Adopted Levels: not observed

History			
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 151, 1 (2018)	1-Apr-2018

 $Q(\beta^-)=-17890 \ SY; \ S(n)=18290 \ SY; \ S(p)=-1250 \ SY; \ Q(\alpha)=-4550 \ SY$ 2017Wa10 Estimated uncertainties (2017Wa10): 430 for $Q(\beta^-)$, 350 for S(n), 180 for S(p), 230 for $Q(\alpha)$. $S(2n)=34893 \ 434, \ S(2p)=1029 \ 170, \ Q(\varepsilon p)=10619 \ 170 \ (syst, 2017Wa10).$

No significant change from the ENSDF update by B. Singh (23-DEC-2015), except notes from 2016Go26.

2016Go26: From ⁵⁹Ge decay energy spectrum (Fig. 3(a)), authors note that the pronounced structure at 6500 keV (appears to be at 6000 keV) could originate from a β 2p branch via the isobaric analogue state in ⁵⁹Ga, however, not confirmed.

2005St29 (also 2005St34): ⁵⁹Ga isotope searched in fragmentation of ⁷⁸Kr³⁴⁺ beam in a ⁹Be target at E=140 MeV/nucleon. Reaction products selected according to their momentum/charge ratio using the A1900 spectrometer of the National Superconducting Cyclotron Laboratory (NSCL) at MSU. Measured fragments, TOF and energy losses using timing scintillator (SCI), a position-sensitive parallel-plate avalanche counter (PPAC) and three silicon detectors (PIN). Half-life estimated from comparison of upper limit of experimental production yield with expected production yield from theoretical calculations.

No events could be assigned to ⁵⁹Ga, implying that ⁵⁹Ga is most likely unbound towards proton emission.

⁵⁹Ga Levels

E(level) $T_{1/2}$ Comments

0.0? $\sqrt{8p}$ Comments

From the primary mode since S(p) = -1250 180 (2017Wa10).

 J^{π} : 3/2⁻ proposed from systematic trend (2017Au03); 1/2⁻ neutron orbital in theoretical calculations (1997Mo25). $T_{1/2}$: from experimental search for 59 Ga combined with expected number of transmitted nuclei based on

 $T_{1/2}$: from experimental search for ⁵⁹Ga combined with expected number of transmitted nuclei based on abrasion-ablation model cross sections and the time of flight of 370 ns for ⁵⁹Ga. Assuming a systematic uncertainty of one order of magnitude in calculated cross section, estimated $T_{1/2}$ =43 ns +28–12. Theoretical $T_{1/2}$ for β decay=42 ms (1997Mo25).