a}
		1873 ^{aj} 1	49 a 6	Z		
3608.1+z		1735 ^a 1	100	1873.0+z		0 ^a
5660.1+z		2052 ^a 1	100	3608.1+z		\tilde{Q}^{a}
8020.2+z		2360 ^a 1	100	5660.1+z		\tilde{Q}^{a}
8185.2+z		2525 ^a 1	100	5660.1+z		Q ^a
11355.3+z		3170 ^a 1	100	8185.2+z		-

[†] From (n,γ) E=thermal, except as noted. [‡] Weighted average of data from ⁵⁹Cu ε decay and ⁵⁸Ni (n,γ) E=thermal. Uncertainty – lowest input value.

[#] From $(\alpha, n\gamma)$.

21

^a From $(\alpha, n\gamma)$. ^a Weighted average of data from (³He,2p γ), (¹²C,2pn γ) and $(\alpha, n\gamma)$. Uncertainty – lowest input value. ^b From ⁴⁰Ca(²⁹Si,2\alpha2p γ). ^b Weighted average from (³He,2p γ) and $(\alpha, n\gamma)$.

^{*c*} From $(p,n\gamma)$.

 γ (⁵⁹Ni) (continued)

- ^d From (³He,2pγ). ^e From ⁵⁹Cu ε decay.
- ^f From (³He,2p γ), except otherwise noted. δ based on $\gamma(\theta)$.
- ^{*g*} From $\gamma(\theta)$ in (³He,2p γ) and RUL.
- ^h Additional information 2. ⁱ If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- ^{*j*} Placement of transition in the level scheme is uncertain.

Legend

γ Decay (Uncertain)

Level Scheme

€ S		
e de la companya de la	11355.3+z	
253 0 0 00 0 00	<u>8185 217</u>	
	8020.2+z	
	5660.1+z	
	3608.1+z	
<u>।</u> ई ² ई	1873 0+7	
	579.0+z	
× ×	Z	
	11439.3+y	
	8379.2+y	
	5802.1+y	
	3652.1+y	
	2704.1+y	
<u> </u>	1771+y	
	v	
(43/2)	21100.1+x	
	17682 0+x	
	17581.7+x	
<u></u>	16463.7+x	
	15175.9+x	
	142/8./+X	
	13224.9+x	
$\underbrace{(29/2^+)}_{(27/2)} \qquad \qquad$	11906.6+x	
	- 11041.1+X	
	- 98963 + x	
(21/2+)	8129.5+x	
$(21/2^+)$	8129.5	
(19/2,21/2)	7950.4	
17/2 ⁺	5251.45	
3/2-	0.0	7.6×10^4

 $^{59}_{28}{
m Ni}_{31}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁵⁹₂₈Ni₃₁

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{59}_{28}{
m Ni}_{31}$

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁵⁹₂₈Ni₃₁

Level Scheme (continued)

 $^{59}_{28}{
m Ni}_{31}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{59}_{28}{
m Ni}_{31}$

Level Scheme (continued)

 $^{59}_{28}{
m Ni}_{31}$

Level Scheme (continued)

 $^{59}_{28}\rm{Ni}_{31}$

Level Scheme (continued)

Level Scheme (continued)

 $^{59}_{28}\rm{Ni}_{31}$

⁵⁹₂₈Ni₃₁-36

Seq.(F): $9/2^+$ band

 $^{59}_{28}{
m Ni}_{31}$

⁵⁹₂₈Ni₃₁