⁵⁹Zn ε decay 1981Ho19,1984Ar12

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	M. Shamsuzzoha Basunia	NDS 151, 1 (2018)	1-Apr-2018					

Parent: ⁵⁹Zn: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=178.6$ ms 18; $Q(\varepsilon)=9142.8$ 6; $\%\varepsilon+\%\beta^{+}$ decay=100.0

Others: 1981Ar13, 2014Ru08, 2017RuZX. 1981Ho19: production: 58 Ni(3 He,2n), E=25 MeV. Measured E(p) and I(p) for β^{-} delayed protons, E γ , I γ , p(t);Ge(Li) and Si detectors, 98% 58Ni target.

1984Ar12, 1981Ar13: production and identification: 58 Ni(3 He,2n), E \approx 20 MeV, mass separation. Measured E β , E γ , I γ , B(t), I(β ⁻delayed protons); high purity Ge detectors and Si(Au) Δ E-E telescope; FWHM=15 keV for delayed protons.

⁵⁹Cu Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2-	81.5 s 5	
491.4 <i>1</i>	$1/2^{-}$		
914.2 <i>1</i>	5/2-		
4347 10	$(1/2)^{-}$		E(p)(lab)=913 keV 10 and I(p)= $7 \times 10^{-5} 3$ (1981Ho19).
4500 5	$(1/2)^{-}$		$E(p)(lab)=1063 \text{ keV } 5 \text{ and } I(p)=14 \times 10^{-5} 5 (1981Ho19).$
4704 10	1/2-,3/2-		$E(p)(lab)=1264 \text{ keV } 10 \text{ and } I(p)=4 \times 10^{-5} 3 (1981Ho19).$
4773 10	3/2-		$E(p)(lab)=1331 \text{ keV } 10 \text{ and } I(p)=4 \times 10^{-5} 3 (1981Ho19).$
4818 5	3/2-		$E(p)(lab)=1376 \text{ keV } 5 \text{ and } I(p)=23 \times 10^{-5} 7 (1981Ho19).$
5227 5	1/2-		$E(p)(lab)=1778 \text{ keV } 5 \text{ and } I(p)=45 \times 10^{-5} 13 (1981Ho19).$
5267 5	3/2-		$E(p)(lab)=1817 \text{ keV } 5 \text{ and } I(p)=26 \times 10^{-5} 8 (1981Ho19).$
5308 5	$(1/2)^{-}$		$E(p)(lab)=1857 \text{ keV } 5 \text{ and } I(p)=17 \times 10^{-5} 6 (1981Ho19).$
5479 [#] 5			$E(p)(lab)=2025 \text{ keV } 5 \text{ and } I(p)=16 \times 10^{-5} 5 (1981Ho19).$
5544 [#] 5	1/2-,3/2-,5/2-		$E(p)(lab)=2089 \text{ keV } 5 \text{ and } I(p)=28 \times 10^{-5} 9 (1981Ho19).$
5638 10	$(3/2, 5/2)^{-}$		$E(p)(lab)=2182 \text{ keV } 10 \text{ and } I(p)=11 \times 10^{-5} 4 (1981Ho19).$
5653 10	5/2-		$E(p)(lab)=2197 \text{ keV } 10 \text{ and } I(p)=10 \times 10^{-5} 4 (1981Ho19).$
5707 10	5/2-		$E(p)(lab)=2250 \text{ keV } 10 \text{ and } I(p)=8 \times 10^{-5} 3 (1981Ho19).$
5870 15	3/2-,5/2-		$E(p)(lab)=2410 \text{ keV } 15 \text{ and } I(p)=16 \times 10^{-5} 6 (1981Ho19).$
5916 [@] 15	1/2-,3/2-		E(p)(lab)=2455 keV 15 and I(p)=5 \times 10 ⁻⁵ 2 (1981Ho19).
6460? ^{&} 15			E(level): Uncertainty estimated by evaluator from data in 1981Ho19. E(p)(lab) not listed in 1984Ar12.

[†] For bound levels: from E_{γ}. For unbound levels (E>3418): from E(p)(lab) (1981Ho19) and S(p)=3418.6 4 (2017Wa10). Data from 1981Ho19 are in excellent agreement with those from ${}^{58}Ni(p,\gamma)$ and ${}^{58}Ni({}^{3}He,dp)$ studies.

[‡] From Adopted Levels.

[#] Level not reported in ⁵⁸Ni(³He,dp) reaction (1976Ga19).

[@] Correspondence of this level to the 5923 level of 1976Ga19 is not certain.

[&] From 1984Ar12 (fig. 4); Iβ quoted as 0.003%. Source of data unclear, so evaluator has indicated existence of level as tentative.

 ε, β^+ radiations

						_
E(decay)†	E(level)	Ιβ ⁺ #	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\ddagger \#}$	Comments
(2683 [@] 15)	6460?	0.003	0.0004	5.1	0.003	av E β =725.8 69; ε K=0.105 3; ε L=0.0115 3; ε M+=0.00201 5
(3227 15)	5916	0.0020 9	0.00011 5	5.78 19	0.0021 9	I($\varepsilon + \beta^+$): From 1984Ar12. av E β =976.8 70; ε K=0.0472 10; ε L=0.00515 11; ε M+=0.000899 18
						I($\varepsilon + \beta^+$): Assuming $\Gamma_p/\Gamma=1$ and I(p)=0.0021% 9 (1981Ho19-normalized).

Continued on next page (footnotes at end of table)

⁵⁹Zn ε decay **1981Ho19,1984Ar12** (continued)

ϵ, β^+ radiations (continued)

E(decay)†	E(level)	$\mathrm{I}\beta^+$ #	Iɛ#	Log ft	$I(\varepsilon + \beta^+)^{\ddagger \#}$	Comments
(3273 15)	5870	0.0066 25	0.00035 13	5.30 17	0.0069 26	av Eβ=998.3 70; εK=0.0444 9; εL=0.00485 10;
						εM +=0.000847 17 I($\varepsilon + \beta^+$): Using $\Gamma_{-}/\Gamma_{-}0.98$ 2 (1976Ga19) and
						I(p)=0.0068% 26 (1981Ho19-normalized).
(3436 10)	5707	0.0035 12	0.00015 5	5.71 16	0.0036 13	av Eβ=1074.5 47; εK=0.0363 5; εL=0.00396 5;
						\mathcal{E} MH==0.000091 9 I($\mathcal{E} + \mathcal{B}^+$): Using $\Gamma_{\infty}/\Gamma=0.96$ 6 (1976Ga19) and
						I(p)=0.0034% 13 (1981Ho19-normalized).
(3490 10)	5653	0.0042 17	0.00017 7	5.66 18	0.0044 18	av Eβ=1099.8 47; εK=0.0340 4; εL=0.00371 5;
						\mathcal{E} I($\mathcal{E} + \beta^+$): Using $\Gamma_p/\Gamma = 0.98 \ 4 \ (1976 \text{Ga19})$ and
						I(p)=0.0043% 17 (1981Ho19-normalized).
(3505 10)	5638	0.0045 16	0.00018 6	5.65 16	0.0047 17	av $E\beta$ =1106.8 47; ε K=0.0334 4; ε L=0.00364 5;
						$I(\varepsilon + \beta^+)$: Assuming $\Gamma_p/\Gamma = 1$ and $I(p) = 0.0047\%$ 17
						(1981Ho19-normalized).
(3599 5)	5544	0.012 4	0.00041 14	5.31 15	0.012 4	av $E\beta$ =1151.0 24; ε K=0.02996 18; ε L=0.003269 19;
						$I(\varepsilon + \beta^+)$: Assuming $\Gamma_p/\Gamma = 1$ and $I(p) = 0.012\%$ 4
						(1981Ho19-normalized).
(3664 5)	5479	0.0066 20	0.00021 7	5.60 14	0.0068 21	av E β =1181.6 24; ε K=0.02785 16; ε L=0.003039 17; ε M+=0.000530 3
						$I(\varepsilon + \beta^+)$: Assuming $\Gamma_p/\Gamma=1$ and $I(p)=0.0068\%$ 21
(2025 5)	5200	0.007.0	0.00000.7	5 (0, 1)	0.0075.07	(1981Ho19-normalized).
(3835 5)	5308	0.007 3	0.00020 7	5.68 16	0.0075 27	av $E\beta = 1262.4 \ 24$; $\varepsilon K = 0.02317 \ 13$; $\varepsilon L = 0.002527 \ 14$; $\varepsilon M + = 0.0004412 \ 2$
						$I(\varepsilon + \beta^+)$: Using $\Gamma_p/\Gamma=0.97$ 3 (1976Ga19) and
(207(5)	50(7	0.011.2	0.00020.0	5 54 10	0.011.2	I(p)=0.0073% 26 (1981Ho19-normalized).
(38/6.5)	5267	0.011 3	0.00028 8	5.54 12	0.011 3	av $E\beta = 1281.8\ 24$; $\varepsilon K = 0.02221\ 12$; $\varepsilon L = 0.002422\ 13$; $\varepsilon M + = 0.0004228\ 2$
						$I(\varepsilon + \beta^+)$: Assuming $\Gamma_p/\Gamma=1$ and $I(p)=0.011\%$ 3
(2016.5)	5007	0.022.0	0.00070.22	5 00 12	0.022.0	(1981Ho19-normalized).
(3910-3)	5227	0.032 9	0.00079 22	5.09 12	0.033 9	av $E\beta$ =1500.8 24; EK =0.02151 11; EL =0.002525 12; EM+=0.0004058 2
						I($\varepsilon + \beta^+$): Using $\Gamma_p/\Gamma=0.59$ 2 (1976Ga19) and
(4325 5)	/818	0.014.4	0.00023.7	5 72 13	0.014.4	I(p)=0.0019% 6 (1981Ho19-normalized).
(4323 3)	4010	0.014 7	0.00023 7	5.12 15	0.014 4	$\varepsilon M += 0.0002748 \ l$
						$I(\varepsilon + \beta^+)$: Using $\Gamma_p/\Gamma=0.69$ 3 (1976Ga19) and
(4370-10)	1773	0.0026.20	4×10^{-5} 3	651	0.0026.20	I(p)=0.0098% 30 (1981Ho19-normalized).
(4370 10)	4/15	0.0020 20	4.×10 5	0.5 4	0.0020 20	$\epsilon M += 0.0002641 2$
						$I(\varepsilon + \beta^+)$: Using $\Gamma_p/\Gamma=0.65$ 4 (1976Ga19) and
(1130-10)	4704	0.0020.22	4×10^{-5} 3	651	0.0020.22	I(p)=0.0017% 13 (1981Ho19-normalized).
(4439 10)	4704	0.0029 22	4.×10 5	0.5 4	0.0029 22	$e^{M+=0.0002486} 2$
						I($\varepsilon + \beta^+$): Using $\Gamma_p/\Gamma=0.59$ 3 (1976Ga19) and
(4643 5)	4500	0.019.7	0 00024 9	5 77 16	0.019.7	I(p)=0.0017% 13 (1981Ho19-normalized).
(1015 5)	1500	0.0177	0.000219	5.77 10	0.0177	$\varepsilon M += 0.0002095 9$
						$I(\varepsilon + \beta^+)$: Using $\Gamma_p/\Gamma = 0.31 \ 3 \ (1976Ga19)$ and
(4796-10)	4347	0.011.5	0.00012.5	6.09.20	0.011 5	I(p)=0.0060% 21 (1981Ho19-normalized). av $F\beta=1721.1$ 49: $\varepsilon K=0.00975$ 8: $\varepsilon I=0.001062$ 9:
(17010)	10 17	5.011 5	5.00012 5	0.09 20	0.011 0	εM +=0.0001854 <i>I</i>
						$I(\varepsilon + \beta^+)$: Using $\Gamma_p/\Gamma = 0.27\ 2\ (1976Ga19)$ and
						I(p)=0.0030% 13 (1981Ho19-normalized).

Continued on next page (footnotes at end of table)

⁵⁹Zn ε decay 1981Ho19,1984Ar12 (continued)

	ϵ,β radiations (continued)							
E(decay)†	E(level)	$I\beta^+$ #	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\ddagger \#}$	Comments		
(8228.6 6)	914.2	1.1 2	0.0018 3	5.39 8	1.1 2	av E β =3395.26; ε K=0.0014431 4; ε L=0.0001571; ε M+=2.7409×10 ⁻⁵ 7		
(8651.4 6)	491.4	4.8 6	0.0066 8	4.86 6	4.8 6	av E β =3603.58; ε K=0.0012194 3; ε L=0.0001327; ε M+=2.3157×10 ⁻⁵ 6		
(9142.8 6)	0.0	94 <i>3</i>	0.108 4	3.698 15	94.1 30	av E β =3846.04; ε K=0.0010139 <i>3</i> ; ε L=0.0001103; ε M+=1.9254×10 ⁻⁵ <i>5</i>		

.. . . .

[†] Measured $E(\beta^+)(max) = 8100 \ 100 \ (1981Ar13, 1984Ar12).$

^{\ddagger} For bound levels: from I γ imbalance. For unbound levels: from measured proton intensities of 1981Ho19 renormalized so total I(p)=0.10% 3 (adopted value) combined with Γ_p/Γ , assuming $\Gamma_p/\Gamma=1$, except when data are available from ⁵⁸Ni(³He,dp) (1976Ga19).

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

 $\gamma(^{59}Cu)$

I γ normalization: from I(491 γ)/I β (total)=4.8% 6 (measured in planar HPGe detector which detected both β and γ) and $I(\beta^+-p)=0.10\%$ 3 (1984Ar12) and intensity imbalance at 491 and 914 levels. Other $I(491\gamma)$: 5% 2 (1981Ho19) from measured intensity relative to γ^{\pm} radiation (allowing 10% correction for annihilation in flight).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α#	Comments
423 &	<0.2	914.2	5/2-	491.4 1/2-				I_{γ} : after correction for I(423 γ) from daughter (⁵⁹ Cu) ε decay. Existence of transition uncertain.
491.4 <i>1</i>	4.8 6	491.4	1/2-	0.0 3/2-	M1(+E2)	< 0.37	0.00108 6	$\alpha(K)=0.00097 5; \alpha(L)=9.6\times10^{-5}$ 6; $\alpha(M)=1.36\times10^{-5} 8$ $\alpha(N)=4.12\times10^{-7} 21$
914.2 <i>1</i>	1.1 2	914.2	5/2-	0.0 3/2-	M1+E2	-0.21 2	2.71×10 ⁻⁴	$\alpha(K)=0.000243 \ 4;$ $\alpha(L)=2.40\times10^{-5} \ 4;$ $\alpha(M)=3.38\times10^{-6} \ 5$ $\alpha(N)=1.037\times10^{-7} \ 15$

[†] From 1984Ar12.

- [‡] From adopted gammas.
- [#] Additional information 1.
- [@] Absolute intensity per 100 decays.
- & Placement of transition in the level scheme is uncertain.

⁵⁹Zn ε decay 1981Ho19,1984Ar12

Decay	Scheme
-------	--------

Legend
Legend

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

%×I ^{max} ν (Uncertain)	$\%\varepsilon + \%\beta^+ = 100$	$3/2^{-}$ 0. Q $_{\varepsilon}$ =9142.8 6 59_{30} Zn $_{29}$	0_ 178.6 n	ns 18
	/	$I\beta^+$	<u>I</u> E	Log ft
<u>1/2⁻,3/2⁻</u> 3/2 ⁻ 5/2 ⁻	6460, //	0.003 0.0020	0.0004	5.1 5.78
<u>5/2-</u> <u>5/2-</u> <u>5/2-</u>	5707 5653	0.0066 0.0035 0.0042	0.00035 0.00015 0.00017	5.30 5.71 5.66
$\frac{(3/2,5/2)^{-}}{1/2^{-},3/2^{-},5/2^{-}}$	<u>5638</u> <u>5544</u> 5479	0.0045 0.012 0.0066	0.00018 0.00041 0.00021	5.65 5.31 5.60
<u>(1/2)</u> <u>3/2</u> 1/2	5308 J 5267 J	0.007 0.011	0.00020 0.00028	5.68 5.54
$\frac{1/2^{-}}{3/2^{-}}$	<u>5227</u> <u>4818</u> 4773	0.032 0.014 0.0026	0.00079 0.00023 0.00004	5.09 5.72 6.5
$\frac{1/2^{-},3/2^{-}}{(1/2)^{-}}$	4704 4500 4347	0.0029	0.00004 0.00024	6.5 5.77
33 33 33 33 <u>3</u> 3	434/	0.011	0.00012	0.09
<u>5/2</u> • • • • •	914.2 ¢ \$ 491.4 ¢	1.1 4.8	0.0018 0.0066	5.39 4.86
3/2-	0.0 81.	5 s 5 94	0.108	3.698

⁵⁹₂₉Cu₃₀