⁵⁰Cr(¹²C,2pnγ) **1976Pi05**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. Shamsuzzoha Basunia	NDS 151, 1 (2018)	1-Apr-2018				

 $E(^{12}C)=26-58$ MeV. Measured E γ , I γ , excit, $\gamma\gamma$ coin, $\gamma(\theta)$, directional correlation of oriented nuclei (DCO) ratios ($\theta=0^{\circ}$ and 90°); semi, enriched target (1976Pi05).

See 1976Pi05 for detailed DCO ratio data.

⁵⁹Ni Levels

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	$J^{\pi \dagger}$
0.0 339.37 8 465.1 <i>1</i> 877.8 <i>3</i> 1189.0 <i>3</i>	3/2 ⁻ 5/2 ⁻	1337.85 8 1739.19 22 1767.40 10 1949.1 6 2535.50 24	7/2 ⁻ 9/2 ⁻ 13/2	2704.91 <i>12</i> 3376.75 <i>15</i> 3559.21 <i>20</i> 4140.99 <i>17</i> 4455.4 <i>6</i>	11/2 13/2 13/2	4947.19 20 5251.7 6	15/2 (13/2,15/2)

[†] Assumed for mult and δ . For J^{π} determinations, see Adopted Levels: J^{π} assignments.

γ (⁵⁹Ni)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J^{π}_i	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments
339.4 1	100	339.37	5/2-	0.0	3/2-	D+Q	-0.11 4	A ₂ =-0.18 2, A ₄ =+0.20 10; DCO(1400γ,339γ)=0.47 5, DCO(1428γ,339γ)=0.50 5. δ: -2.5 5 also possible from $\gamma(\theta)$ but excluded on basis of measured DCO ratio.
429.6 1	≤5	1767.40		1337.85	7/2-			
465.1 <i>1</i>	9	465.1		0.0	3/2-			I_{γ} : multiple line.
581.8 ^{&} 1 671.8 1	35 4	4140.99 3376.75	13/2	3559.21 2704.91	11/2			I _{γ} : multiple line; ¹² C(¹² C,2pn γ) contaminant.
764.2 1	17	4140.99	13/2	3376.75	-	D		$A_2 = -0.28 \ 6, \ A_4 = +0.09 \ 7;$ DCO(764 γ ,1428 γ)=1.94 <i>10</i> , DCO(764 γ ,1367 γ)=1.8 <i>3</i> ; DCO(764 γ ,1610 γ)=1.2 <i>3</i> .
796.3 <mark>b</mark> 1	16 <mark>b</mark>	2535.50	13/2	1739.19	$9/2^{-}$	Q		$DCO(796\gamma, 1400\gamma) = 1.04 \ 10.$
796.3 ^b 1	16 <mark>b</mark>	5251.7	(13/2,15/2)	4455.4	13/2			E_{γ} : from (¹² C,2pnγ). DCO(796γ,1367γ)=1.6 3.
806.2 1	13	4947.19	15/2	4140.99	13/2	D(+Q)	<0.1	$A_2 = -0.21$ 9, $A_4 = +0.13$ 10; DCO(806 γ , 1428 γ)=1.95 20; DCO(806 γ , 1610 γ)=1.15 20; DCO(806 γ , 764 γ)=0.93 10.
877.8 <i>3</i>	≤3	877.8		0.0	$3/2^{-}$			
937.5 2	4	2704.91	11/2	1767.40				
998.5 1	40	1337.85	7/2-	339.37	5/2-	Q+D	+9 3	δ: +0.35 5 also possible. A_2 =+0.24 8, A_4 =+0.30 <i>10</i> ; DCO(1338γ,999γ)=1.10 <i>10</i> ; DCO(999γ,339γ)=0.55 7.
1189.0 <i>3</i>	6	1189.0		0.0	3/2-			
1337.8 <i>1</i>	15	1337.85	7/2-	0.0	3/2-	Q		$A_2 = +0.225, A_4 = -0.075;$ DCO(1367 γ ,1338 γ)=1.23.
1367.0 <i>1</i>	35	2704.91	11/2	1337.85	7/2-	Q		$A_2 = +0.25 \ 5, \ A_4 = -0.08 \ 8;$ DCO(1367 γ .339 γ)=0.7 2.
1399.8 2	17	1739.19	9/2-	339.37	$5/2^{-}$	Q		$A_2 = +0.23 I, A_4 = -0.10 2.$
1428.0 <i>1</i>	40	1767.40		339.37	5/2-	Q		$A_2 = +0.22 I$, $A_4 = -0.04 I$.

Continued on next page (footnotes at end of table)

50 Cr(12 C,2pn γ) 1976Pi05 (continued)

γ (⁵⁹Ni) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	Comments
1609.5 ^b	16 <mark>b</mark>	1949.1		339.37	5/2-	a		
1609.5 <mark>b</mark> 3	16 <mark>b</mark>	3376.75		1767.40		D ^a		Mult.: from DCO(1610 γ ,1428 γ)=1.9 3.
1750.5 <i>5</i>	12	4455.4	13/2	2704.91	11/2	D+Q	-0.22 5	δ: -3 + 2 - 1 also possible. $A_2 = -0.44$ 8, $A_4 = +0.33$ 8; DCO(1751γ,1367γ)=1.7 3.
1792.4 <mark>&</mark> 5	10	3559.21		1767.40				
1949.1 6	7	1949.1		0.0	3/2-			

[†] From authors' 56 Fe(α ,n γ) data, except otherwise noted.

[±] At E=48 MeV and θ =55°, normalized so I(339 γ)=100.

[#] From $\gamma(\theta)$ and DCO ratios.

[@] From $\gamma(\theta)$.

& Evaluator has reversed order of 581γ - 1791γ cascade; see comment in $(\alpha,n\gamma)$ dataset.

^{*a*} $A_2 = -0.245$, $A_4 = +0.075$ for doublet. ^{*b*} Multiply placed with undivided intensity.

