#### Adopted Levels, Gammas

|                 | His                    | tory              |                        |
|-----------------|------------------------|-------------------|------------------------|
| Туре            | Author                 | Citation          | Literature Cutoff Date |
| Full Evaluation | M. Shamsuzzoha Basunia | NDS 151, 1 (2018) | 1-Apr-2018             |

 $Q(\beta^{-}) = -9142.8 \ 6; \ S(n) = 12761.9 \ 6; \ S(p) = 3418.6 \ 4; \ Q(\alpha) = -4753.4 \ 6$  2017Wa10 Other Reactions:

## <sup>58</sup>Ni(<sup>32</sup>S,xnyp $\gamma$ ):

1986Vi06:  $E({}^{32}S)=143$  MeV; 99%  ${}^{58}Ni$  target; measured projectile-like fragments and target-like fragments coincident with discrete  $\gamma$  rays (in plane and normal to plane) using position-sensitive Bragg Curve ionization chamber at 30° and Ge detectors at 90°. Observed 912 $\gamma$  and 1399 $\gamma$  from  ${}^{59}Cu$ . Measured W(90°)/W(0°)=2.6 9 for 1399 $\gamma$  and deduced that this is an E2 stretched transition.

<sup>27</sup>Al(<sup>32</sup>S, $\gamma$ ):

1989Vi07:  $E(^{32}S)=100-150$  MeV; measured continuum  $\gamma$  spectra; deduced E and  $\Gamma$  for GDR using statistical model.

1995Dr05:  $E(^{32}S)=90-215$  MeV; measured  $\gamma$  production  $\sigma(E)$  and  $\gamma(\theta)$  for range of spin (0-47 $\hbar$ ) and excitation energy (55-130 MeV); deduced E and  $\Gamma$  of GDR. Observed broadening of GDR resulting primarily from spin-driven deformation.

#### $^{24}$ Mg( $^{35}$ Cl, $\gamma$ ):

2004Ma26: Studied the onset of nuclear deformation in <sup>59</sup>Cu at high spin from in-plane and out-of-plane correlations of light charged particles and neutrons emissions in the complete fusion reaction.

#### <sup>59</sup>Cu Levels

#### Cross Reference (XREF) Flags

|                       |                    | $ \begin{array}{c} A & {}^{59}Zn \\ B & {}^{58}Ni( \\ C & {}^{58}Ni( \\ D & {}^{58}Ni( \\ \end{array} ) $ | $\varepsilon$ decayE $p,\gamma)$ F $p,p),(p,p'\gamma)$ G $d,n), (d,np)$ H | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-----------------------|--------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| E(level) <sup>†</sup> | J <b>π</b> #       | T <sub>1/2</sub> <b>b</b>                                                                                 | XREF                                                                      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 0.0 <sup>d</sup>      | 3/2-               | 81.5 s 5                                                                                                  | AB DEFGHIJ L                                                              | $ \frac{1}{\sqrt{6}\epsilon + \%\beta^{+} = 100} $<br>μ=+1.8910 9; Q=-0.20 2<br>δ <r<sup>2&gt;(<sup>65</sup>Cu, <sup>59</sup>Cu)=-0.635 fm<sup>2</sup> 9 (stat) 71 (syst). (2016Bi08).<br/>J<sup>π</sup>: L=1 in (<sup>3</sup>He,d), (α,t), (d,n); log ft=5.8 to 5/2<sup>-</sup> 339 level in <sup>59</sup>Cu ε<br/>decay.<br/>T<sub>1/2</sub>: from 1958Bu07 (<sup>59</sup>Cu ε decay). Others: 1955Li38 (82 s I),<br/>1955Yu04 (83 s I), 1956Pr12 (83 s I), 1939De01 (81 s 2) – all from<br/>(<sup>59</sup>Cu ε decay).<br/>μ: From CLS (2011Vi03, 2014StZZ). Other values: +1.910 4 (2010Co01),<br/>+1.891 9 (2004Go39), +1.84 3 (2008St12).<br/>Q: From CLS and reevaluation (2013StZZ, 2014StZZ). Other: -0.19 2</r<sup> |  |  |  |
| 491.5 5               | $1/2^{-}$          | 0.58 ps 21                                                                                                | AB DEFGHIJ L                                                              | J <sup><math>\pi</math></sup> : L=1 in ( <sup>3</sup> He,d), ( $\alpha$ ,t); J=1/2 from $\gamma(\theta)$ in (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 914.2 <sup>1</sup> 4  | 5/2-               | >1.1 ps                                                                                                   | AB DEFGHIJ L                                                              | J <sup><math>\pi</math></sup> : L=3 in ( <sup>3</sup> He,d), ( $\alpha$ ,t); log ft 5.4 from 3/2 <sup>-</sup> in <sup>59</sup> Zn $\varepsilon$ decay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 1398.8 <sup>d</sup> 4 | 7/2-               | 0.40 ps 17                                                                                                | B DEFGHIJ L                                                               | XREF: D(1375).<br>J <sup><math>\pi</math></sup> : L=3 in ( <sup>3</sup> He.d), ( $\alpha$ .t): J=7/2 from $\gamma(\theta)$ in (p. $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1864.8 <sup>e</sup> 4 | 7/2-               |                                                                                                           | B DE G J L                                                                | XREF: D(1837).<br>$J^{\pi}$ : E2 $\gamma$ to 3/2 <sup>-</sup> : J=7/2 from $\gamma(\theta)$ in (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 1988.1 5              | 5/2 <sup>(+)</sup> |                                                                                                           | B DE G                                                                    | XREF: D(1962).<br>J <sup>π</sup> : J=5/2 from $\gamma(\theta)$ in (p,γ); Q γ from 9/2 <sup>+</sup> at 6206.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

## <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup>                     | $J^{\pi \#}$                           | $T_{1/2}^{b}$ | XREF          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|----------------------------------------|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2266.5 5                                  | 3/2+                                   | 0.22 ps 10    | B DEFG        | XREF: D(2239).<br>J <sup><math>\pi</math></sup> : L( <sup>3</sup> He,d)=2; J=3/2 from $\gamma(\theta)$ in (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                  |
| 2318.5 11                                 | $1/2^{(-)}, 5/2^{(-)}$                 |               | B dEf i       | XREF: d(2299)f(2323).<br>$J^{\pi}$ : J=1/2,5/2 but not 3/2 from $\gamma(\theta)$ in (p, $\gamma$ ); $\gamma$ to 1/2 <sup>-</sup> ; $\gamma$ from 5/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                        |
| 2324.1 5                                  | 3/2-@                                  | 25 fs 4       | B dEfG iJ     | XREF: d(2299)f(2323)J(2300).<br>J <sup><math>\pi</math></sup> : J $\neq$ 1/2 or 5/2 from $\gamma(\theta)$ in (p, $\gamma$ ); D $\gamma$ to 3/2 <sup>-</sup> . L=1 in ( <sup>3</sup> He d)                                                                                                                                                                                                                                                                                  |
| 2369 10                                   | 3/2+,5/2+                              |               | D H           | XREF: H(2360).<br>E(level), $J^{\pi}$ : From ( $\alpha$ ,t), L( $\alpha$ ,t)=2.                                                                                                                                                                                                                                                                                                                                                                                            |
| 2390.8 <sup>i</sup> 4                     | 9/2-                                   |               | DE L          | XREF: D(2369).<br>J <sup><math>\pi</math></sup> : stretched E2 $\gamma$ to 5/2 <sup>-</sup> ; $\gamma$ to 7/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                               |
| 2587.3 <sup>d</sup> 4                     | 11/2-                                  |               | B DE G J L    | XREF: D(2564).<br>$J^{\pi}$ : 1188.4 $\gamma$ Q to 7/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2664.6 <sup>f</sup> 5                     | (9/2 <sup>-</sup> )                    |               | BE L          | $J^{\pi}$ : J=5/2,9/2 from $\gamma(\theta)$ in (p, $\gamma$ ); 798.9 $\gamma$ D+Q to 7/2 <sup>-</sup> and M1+E2 from (11/2 <sup>-</sup> ) at 3329.4.                                                                                                                                                                                                                                                                                                                       |
| 2706.3 5                                  | 5/2-                                   |               | B dEf h       | XREF: d(2693)f(2710).<br>E(level): Excited level at 2710 7 with L( <sup>3</sup> He,d)=3 could<br>correspond to either 2706 or 2715 level, as could L=3 levels at<br>2690 in ( $\alpha$ ,t) and at 2693 in (d,n).<br>J <sup><math>\pi</math></sup> : J $\neq$ 3/2 or 7/2 from $\gamma(\theta)$ in (p, $\gamma$ ); Q $\gamma$ to 1/2 <sup>-</sup> ; D(+Q) $\gamma$ to<br>5/2 <sup>-</sup> . L=3 in ( <sup>3</sup> He,d) and ( $\alpha$ ,t) for 2706 and/or 2715 level(s).    |
| 2715.3 5                                  | 7/2-                                   |               | B dEf h       | XREF: d(2693)f(2710).<br>E(level): a level at 2710 7 with L( <sup>3</sup> He,d)=3 could correspond to<br>either 2706 or 2715 level, as could L=3 levels at 2690 in ( $\alpha$ ,t)<br>and at 2693 in (d,n).<br>J <sup><math>\pi</math></sup> : 7/2 from $\gamma(\theta)$ in (p, $\gamma$ ); Q $\gamma$ to 3/2 <sup>-</sup> ; mixed D+Q $\gamma$ to 5/2 <sup>-</sup><br>and 7/2 <sup>-</sup> . L=3 in ( <sup>3</sup> He.d) and ( $\alpha$ .t) for 2706 and/or 2715 level(s). |
| 2928                                      | 5/2 <sup>(-)</sup>                     |               | B D           | XREF: D(2913).<br>$J^{\pi}$ : 5/2 from $\gamma(\theta)$ in (p, $\gamma$ ); $\gamma$ to 1/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                  |
| 2992.0 14                                 | 3/2,5/2 <sup>-</sup> ,7/2 <sup>-</sup> |               | ΒE            | E(level): From ( <sup>3</sup> He,pny).<br>$I^{a}$ , $\gamma$ to $3/2^{-}$ and $5/2^{(+)}$                                                                                                                                                                                                                                                                                                                                                                                  |
| 3024.8 10                                 | 5/2 <sup>(-)</sup>                     |               | B G           | E(level): From ( <sup>3</sup> He,d $\gamma$ ).<br>$J^{\pi}$ : 5/2.7/2 from $\gamma(\theta)$ in (p, $\gamma$ ); $\gamma$ to 1/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                              |
| 3042.5 <sup>j</sup> 4                     | 9/2+                                   | 0.80 ps 35    | B DEFGHIJ L   | XREF: D(3023).<br>$I^{\pi} \cdot I ({}^{3}\text{He d}) = 4$ : I=9/2 from $\gamma(\theta)$ in (n $\gamma$ )                                                                                                                                                                                                                                                                                                                                                                 |
| 3114.4 7<br>3121.92 9                     | 5/2-                                   | 14 fs 8       | B G<br>E      | $J^{\pi}$ : 5/2 from $\gamma(\theta)$ in (p, $\gamma$ ); M1+E2 $\gamma$ to 3/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                              |
| 3129.9 5                                  | 3/2-                                   | 6.9 fs 28     | B DEFG        | XREF: D(3114).<br>$I^{\pi}$ : $L({}^{3}\text{He}, d)=1$ : $I \neq 1/2$ from $\gamma(\theta)$ in $(p, \gamma)$ .                                                                                                                                                                                                                                                                                                                                                            |
| 3309                                      | 7/2 <sup>(-)</sup>                     |               | BdF           | XREF: d(3298).<br>$I^{\alpha}$ , 7/2 from $\gamma(\theta)$ in (p.y): $\gamma$ to $3/2^{-1}$ L ( <sup>3</sup> He d)=(4)                                                                                                                                                                                                                                                                                                                                                     |
| 3329.4 <sup>e</sup> 4<br>3434             | (11/2 <sup>-</sup> )<br>5/2            |               | E L<br>Bdh    | $J^{\pi}$ : M1+E2 $\gamma$ to (9/2 <sup>-</sup> ); Q $\gamma$ to 7/2 <sup>-</sup> and D+Q to 11/2 <sup>(-)</sup> .<br>XREF: d(3427)h(3410).<br>$I^{\pi}$ : from $\gamma(\theta)$ in (n $\gamma$ )                                                                                                                                                                                                                                                                          |
| 3437?                                     | (7/2 <sup>+</sup> ,9/2 <sup>+</sup> )  |               | d F           | XREF: $d(3427)$ .<br>$I^{7} \cdot I ({}^{3}\text{He } d) = (4)$                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3438                                      | (1/2)                                  |               | Bd h          | $I^{\pi}$ : from $\gamma(\theta)$ in $(p, \gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3447.1 <sup><i>i</i></sup> 4<br>3550.9 14 | 13/2 <sup>-</sup><br>5/2 <sup>-</sup>  | <10 fs        | E L<br>B FGhi | $J^{\pi}$ : E2 $\gamma$ to 9/2 <sup>-</sup> ; D+Q $\gamma$ to 11/2 <sup>(-)</sup> .<br>XREF: h(3550).<br>$I^{\pi}$ : 5/2 from $\gamma(\theta)$ in (p $\gamma$ ): L ( <sup>3</sup> He d)=3                                                                                                                                                                                                                                                                                  |
| 3574                                      | 5/2,7/2                                |               | B hi          | $J^{\pi}$ : from γ(θ) in (p,γ), L( ne, d)=3.<br>XREF: h(3550).<br>$J^{\pi}$ : from γ(θ) in (p,γ).                                                                                                                                                                                                                                                                                                                                                                          |

## <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup>                         | $J^{\pi \#}$                                                   | $T_{1/2}^{b}$ | XREF         | Comments                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|----------------------------------------------------------------|---------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3578                                          |                                                                |               | B j          | E(level): May be same as the 3580 level, but branching differs significantly.                                                                                                                                                                                                                     |
| 3580.5 5                                      | 5/2+                                                           | 1.7 ps 10     | DEFG j       | $J^{\pi}$ : L( <sup>3</sup> He,d)=2; 5/2 from W(90°)/W(147°) in ( <sup>3</sup> He,d $\gamma$ ); $\gamma$ to $9/2^+$ .                                                                                                                                                                             |
| 3615.3 <i>11</i><br>3654 <i>10</i>            | 3/2 <sup>-</sup><br>1/2 <sup>-</sup> ,3/2 <sup>-</sup>         | <24 fs        | B FG<br>D F  | J <sup>π</sup> : L( <sup>3</sup> He,d)=1; 3/2,5/2 from $\gamma(\theta)$ in (p, $\gamma$ ).<br>E(level): From (d,n), (d,np).                                                                                                                                                                       |
| 3699                                          | 7/2-                                                           |               | BFH          | $J^{\pi}: L({}^{3}He,d)=1.$<br>E(level): From (p, $\gamma$ ).                                                                                                                                                                                                                                     |
| 3729                                          | 3/2,5/2                                                        |               | Bdf          | J <sup><math>\pi</math></sup> : L( <sup>3</sup> He,d)=3; J=7/2 from $\gamma(\theta)$ in (p, $\gamma$ ).<br>XREF: d(3736)f(3737).                                                                                                                                                                  |
|                                               | 2.0-                                                           |               |              | J <sup><math>\pi</math></sup> : J=3/2,5/2 from $\gamma(\theta)$ in (p, $\gamma$ ). L( <sup>3</sup> He,d)=1 for 3729 and/or 3742 level.                                                                                                                                                            |
| 3741 1                                        | 3/2-                                                           |               | B dE±G       | XREF: $d(3/36)f(3/3/)$ .<br>E(level): From ( <sup>3</sup> He,dy).                                                                                                                                                                                                                                 |
|                                               |                                                                |               |              | $J^{\pi}$ : 3/2 from W(90°)/W(147°) in ( <sup>3</sup> He,d $\gamma$ ); L(d,n)=1.<br>L( <sup>3</sup> He,d)=1 for 3729 and/or 3742 level.                                                                                                                                                           |
| 3758 <i>1</i><br>3884.7 <i>10</i>             | 5/2 <sup>(+)</sup> ,7/2,9/2 <sup>(-)</sup><br>3/2 <sup>-</sup> |               | B<br>B d FGh | $J^{\pi}$ : $\gamma$ to 5/2 <sup>-</sup> and 7/2 <sup>-</sup> ; $\gamma$ from 9/2 <sup>+</sup> at 6905.<br>XREF: d(3893)h(3900).                                                                                                                                                                  |
|                                               |                                                                |               |              | E(level): From ( <sup>3</sup> He,d $\gamma$ ). Fragment of <sup>59</sup> Ni(g.s.) IAS.<br>J <sup><math>\pi</math></sup> : L( <sup>3</sup> He,d)=1: 3/2 from W(90°)/W(147°) in ( <sup>3</sup> He,d $\gamma$ ).                                                                                     |
| 3904.0 18                                     | 3/2-                                                           |               | B d FGh      | XREF: $d(3893)h(3900)$ .<br>E(level): From ( <sup>3</sup> He dy). Fragment of <sup>59</sup> Ni(g s.) IAS.                                                                                                                                                                                         |
| 3930                                          | 5/2+                                                           |               | R h          | $J^{\pi}$ : L( <sup>3</sup> He,d)=1: 3412 $\gamma$ D+Q to 1/2 <sup>-</sup> .<br>XREF: h(3900)                                                                                                                                                                                                     |
| 5750                                          | 5/2                                                            |               | 2 11         | $J^{\pi}$ : 5/2,7/2 from $\gamma(\theta)$ in (p, $\gamma$ ); L=2 component of doublet in ( $\alpha$ ,t).                                                                                                                                                                                          |
| 4000 2                                        | (1/2) <sup>-</sup>                                             |               | D FG         | E(level): From ( <sup>3</sup> He,d $\gamma$ ).<br>J <sup><math>\pi</math></sup> : L( <sup>3</sup> He,d)=1; J=1/2 favored from angular correlation in ( <sup>3</sup> He,dn)                                                                                                                        |
| 4051 1                                        | 1/2-,3/2-                                                      |               | D FG         | $\begin{array}{l} \text{E(level): From (^{3}\text{He,dy}).} \\ \text{I}^{\text{a}} \cdot \text{I} (^{3}\text{He d}) = 1 \end{array}$                                                                                                                                                              |
| 4072                                          | (3/2,5/2,7/2) <sup>(-)</sup>                                   |               | В Н          | XREF: H(4090).<br>$J^{\pi}$ : from $\gamma(\theta)$ in (p, $\gamma$ ). Possibly L=3 component of doublet in $(\alpha,t)$ .                                                                                                                                                                        |
| 4100.4 <sup><i>f</i></sup> 4<br>4108 <i>1</i> | (13/2 <sup>-</sup> )<br>3/2 <sup>-</sup>                       |               | E L<br>DFGH  | J <sup><math>\pi</math></sup> : 770.8 $\gamma$ D+Q to (11/2 <sup>-</sup> ); 1435.5 $\gamma$ Q to (9/2 <sup>-</sup> ). XREF: H(4090).                                                                                                                                                              |
|                                               |                                                                |               |              | E(level): From ( <sup>3</sup> He,d $\gamma$ ).<br>J <sup><math>\pi</math></sup> : 3/2 from W(90°)/W(147°) in ( <sup>3</sup> He,d $\gamma$ ); L( <sup>3</sup> He,d)=1.                                                                                                                             |
| 4154                                          |                                                                |               | F            |                                                                                                                                                                                                                                                                                                   |
| 4183                                          | $5/2,9/2^{(-)}$                                                |               | В            | $J^{\pi}$ : 5/2,9/2 from $\gamma(\theta)$ in (p, $\gamma$ ); $\gamma$ to 5/2 <sup>(-)</sup> .                                                                                                                                                                                                     |
| 4207                                          | $5/2,7/2^{(-)}$                                                |               | В            | $J^{\pi}$ : 5/2,7/2 from $\gamma(\theta)$ in (p, $\gamma$ ); $\gamma$ to 3/2 <sup>-</sup> .                                                                                                                                                                                                       |
| 4213 9                                        | 7/2+,9/2+                                                      |               | F            | $J^{n}: L({}^{3}He,d)=4.$                                                                                                                                                                                                                                                                         |
| 4258? 2<br>4267 9                             | 1/2-,3/2-                                                      |               | DF           | E(level): Wt. ave. of data from (d,n), (d,np) and ( <sup>3</sup> He,d), ( <sup>3</sup> He,dp).                                                                                                                                                                                                    |
|                                               |                                                                |               |              | $J^{\pi}$ : L( <sup>3</sup> He,d)=1.                                                                                                                                                                                                                                                              |
| 4293.9? 21                                    | 5/0(-)                                                         |               | E            | XDEE 1(4200)1 (4200)                                                                                                                                                                                                                                                                              |
| 4301 2                                        | 5/2(-)                                                         |               | B d fGh      | XREF: d(4308)h(4300).<br>E(level): From ( <sup>3</sup> He,d $\gamma$ ). Possible <sup>59</sup> Ni(5/2 <sup>-</sup> , 339 level) analogue fragment, but E is high cf. systematics.<br>J <sup><math>\pi</math></sup> : not 7/2, from W(90°)/W(147°) in ( <sup>3</sup> He,d $\gamma$ ); 5/2,7/2 from |
| 4307                                          | 5/2 <sup>(-)</sup>                                             |               | Bdfh         | $\gamma(\theta)$ in (p, $\gamma$ ). $\pi$ =- if analogue state.<br>XREF: d(4308)h(4300).                                                                                                                                                                                                          |
|                                               |                                                                |               |              |                                                                                                                                                                                                                                                                                                   |

| E(level) <sup>†</sup> | $J^{\pi \#}$                | $T_{1/2}^{b}$ | XF     | REF  |      | Comments                                                                                                                                                                                                                                                              |
|-----------------------|-----------------------------|---------------|--------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                             |               |        |      |      | <ul> <li>J<sup>π</sup>: J=5/2 from γ(θ) in (p,γ). L(<sup>3</sup>He,d)=3 for 4301 and/or 4307 level(s). π=- if analogue state.</li> <li>E(level): Possible fragment of <sup>59</sup>Ni(5/2<sup>-</sup>, 339 level) analogue, but E is high cf. systematics.</li> </ul> |
| 4349 1                | (1/2) <sup>-</sup>          |               | AB D F | G    |      | XREF: D(4358)F(4357).<br>E(level): From ( <sup>3</sup> He,d $\gamma$ ). Possible 1/2 <sup>-59</sup> Ni(465 level) analogue.<br>I <sup><math>\pi</math></sup> : (1/2) from d p angular correlation in ( <sup>3</sup> He dp): L ( <sup>3</sup> He d)=1                  |
| 4411.3? 20            |                             |               | В      |      |      | $\mathbf{J}$ : (1/2) from $\mathbf{u}$ - $\mathbf{p}$ angular correlation in ( fie,up), E( fie,u)=1.                                                                                                                                                                  |
| 4441                  | 7/2+                        |               | BF     | •    |      | XREF: F(4454).<br>$I^{\pi}$ : $I_{*}^{(3)}$ He d)=4: I=7/2 from $\gamma(\theta)$ in (p $\gamma$ )                                                                                                                                                                     |
| 4465                  | $5/2^{(+)}.7/2.9/2^{(-)}$   |               | В      |      |      | $J^{\pi}$ : $\gamma$ to $5/2^{-}$ : $\gamma$ from $9/2^{+}$ at 6905.                                                                                                                                                                                                  |
| 4500 5                | $(1/2)^{-}$                 | 7.8 fs 7      | AB F   |      |      | E(level): From <sup>59</sup> Zn $\varepsilon$ decay.                                                                                                                                                                                                                  |
|                       |                             |               |        |      |      | $J^{\pi}$ : L( <sup>3</sup> He,d)=1; J=(1/2) from angular correlation in ( <sup>3</sup> He,dp).<br>T <sub>1</sub> /2; from (p, $\gamma$ ).                                                                                                                            |
| 4527.9 <b>j</b> 4     | $(13/2^{+})$                |               | E      |      | L    | $J^{\pi}: \Omega \gamma \text{ to } 9/2^+$                                                                                                                                                                                                                            |
| 4530 1                | $(7/2)^+$                   |               | BF     | ' I  | -    | Additional information 1.                                                                                                                                                                                                                                             |
|                       |                             |               |        |      |      | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                         |
|                       |                             |               |        |      |      | $J^{\pi}$ : L( <sup>3</sup> He,d)=4; $\gamma$ to 5/2 <sup>-</sup> .                                                                                                                                                                                                   |
| 4618 2                |                             |               | В      |      |      |                                                                                                                                                                                                                                                                       |
| 4699 2                | (3/2)                       |               | aB     |      |      | <b>XREF:</b> $a(4'/03)$ .                                                                                                                                                                                                                                             |
| 4710 7 24             | $(1/2)^{-}$                 |               | aR F   |      |      | $J^{*}$ : $J/2$ from branching statistics in (p, $\gamma$ ).                                                                                                                                                                                                          |
| 4/10.7 24             | (1/2)                       |               | ab I   |      |      | E(level): From $(\mathbf{p}, \boldsymbol{\gamma})$ .                                                                                                                                                                                                                  |
|                       |                             |               |        |      |      | $J^{\pi}$ : L( <sup>3</sup> He,d)=1; J=(1/2) from d-p angular correlation in ( <sup>3</sup> He,dp).                                                                                                                                                                   |
| 4774 <i>3</i>         | 3/2-,5/2-                   | 3.5 fs 3      | AB d F | ' i  |      | XREF: d(4790)F(4780).                                                                                                                                                                                                                                                 |
|                       |                             |               |        |      |      | E(level): Unweighted ave. of data from $(p,\gamma)$ , <sup>59</sup> Zn $\varepsilon$ decay, and                                                                                                                                                                       |
|                       |                             |               |        |      |      | $({}^{3}\text{He,d}), ({}^{3}\text{He,dp}).$                                                                                                                                                                                                                          |
|                       |                             |               |        |      |      | $T_{1/2}$ : from $(p,\gamma)$ .                                                                                                                                                                                                                                       |
|                       |                             |               |        |      |      | $J^{n}$ : L( <sup>3</sup> He,d)=1.                                                                                                                                                                                                                                    |
| 4810                  | 7/2+ 0/2+                   |               | D      |      |      | E(level): Fragment of $3/2^{-10}$ Ni(8/8 level) analogue.                                                                                                                                                                                                             |
| 4818 5                | $\frac{1}{2}, \frac{9}{2}$  |               | ARdF   | - i  |      | XREF d(4790)F(4830)                                                                                                                                                                                                                                                   |
| .010 0                | 0/2                         |               |        | -    |      | E(level): From ${}^{59}$ Zn $\varepsilon$ decay.                                                                                                                                                                                                                      |
|                       |                             |               |        |      |      | $J^{\pi}$ : 3/2 from $\gamma(\theta)$ in (p, $\gamma$ ): L( <sup>3</sup> He.d)=1.                                                                                                                                                                                     |
|                       |                             |               |        |      |      | Analogue of $3/2^{-59}$ Ni(878 level).                                                                                                                                                                                                                                |
| 4904.0 <sup>e</sup> 4 | $(15/2^{-})$                |               | E      |      | L    | $J^{\pi}$ : D+Q $\gamma$ to (13/2) <sup>-</sup> ; Q $\gamma$ to (11/2 <sup>-</sup> ).                                                                                                                                                                                 |
| 4914.6 20             | $5/2^{(+)}, 7/2, 9/2^{(-)}$ |               | В      |      |      | $J^{\pi}$ : $\gamma$ to $5/2^{-}$ ; $\gamma$ from $9/2^{+}$ at 6905.                                                                                                                                                                                                  |
| 4932.3 20             | 7/2+,9/2+                   |               | BF     |      |      | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                         |
| 1072 ( 20             | 2/2+ 5/2+                   |               |        |      |      | $J^{\pi}$ : L( <sup>3</sup> He,d)=4.                                                                                                                                                                                                                                  |
| 4973.6 20             | 3/2",5/2"                   |               | ВР     |      |      | E(level): From $(p,\gamma)$ .<br>$I^{\pi}$ : $I({}^{3}\text{He d})=2$                                                                                                                                                                                                 |
| 5043.3 20             |                             |               | В      | i    |      | J. E(110,0)-2.                                                                                                                                                                                                                                                        |
| 5053.2 20             | (5/2)-                      |               | BF     | i    |      | E(level): From (p, $\gamma$ ). Probable analogue of 5/2 <sup>-59</sup> Ni(1189 level).                                                                                                                                                                                |
|                       |                             |               |        |      |      | J <sup><math>\pi</math></sup> : 3/2,5/2 from branching statistics in (p, $\gamma$ ); L( <sup>3</sup> He,d)=3.                                                                                                                                                         |
| 5105.3 24             | $(1/2^-, 3/2, 5/2^-)$       |               | BF     | 'i   |      | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                         |
| 5000 2 20             | 0/2                         | 10.5.6 10     | р      |      |      | $J^{n}$ : $\gamma$ to $1/2^{-}$ and $5/2^{-}$ .                                                                                                                                                                                                                       |
| 5220.5 20             | 9/2                         | 10.5 18 10    | Б      |      |      | E(level), $I_{1/2}$ . From $p(\theta)$ in $(p, \gamma)$ .<br>$I^{\pi} \cdot Q/2$ from $p(\theta)$ in $(p, \gamma)$                                                                                                                                                    |
| 5230.6 7              | $1/2^{-}$                   |               | ABCD F |      |      | XREF: D(5240).                                                                                                                                                                                                                                                        |
|                       | -1-                         |               |        |      |      | E(level): From $(p,\gamma)$ . Analogue of $1/2^{-59}$ Ni(1301 level).                                                                                                                                                                                                 |
|                       |                             |               |        |      |      | $J^{\pi}$ : L=1 in ( <sup>3</sup> He,d); J=1/2 from (d,np) correlation.                                                                                                                                                                                               |
| 5255.0? 10            |                             |               | В      |      |      |                                                                                                                                                                                                                                                                       |
| 5264 4                | 3/2-                        |               | AB F   | 'i   |      | XREF: F(5283).                                                                                                                                                                                                                                                        |
|                       |                             |               |        |      |      | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                         |
|                       |                             |               |        |      |      | J <sup>*</sup> : $3/2$ from $\gamma(\theta)$ in (p, $\gamma$ ); $\varepsilon$ decay from $3/2^{-39}$ Zn is allowed                                                                                                                                                    |
|                       |                             |               | Conti  | nued | on r | next page (footnotes at end of table)                                                                                                                                                                                                                                 |

| E(level) <sup>†</sup>           | $J^{\pi \#}$        | XREF     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|---------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5306 4                          | (1/2)-              | AB D F i | (log $ft$ =5.5 $I$ ); L( <sup>3</sup> He,d)=1.<br>XREF: D(5330)F(5316).<br>E(level): From (p, $\gamma$ ).<br>$J^{\pi}$ : L( <sup>3</sup> He,d)=1; (1/2) from d-p angular correlation in ( <sup>3</sup> He,dp).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5427.0 <sup>j</sup> 4<br>5431 4 | $(17/2^+)$          | E L<br>R | $J^{\pi}$ : Q $\gamma$ to (13/2 <sup>+</sup> ), band assignment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5442 4                          | $(3/2)^+$           | B F      | E(level): From $(p,\gamma)$ .<br>$I^{\pi} \cdot I \cdot I^{3}H_{\alpha} d) = 2; \alpha to 1/2^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5473 4                          |                     | aB d     | S : E( $116,0-2$ , $\gamma$ to $1/2$ :<br>XREF: a(5477)d(5490).<br>E(level): From (p, $\gamma$ ).<br>$I^{\pi}$ : $\alpha$ to $3/2^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5482 4                          | (5/2 <sup>-</sup> ) | aB d F   | XREF: a(5/277)d(5490).<br>E(level): From $(p,\gamma)$ .<br>$I^{\pi}$ : L( <sup>3</sup> He d)=3: $\alpha$ to $1/2^{-}$ and $3/2^{+}$ ; however, $\alpha$ to $9/2^{+}$ also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5521 4                          | 3/2-,5/2            | В        | E(level): Fragment of $5/2^{-59}$ Ni(1680 level) analogue.<br>$I^{\pi}$ : D(+Q) $\propto$ to $3/2^{-2}$ $\propto$ to $5/2^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5542 4                          | 1/2-,3/2-,5/2-      | AB       | E(level): From $(p,\gamma)$ .<br>$I^{\pi}: \log t < 5.9$ from $3/2^{-1}$ in ${}^{59}$ Zn $\varepsilon$ decay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5550 4                          | (3/2,5/2)           | В        | $J^{\pi}$ : From (p, $\gamma$ ). D+Q $\gamma$ to 7/2 <sup>-</sup> and to 3/2 <sup>-</sup> . Fragment of 5/2 <sup>-</sup> <sup>59</sup> Ni(1680 level) analogue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5584 <i>4</i><br>5589 <i>4</i>  |                     | B<br>B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5597 3                          | $(1/2^+)^{\&}$      | C        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5602.4                          | (3/2)               | B        | $I^{\pi}$ . From $(\mathbf{p}  \boldsymbol{\gamma}) = \mathbf{p}$ robable analogue of $3/2^{-59}$ Ni $(1735 \text{ level})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5608 4                          | $(1/2)^{-}$         | BDF      | XREF: D(5620)F(5612).<br>$I^{\pi}$ : L(d n)=1 and I=1/2 from n-n angular correlation in (d nn) for E=5620 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5620 4                          | 7/2 <sup>(-)</sup>  | B d      | XREF: d(5630).<br>$I^{\pi}$ : 7/2 from $\gamma(\theta)$ in (p.y): D x to 9/2 <sup>+</sup> , x to 3/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5642 4                          | (3/2)-              | AB d     | XREF: d(5630).<br>E(level): From (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                 |                     |          | J <sup><math>\pi</math></sup> : log <i>ft</i> <5.9 from 3/2 <sup>-</sup> in <sup>59</sup> Zn $\varepsilon$ decay; D+Q $\gamma$ to 1/2 <sup>-</sup> , $\gamma$ to 7/2 <sup>-</sup> ; probable 3/2 <sup>-</sup><br><sup>59</sup> Ni(1735 level) analogue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5658 4                          | 5/2-                | AB d F   | XREF: $d(5630)$ .<br>E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5604 4                          |                     |          | $J^{\pi}$ : 5/2 from $\gamma(\theta)$ in (p, $\gamma$ ); L( <sup>3</sup> He,d)=3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5694 4                          | 5/0-                | Bd       | XREF: d(5/10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3/12 4                          | 3/2                 | АБИІ     | <b>AKEF.</b> $u(3/10)I(3/22)$ .<br>E(lovel): From (n a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                     |          | E(level). From $e(0)$ in $(\mathbf{p}, \mathbf{y})$ .<br>$I_{\mathbf{x}} = 5/2$ from $e(0)$ in $(\mathbf{p}, \mathbf{y})$ , a decay from $2/2^{-59}$ is allowed (leg ff 5.7.2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                     |          | $J^{*}$ . $J/2$ from $\gamma(\theta)$ in (p, $\gamma$ ), $\varepsilon$ decay from $J/2$ and $Z$ in is anowed (log $J = 5.7.2$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5721.8.3                        | $3/2 5/2^{(-)}$     | Pdf      | L(11c, u) = 5  for  5/12  level and/or  5/13  level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5721.0 5                        | 5/2,5/2             | bui      | Additional information 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 |                     |          | E(level): From ( <sup>3</sup> He pny)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 |                     |          | $J^{\pi}$ : $3/2,5/2$ from $\gamma(\theta)$ in (p, $\gamma$ ); $\gamma$ to $1/2^-$ . L( <sup>3</sup> He,d)=3 for 5712 level and/or 5719 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $5722.2f_4$                     | $(17/2^{-})$        | E L      | $I^{\pi}$ : $\Omega \propto to (13/2^{-})$ and $D+\Omega \propto to (15/2^{-})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5777.5 16                       | (1)]= )             | В        | $\mathbf{v} + \mathbf{v} + $ |
| 5801 4                          |                     | В        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5822 4                          |                     | В        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5833 4                          | Q                   | В        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5840 <i>3</i>                   | $(5/2^+)^{\&}$      | CD       | XREF: D(5850).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5846 <i>3</i>                   | $(1/2^{-})^{\&}$    | С        | E(level): from (p,p), $(p,p'\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5851 4                          | 5/2-                | B F      | E(level): From $(p, \gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |          | $J^{\pi}$ : 5/2 from (p, $\gamma$ ); L( <sup>3</sup> He,d)=3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 |                     |          | Continued on next page (footnotes at end of table)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| E(level) <sup>†</sup> | $J^{\pi \#}$                       | $T_{1/2}^{b}$ | XREF     | Comments                                                                                                                                                                                   |
|-----------------------|------------------------------------|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5881 <i>4</i>         | 3/2-,5/2-                          |               | AB       | XREF: A(5869).                                                                                                                                                                             |
|                       | , , ,                              |               |          | J <sup><math>\pi</math></sup> : 3/2,5/2 from $\gamma(\theta)$ in (p, $\gamma$ ); log ft=5.3 2 from 3/2 <sup>-</sup> in <sup>59</sup> Zn $\varepsilon$                                      |
|                       |                                    |               |          | decay.                                                                                                                                                                                     |
| 5897 <i>4</i>         | $7/2^{(-)}$                        |               | В        | E(level): From (p, $\gamma$ ). Analogue of 7/2 <sup>-59</sup> Ni(1948 level).                                                                                                              |
|                       |                                    |               |          | $J^{\pi}$ : 7/2 from $\gamma(\theta)$ in (p, $\gamma$ ); proposed analogue has $\pi = -$ .                                                                                                 |
| 5914 <i>4</i>         | 5/2                                |               | Bd       | XREF: $d(5930)$ .                                                                                                                                                                          |
| 5923 9                | 1/2-3/2-                           |               | AdF      | $J^{*}$ : $\gamma(\theta)$ III (p, $\gamma$ ).<br>XREF: $d(5930)$                                                                                                                          |
| 57257                 | 1/2 ,5/2                           |               | n u i    | F(level): From ( <sup>3</sup> He d) ( <sup>3</sup> He dn)                                                                                                                                  |
|                       |                                    |               |          | $J^{\pi}$ : L( <sup>3</sup> He d)=1.                                                                                                                                                       |
| 5928 4                | 5/2                                |               | Βd       | XREF: d(5930).                                                                                                                                                                             |
|                       |                                    |               |          | $J^{\pi}$ : $\gamma(\theta)$ in $(p,\gamma)$ .                                                                                                                                             |
| 5941 <i>4</i>         | 3/2,5/2                            |               | B d      | XREF: d(5930).                                                                                                                                                                             |
| 5050 0                | $(0/2)^{+}$                        |               | DE       | $J^{n}$ : $\gamma(\theta)$ in (p, $\gamma$ ).                                                                                                                                              |
| 5950 9                | (9/2)                              |               | DF       | AKEF: $D(5900)$ .<br>$I^{\pi}$ : $I({}^{3}\text{He d}) = 4$ : (0/2) from d $p(4)$ in ( ${}^{3}\text{He d}p$ )                                                                              |
| 5957 <i>4</i>         |                                    |               | B        | $J : L(\Pi e, u) = 4, (9/2) \Pi O \Pi u = p(0) \Pi (\Pi e, up).$                                                                                                                           |
| 5968 4                |                                    |               | B        | J <sup><math>\pi</math></sup> : 5/2 from $\gamma(\theta)$ in (p, $\gamma$ ) for 5968 level or 5971 level or possibly a                                                                     |
|                       |                                    |               |          | mixture of the two.                                                                                                                                                                        |
| 5971 <i>4</i>         |                                    |               | B i      | J <sup><math>\pi</math></sup> : 5/2 from $\gamma(\theta)$ in (p, $\gamma$ ) for 5968 level or 5971 level or possibly a                                                                     |
| (022.4                | 1/0- 2/0-                          |               |          | mixture of the two.                                                                                                                                                                        |
| 0033 4                | 1/2 ,3/2                           |               | BOF 1    | $\pi_{\rm L} = 1$                                                                                                                                                                          |
| 6039 4                | $(3/2^+)$                          |               | BCd F i  | $J^{*}$ : $L(^{*}He, 0) = 1$ .<br>XRFF: $C(6033)d(6030)F(6049)$                                                                                                                            |
| 0057 1                | (3/2)                              |               | Deal     | $J^{\pi}$ : $3/2^+$ from (p,p),(p,p'\gamma); $3/2$ from $\gamma(\theta)$ in (p, $\gamma$ ).                                                                                                |
| 6049.8 <sup>h</sup> 4 | $(17/2^{-})$                       |               | L        | $J^{\pi}$ : O $\gamma$ to (13/2 <sup>-</sup> ), D+O $\gamma$ to (15/2 <sup>-</sup> ), band assignment.                                                                                     |
| 6076 4                | 3/2                                |               | В        | $J^{\pi}$ : 3/2 from $\gamma(\theta)$ in (p, $\gamma$ ).                                                                                                                                   |
| 6087 <i>3</i>         | $(1/2^+)$                          |               | С        | E(level), $J^{\pi}$ : from (p,p), (p,p' $\gamma$ ). E $\approx$ 8 keV low; level differs from 6091                                                                                         |
| 6004 A                |                                    |               | _        | level only if $J \neq 3/2$ .                                                                                                                                                               |
| 6091 4                | (3/2)                              |               | В        | $J^{n}$ : $3/2$ from $\gamma(\theta)$ in $(p,\gamma)$ .                                                                                                                                    |
| 6104 3                | $(5/2^+)^{cc}$                     |               | CD       | $\begin{array}{l} \text{XREF: } D(6120). \\ \text{E(1)} \\ \text{If } f_{\text{rem}}(a, n) (a, n'(a)) \\ \text{Aleg I} (d, n) \\ 2 \end{array}$                                            |
| 6125 4                | 3/2- 5/2-                          |               | RF       | $E(\text{level}),J^{**}$ : from (p,p),(p,p $\gamma$ ). Also $L(d,n)=2$ .                                                                                                                   |
| 0125 4                | 5/2 ,5/2                           |               | DI       | $I^{\pi}$ : 3/2 5/2 from (n $\gamma$ ): L( <sup>3</sup> He d)=1                                                                                                                            |
| 6174 9 <sup>1</sup> 4 | $(15/2^+)$                         |               | т        | $I^{\pi}: D_{2}$ to $(13/2^{-})$ hand assignment                                                                                                                                           |
| 6197 4                | (3/2)                              |               | BC       | XREF: c(6191).                                                                                                                                                                             |
|                       | (-1 )                              |               |          | E(level): From (p, $\gamma$ ). Possible fragment of <sup>59</sup> Ni(2415 level) if $\pi$ =–.                                                                                              |
|                       |                                    |               |          | $J^{\pi}$ : (3/2) from (p, $\gamma$ ); $\gamma$ to 7/2 <sup>(-)</sup> . $J^{\pi}$ =(3/2 <sup>+</sup> ,5/2 <sup>+</sup> ) in (p,p),(p,p' $\gamma$ ) for                                     |
|                       |                                    |               |          | 6197 and/or 6201 level(s).                                                                                                                                                                 |
| 6201 4                | 3/2,5/2                            |               | Bc       | XREF: c(6191).                                                                                                                                                                             |
|                       |                                    |               |          | E(level): From $(p,\gamma)$ . Possible fragment of $3/2^{-39}$ Ni $(2415 \text{ level})$                                                                                                   |
|                       |                                    |               |          | $I^{\pi}$ : From (n y): y to $1/2^{-}$ $I^{\pi} = (3/2^{+} 5/2^{+})$ from (n n) (n n'y) for 6197                                                                                           |
|                       |                                    |               |          | and/or 6201 level(s).                                                                                                                                                                      |
| 6206 4                | 9/2+                               |               | BDF      | XREF: D(6240).                                                                                                                                                                             |
|                       |                                    |               |          | E(level): From $(p,\gamma)$ .                                                                                                                                                              |
| (010.30               | 5/0- 7/0-                          |               | -        | $J^{\pi}$ : 9/2 from (p, $\gamma$ ); L=4 in ( <sup>3</sup> He,d) and (d,n).                                                                                                                |
| 6210 30               | 5/2 ,1/2                           |               | D        | $J^{A}$ : L(d,n)=3.                                                                                                                                                                        |
| 6230 3                | $(1/2)^{\infty}$                   |               | C        | E(level): from (p,p),(p,p' $\gamma$ ).                                                                                                                                                     |
| 0238 4                | 3/2                                |               | вг       | E(level): From $(p,\gamma)$ . Possible $3/2 = \sqrt{Ni}(2415 \text{ level})$ analogue iragment.<br>$I^{\pi}$ : $3/2$ 5/2 from $\alpha(\theta)$ in $(p,\gamma)$ : $I(^{3}\text{He}, d) = 1$ |
| 6207 2                | $(1/2^{-})^{\&}$                   |               | C        | <b>J</b> . $J_2 J_2 J_2$ Hom $\gamma(\sigma)$ in $(p, \gamma)$ , L( $\Pi c, 0 = 1$ .                                                                                                       |
| 02973<br>63007        | $(1/2)^{-}$<br>$(3/2^{-} 5/2^{-})$ |               | R        | E(level): HOM (p,p), (p,p $\gamma$ ).<br>$I^{\pi_1} \propto t_0 1/2^{-1}$ and $7/2^{-1} 3/2 5/2$ in (p $\alpha$ )                                                                          |
| 6310.9                | $(9/2)^+$                          |               | F        | $J^{\pi}$ : L( <sup>3</sup> He d)=4: (9/2) from d-p angular correlation in ( <sup>3</sup> He dp)                                                                                           |
| 6323.9 24             | (5/2)                              | 20 eV 10      | BCd      | XREF: C(6325)d(6330).                                                                                                                                                                      |
|                       |                                    |               |          |                                                                                                                                                                                            |
|                       |                                    |               | Continue | ed on next page (footnotes at end of table)                                                                                                                                                |

## <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup>             | $J^{\pi \#}$                         | $T_{1/2}^{b}$ | XREF        |   | Comments                                                                                                                                                                                                                                |
|-----------------------------------|--------------------------------------|---------------|-------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                      |               |             |   | $J^{\pi}$ : 5/2 in (p, $\gamma$ ), $\gamma$ to 1/2 <sup>-</sup> . Inconsistent with $J^{\pi}$ =5/2 <sup>+</sup> in (p,p),(p,p' $\gamma$ ) from R-matrix resonance parameters for $\sigma$ (E(p), $\theta$ ).                            |
| 6326 4                            | $(3/2^{-})$                          |               | В           |   | $J_{1/2}^{\pi}$ : $\gamma$ to $7/2^{-}$ and $1/2^{-}$ , $3/2$ in (p, $\gamma$ ).                                                                                                                                                        |
| 6336 4                            | $(5/2^+)^{\&}$                       | 20 eV 10      | BCd         |   | XREF: C(6328)d(6330).                                                                                                                                                                                                                   |
| 6344.2 12                         | $(3/2^{-}, 5/2^{-})$                 |               | В           |   | $J^{\pi}$ : 3/2,5/2 in (p, $\gamma$ ); $\gamma$ to 1/2 <sup>-</sup> and 7/2 <sup>-</sup> .                                                                                                                                              |
| 6365.3 30                         | $(3/2^+)^{\alpha}$                   | 60 eV 12      | С           |   | VDEE. E((272))                                                                                                                                                                                                                          |
| 0303.3 9                          | 3/2                                  |               | ВГ          |   | E(level): from $(\mathbf{p}, \boldsymbol{\gamma})$ .                                                                                                                                                                                    |
|                                   |                                      |               |             |   | $J^{\pi}$ : L( <sup>3</sup> He,d)=1. D+Q $\gamma$ 1/2 <sup>-</sup> and 5/2 <sup>-</sup> .                                                                                                                                               |
| 6381 4                            |                                      |               | Bd          |   | XREF: d(6410).                                                                                                                                                                                                                          |
| 6396 4                            |                                      |               | Bd          |   | XREF: d(6410).<br>XREF: d(6410)                                                                                                                                                                                                         |
| 6410 <i>4</i>                     |                                      |               | ви<br>Bd    |   | XREF: $d(6410)$ .                                                                                                                                                                                                                       |
| 6419 4                            | $3/2^{(-)}$                          | 90 eV 18      | BCd F       |   | XREF: d(6410).                                                                                                                                                                                                                          |
|                                   |                                      |               |             |   | $J^{\pi}$ : 3/2 from $\gamma(\theta)$ in (p, $\gamma$ ); D(+Q) to 1/2 <sup>-</sup> and 5/2 <sup>-</sup> .                                                                                                                               |
| 6444 4                            |                                      |               | B           |   |                                                                                                                                                                                                                                         |
| 6451 4                            | 5/0                                  |               | BÍ          |   | J <sup>*</sup> : $\gamma$ to 3/2 . L( <sup>3</sup> He,d)=3 for 6451 and/or 6457 level(s).                                                                                                                                               |
| 04374                             | 5/2                                  |               | БІ          |   | $J': 3/2$ from $\gamma(\theta)$ in $(p,\gamma)$ . L('He,d)=5 for 6451 and/or 6457 level(s).                                                                                                                                             |
| 6461 4                            | $3/2^{(-)}$                          |               | В           |   | J <sup><math>\pi</math></sup> : 3/2 from $\gamma(\theta)$ in (p, $\gamma$ ); D+Q $\gamma$ to 1/2 <sup>-</sup> and 5/2 <sup>-</sup> .                                                                                                    |
| 6470 4                            | $3/2, 5/2^{(-)}$                     |               | В           |   | $J^{\pi}$ : $3/2, 5/2$ from $\gamma(\theta)$ in $(p, \gamma)$ ; $\gamma$ to $1/2^{-}$ .                                                                                                                                                 |
| 6481 4                            |                                      |               | В           |   |                                                                                                                                                                                                                                         |
| 64874<br>64034                    | 7/2(-)                               |               | B           |   | Analogue of $7/2^{-59}$ Ni(2627 level)                                                                                                                                                                                                  |
| 0493 4                            | 1/2                                  |               | В           |   | $J^{\pi}$ : 7/2 from $\gamma(\theta)$ in (p. $\gamma$ ): $\gamma$ to 3/2 <sup>-</sup> .                                                                                                                                                 |
| 6502.2 30                         |                                      |               | BC          |   | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                                                                                                                                   |
| 6511.8 <i>30</i>                  |                                      | 60 eV 12      | BC          |   | E(level): From (p,p),(p,p' $\gamma$ ) – same excitation energy for two levels<br>with $1/2^{-}$ and $3/2^{-}$ assignments. $1/2^{-}$ state present both in primary<br>and secondary – however total widths have significant difference. |
| 6515.7 <i>31</i>                  | $(1/2^+)^{\&}$                       | 5.5 keV 5     | С           |   |                                                                                                                                                                                                                                         |
| 6515.9 <i>31</i>                  | $(3/2^+)^{\&}$                       | 80 eV 16      | С           |   |                                                                                                                                                                                                                                         |
| 6519 6                            | 5/2-,7/2-                            |               | B F         |   | $J^{\pi}$ : L( <sup>3</sup> He,d)=3.                                                                                                                                                                                                    |
|                                   | 0_                                   |               |             |   | E(level): Possible $7/2^{-59}$ Ni(2627 level) analogue.                                                                                                                                                                                 |
| 6530.2 <i>25</i><br>6559 <i>4</i> | (3/2 <sup>-</sup> ) <sup>&amp;</sup> |               | BC I<br>Bdi |   | E(level): From (p,p), $(p,p'\gamma)$ .<br>XREF: d(6540).                                                                                                                                                                                |
| 6575.3 30                         | $(3/2,1/2)^{-k}$                     | 90 eV         | BC          |   | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                                                                                                                                   |
| 6598 9                            | 5/2-,7/2-                            |               | Fi          |   | $J^{\pi}$ : L( <sup>3</sup> He,d)=3.                                                                                                                                                                                                    |
| ((0.1.1.20)                       | (2) 2- 1 (2-) &                      | 100 11 10     |             |   | Possible $1/2,3/2,5/2$ <sup>39</sup> Ni(2681 level) analogue.                                                                                                                                                                           |
| 6604.1 <i>30</i>                  | $(3/2^{-}, 1/2^{-})^{\infty}$        | 100 eV 10     | C           |   | $I^{\pi}$ , 888 14 D LO to (17/2 <sup>-</sup> ) 1707 (a) O to (15/2 <sup>-</sup> ) hand assignment                                                                                                                                      |
| 6625 5 20                         | (19/2)<br>$3/2^{(+)}$                | 45 eV 5       | BCd i       | L | 3 : 888.17  D+Q (8 (17/2), 1707.47  Q (8 (15/2)), band assignment.<br>XREF: B(6627)d(6620)                                                                                                                                              |
| 0020.0 20                         | 572                                  | 15 6 7 5      | Deu 1       |   | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                                                                                                                                   |
| < < a a                           |                                      |               |             |   | $J^{\pi}$ : 3/2 from $\gamma(\theta)$ in (p, $\gamma$ ); $\pi$ =+ from (p,p),(p,p' $\gamma$ ).                                                                                                                                          |
| 6632 9                            | 7/2+,9/2+                            |               | BdF         |   | XREF: $d(6540)$ .<br>E(local): Errom (n n) (n n'a)                                                                                                                                                                                      |
|                                   |                                      |               |             |   | $J^{\pi}: L({}^{3}He,d)=4.$                                                                                                                                                                                                             |
| 6645.5 <i>3</i>                   | $(3/2^{-})^{\&}$                     | 60 eV 12      | BCd         |   | XREF: d(6620).<br>E(level): From (p,p), $(p,p'\gamma)$ .                                                                                                                                                                                |
| 6662 4                            | 7/2+ 0/2+                            |               | В           |   |                                                                                                                                                                                                                                         |
| 0009 9                            | 1/2+,9/2+                            |               | BF          |   | E(level): From (p,p),(p,p' $\gamma$ ).<br>$I^{\pi}$ , $I^{3}$ Ha d)-4                                                                                                                                                                   |
| 6690.4 <sup>k</sup> 4             | $(17/2^+)$                           |               |             | L | $J^{\pi}$ : 515.4 $\gamma$ D+Q to (15/2 <sup>+</sup> ) and band assignment.                                                                                                                                                             |
|                                   |                                      |               |             |   |                                                                                                                                                                                                                                         |

## <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup> | $\mathrm{J}^{\pi \#}$                | $T_{1/2}^{b}$ | XREF      |   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|--------------------------------------|---------------|-----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6692 4                |                                      |               | В         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6707.8 20             | $(1/2^{-})^{\&}$                     | 80 eV 8       | С         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6710 4                | 3/2(-)                               |               | В         |   | E(level): From (p,p),(p,p' $\gamma$ ). Possible fragment of 3/2 <sup>-59</sup> Ni(2894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       |                                      |               |           |   | $J^{\pi}$ : 3/2 from $\gamma(\theta)$ in (p, $\gamma$ ); $\gamma$ to 7/2 <sup>(-)</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6712.3 20             | $(1/2^{-})^{\&}$                     |               | С         |   | E(level): In (p,p),(p,p' $\gamma$ ) another 1/2 <sup>-</sup> state at 6707.8 20 listed from a secondary reference, absent in primary reference 1976Ar01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6727 4                | $(3/2^-, 5/2^-)$                     | 65 eV 7       | BC        |   | E(level): From (p, $\gamma$ ). Possible fragment of $3/2^{-59}$ Ni(2894 level) analogue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                      |               |           |   | $J^{\pi}$ : 3/2,5/2 from (p, $\gamma$ ); $\gamma$ to 7/2 <sup>(-)</sup> ; $\gamma$ to 1/2 <sup>-</sup> . May be same level as a (1/2 <sup>-</sup> ,3/2 <sup>-</sup> ) level at 6724.2 20 in (p,p),(p,p' $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6727.5 20             | $(5/2^+)^{\&}$                       |               | С         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6748.9 <i>30</i>      | (1/2 <sup>+</sup> ) <sup>&amp;</sup> | 30 eV 10      | С         |   | E(level): Two closeby level energies, 7647.2 20 and 7648.9 30 in $(p,p),(p,p'\gamma)$ with same $1/2^+$ assignment, evaluator assume same state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6749 <i>4</i>         | $5/2^{(+)}$                          | 140 eV 41     | BCd       |   | XREF: d(6750).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                      |               |           |   | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ( <b>---</b> ) (      |                                      |               |           | _ | $J^{\pi}$ : 5/2 from $\gamma(\theta)$ in (p, $\gamma$ ); (5/2 <sup>+</sup> ) in (p,p),(p,p' $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6750.0 6              | $(17/2^+)$                           | 50 aV 5       | DCd       | L | $J^{n}$ : 1322.9 $\gamma$ to (17/2 <sup>+</sup> ), from ( <sup>2</sup> °S1,2 $\alpha$ p $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0700 4                | (3/2)                                | 50 ev 5       | вси       |   | E(level): From $(\mathbf{n} \gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                      |               |           |   | $J^{\pi}$ : $\gamma(\theta)$ in (p, $\gamma$ ): analogue of $3/2^{-59}$ Ni(2894 level).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6769 9                | 5/2-,3/2-                            |               | B F       |   | E(level): From ( <sup>3</sup> He,d), ( <sup>3</sup> He,dp).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                                      |               |           |   | $J^{\pi}$ : L=3 in ( <sup>3</sup> He,d), ( <sup>3</sup> He,dp).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6797.3 4              | $(19/2^+)$                           |               |           | L | J <sup>π</sup> : 1370.1γ to (17/2 <sup>+</sup> ), from ( <sup>28</sup> Si,2αpγ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6811 4                | $3/2^{(-)}$                          | 110 eV 11     | BC        |   | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6836 4                | (9/2+)                               | 11.2 eV 4     | BC F      |   | J <sup>*</sup> : $3/2$ from $\gamma(\theta)$ in $(p,\gamma)$ ; $\pi$ =- from $(p,p)$ , $(p,p'\gamma)$ .<br>XREF: F(6847).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |                                      |               |           |   | E(level): From (p, $\gamma$ ). Possible fragment of 9/2 <sup>+ 59</sup> Ni(3054 level) analogue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |                                      |               |           |   | J <sup>π</sup> : 9/2 from $\gamma(\theta)$ in (p,γ); L( <sup>3</sup> He,d)=4.<br>(2J+1)Γ <sub>p</sub> Γ <sub>γ</sub> /Γ=1.1 eV <i>I</i> (1976Ar01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6836.5 20             | $(3/2, 1/2)^{-\&}$                   | 48 eV 4       | С         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6840.8 20             | $(5/2^+)^{\&}$                       |               | С         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6842.1 20             | $(1/2^{-})^{\&}$                     | 120 eV 12     | С         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6843 4                | 3/2                                  |               | B d       |   | XREF: d(6850).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                      |               |           |   | J <sup>*</sup> : 3/2 from $\gamma(\theta)$ in $(p,\gamma)$ .<br>Differs from $(1/2)^-$ , 6841.1 24 level in $(p,p),(p,p'\gamma)$ provided J from $(p,p),(p,p'\gamma)$ is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6867 4                | (3/2 <sup>-</sup> )                  | 85 eV 8       | BC        |   | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6879 4                | $(5/2^+)^{\&}$                       | 70 eV 4       | BCd       |   | XREF: d(6850).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                      |               |           |   | E(level): from $(p,\gamma)$ . Note another comparable resonance level<br>energy, 6879.9 20 with $1/2^+$ assignment from secondary reference.<br>$I^{\pi}$ : Also 5/2 in $(p,\gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6885 4                | $(3/2^{-}, 5/2)$                     |               | в         |   | $J^{\pi}$ : $\gamma$ rays feed $7/2^-$ and $3/2^-$ and $3/2^+$ states.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6894 4                | 5/2 <sup>(-)</sup>                   |               | В         |   | $J^{\pi}$ : 4570 $\gamma$ D to 3/2 <sup>(-)</sup> , 5495 $\gamma$ D+Q to 7/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6905 4                | 9/2+                                 | 35.1 eV 15    | BCD F H J | J | XREF: C(6904.4)D(6900)F(6916).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                      |               |           |   | E(level): From (p, $\gamma$ ). Possible fragment of 9/2 <sup>+</sup> <sup>59</sup> Ni(3054 level)<br>analogue.<br>$I^{\pi}$ : L ( $\alpha$ t)=4: D $\alpha$ 7/2 <sup>(-)</sup> and 11/2 <sup>(-)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6906 0 20             | $(1/2^{-})^{\&}$                     | 50 eV 10      | C         |   | $\mathbf{v} \cdot \mathbf{E}(u, t_j + t_j + t_j + t_j) = \mathbf{u}_j $ |
| 6922 3                | $(1/2^{-})$<br>$(17/2^{-})$          | 50 6 4 10     |           | L | $J^{\pi}$ : 3457 $\gamma$ (Q) to (13/2) <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6923 4                | (5/2 <sup>+</sup> ) <sup>&amp;</sup> | 230 eV 23     | BC        |   | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| E(level) <sup>†</sup> | $J^{\pi \#}$                       | $T_{1/2}^{b}$    | XI        | REF | Comments                                                                                                                                                                                                                                                                                        |
|-----------------------|------------------------------------|------------------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6939 4                | 3/2(-)                             |                  | В         |     | E(level), $J^{\pi}$ : Possible analogue of 3132 or 3182 level of <sup>59</sup> Ni. D+Q $\gamma$ to $1/2^-$ and $5/2^-$ . Presumed to be different level from $1/2^-$ levels at 6938.5 20 and 6943.4 20 in (p,p), (p,p' $\gamma$ ); however, J from (p,p), (p,p' $\gamma$ ) may not be reliable. |
| 6940 <i>30</i>        | 5/2-,7/2-                          |                  | D         | _   | $J^{\pi}$ : L(d,n)=3.                                                                                                                                                                                                                                                                           |
| 6945 4                | 1/2 <sup>-</sup> ,3/2 <sup>-</sup> |                  | BI        | F   | E(level): From $(p,\gamma)$ . Possible fragment of $3/2$ <sup>35</sup> Ni $(3182$ level)<br>analogue.<br>J <sup><math>\pi</math></sup> : L $(^{3}$ He,d)=1. This level presumed to differ from $3/2^{+}$ , 6946.1 20<br>level in $(p,p).(p,p'\gamma)$ .                                         |
| 6946.1.20             | $(3/2^+)^{\&}$                     | 310 eV <i>30</i> | C         |     |                                                                                                                                                                                                                                                                                                 |
| 6959 4                | (3/2)                              |                  | В         |     | J <sup><math>\pi</math></sup> : from 1994Ho31 in (p, $\gamma$ ), presumably based on 6959 $\gamma(\theta)$ ; possible fragment of <sup>59</sup> Ni(3182 level) analogue (J=3/2) (1994Ho31).                                                                                                     |
| 6967 4                | (3/2,5/2)                          |                  | BC        |     | E(level): From $(p,\gamma)$ . Possible fragment of $3/2$ <sup>59</sup> Ni(3182 level)<br>analogue. Probably same as $(1/2,3/2)^-$ level or $(3/2,5/2)^+$ level at<br>6967.4 22 and 6964.9 22, respectively, in $(p,p),(p,p'\gamma)$ .<br>$J^{\pi}$ : $\gamma$ to $3/2^-$ and $5/2^-$ .          |
| 6991.4 20             | $(5/2^+)^{\&}$                     | 140 eV 32        | BC        |     | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                                                                                                                                                                                           |
| 7016 4                | Q                                  | 6.3 keV 6        | BC        |     | XREF: C(7013.9).<br>Probably same level as the $1/2^+$ , $\Gamma$ =6.3 keV 6 level at 7013.9 20 in (p,p),(p,p' $\gamma$ ).                                                                                                                                                                      |
| 7029 4                | $(3/2^{-})^{\alpha}$               | 82 eV 8          | BC        | _   | E(level): From $(p,\gamma)$ .                                                                                                                                                                                                                                                                   |
| 7042 9<br>7048 4      | 7/2*,9/2*                          | 29 eV 6          | RC I      | ŀ   | $J^{A}$ : L=4 in ( <sup>3</sup> He,d), ( <sup>3</sup> He,dp).<br>XREF: $C(7043.1)$                                                                                                                                                                                                              |
| 7040 4                |                                    | 29 6 4 0         | БС        |     | Possibly same level as the $5/2^+$ , $\Gamma=29$ eV 6 level at 7043.1 20 in (p,p),(p,p' $\gamma$ ).                                                                                                                                                                                             |
| 7053.28 4             | $(19/2^{-})$<br>$(17/2^{+})$       |                  |           | L   | $J^{\pi}$ : D+Q $\gamma$ to (17/2 <sup>-</sup> ), Q $\gamma$ to (15/2 <sup>-</sup> ), band assignment.                                                                                                                                                                                          |
| 7075 3 20             | $(1/2^{-})$                        | 103 eV 15        | C         | L   | $J^{-1}$ : $Q \gamma$ to $(15/2^{-1})$ .                                                                                                                                                                                                                                                        |
| 7075.5 20             | (3/2)<br>$(3/2^{-})$               | 105 eV 15        | C         |     |                                                                                                                                                                                                                                                                                                 |
| 7106 7 20             | $(5/2^+)^{\&}$                     | 1.96  keV 20     | c         |     |                                                                                                                                                                                                                                                                                                 |
| 7116 9                | $3/2^+, 5/2^+$                     | 1.90 Ke V 20     | BCd I     | F   | XREF: d(7120).                                                                                                                                                                                                                                                                                  |
|                       |                                    |                  |           |     | $J^{\pi}$ : L=2 in ( <sup>3</sup> He,d), ( <sup>3</sup> He,dp).                                                                                                                                                                                                                                 |
| 7129.9 20             | $(3/2^{-})^{\&}$                   | 45 eV 5          | С         |     |                                                                                                                                                                                                                                                                                                 |
| 7137.3 11             | $(5/2^+)^{\infty}$                 |                  | BCd       |     | XREF: d(7120).                                                                                                                                                                                                                                                                                  |
|                       | 0                                  |                  |           |     | E(level): From $(p,\gamma)$ .<br>$J^{\pi}$ : L(d,n)=2 for possible doublet; probably the same level as the<br>7139.6 20 (5/2 <sup>+</sup> ) level in $(p,p),(p,p'\gamma)$ .                                                                                                                     |
| 7137.9 20             | $(1/2^{-})^{\&}$                   | 0.67 keV 3       | С         |     |                                                                                                                                                                                                                                                                                                 |
| 7139.6 20             | $(5/2^+)^{\alpha}$                 | 0.90 keV 5       | C         |     |                                                                                                                                                                                                                                                                                                 |
| 7152.0 20             | $(3/2^{-})^{\alpha}$               | 84 eV 20         | BC I      | F   | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                                                                                                                                                                                           |
| 7174.4 20             | $(1/2^+)^{\alpha}$                 | 5.1 keV 5        | C         |     |                                                                                                                                                                                                                                                                                                 |
| 7180.9 20             | $(1/2^{-})^{\alpha}$               | 700 eV 70        | C         |     |                                                                                                                                                                                                                                                                                                 |
| 7188.7 20<br>7197 4   | $(3/2^+)^{\infty}$<br>(3/2)        | 1.80 keV 17      | C<br>BC I | F   | XREF: C(7188.7).<br>J <sup><math>\pi</math></sup> : D(+Q) gammas to 1/2 <sup>-</sup> and 5/2 <sup>-</sup> . 1994Ho31 suggest that this is<br>analogue of the <sup>59</sup> Ni(3354 level) (J <sup><math>\pi</math></sup> unknown). L=2 in ( <sup>3</sup> He,d),<br>( <sup>3</sup> He,dp).       |
| 7209.0 30             | (7/2 <sup>-</sup> )&               | 5 eV             | с         |     |                                                                                                                                                                                                                                                                                                 |
| 7231.5 20             | $(1/2^{-})^{\&}$                   | 626 eV 36        | С         |     |                                                                                                                                                                                                                                                                                                 |
| 7243.1 20             | $(5/2^+)^{\&}$                     | 65 eV 10         | С         |     |                                                                                                                                                                                                                                                                                                 |

# <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup> | $J^{\pi \#}$                         | T <sub>1/2</sub> <sup>b</sup>       | XREF    |   | Comments                                                                                                                                                                                                                                                                                                                                |
|-----------------------|--------------------------------------|-------------------------------------|---------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7243.5 20             | $(3/2^{-})^{\&}$                     | 63 eV 10                            | с       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7248.2 20             | $(1/2^{-})^{\&}$                     | 70 eV 15                            | с       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7251 4                | $(5/2,3/2^{-})^{\&}$                 |                                     | В       |   | J <sup><math>\pi</math></sup> : D $\gamma$ to 3/2 <sup>-</sup> ; $\gamma$ to 7/2 <sup>-</sup> . 4586 $\gamma$ to (9/2 <sup>-</sup> ) favors 5/2, 1994Ho31, in (p, $\gamma$ ), suggest that this is analogue of a 3389-keV <sup>59</sup> Ni level, but the evaluator is uncertain which of the Adopted Levels corresponds to that state. |
| 7274 8                | (3/2)                                | 1.95 keV 22                         | BC F    |   | XREF: $C(7266.4)$ .<br>J <sup><math>\pi</math></sup> : L=1 in ( <sup>3</sup> He,d), ( <sup>3</sup> He,dp); 3/2 <sup>+</sup> in (p,p),(p,p' $\gamma$ ).                                                                                                                                                                                  |
| 7287.5 20             | $(3/2^{-})^{\&}$                     |                                     | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7288.4 20             | $(5/2^+)^{\&}$                       | 422 eV 40                           | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7299 4                | $(3/2)^+$                            |                                     | BCD     |   | XREF: C(7291.1)D(7290).<br>E(level): From $(p,\gamma)$ .<br>J <sup><math>\pi</math></sup> : L(d,n)=2; J=3/2 favored by p-n correlation data in (d,np).                                                                                                                                                                                  |
| 7321.5 20             | $(1/2^+)^{\&}$                       | 2.22 keV 22                         | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7332 4                | 3/2                                  |                                     | BC      |   | E(level): Possible fragment of $3/2^{-59}$ Ni(3452 level) analogue.<br>J <sup><math>\pi</math></sup> : $3/2$ from $\gamma(\theta)$ in (p, $\gamma$ ); need $\pi$ =- for analogue. $\pi$ =+ for 3 nearby levels in (p,p),(p,p' $\gamma$ ), but (p, $\gamma$ ) and (p,p),(p,p' $\gamma$ ) may excite different states.                    |
| 7337.4 20             | $(1/2^+)^{\&}$                       | 11.8 keV 12                         | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7338.1 20             | $(5/2^+)^{\&}$                       | 218 eV 40                           | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7348 4                | (3/2 <sup>-</sup> )                  |                                     | В       |   | E(level): Possible fragment of $3/2^{-59}$ Ni(3452 level) analogue.<br>J <sup><math>\pi</math></sup> : D+Q $\gamma$ to $3/2^{-}$ , $\gamma$ to $5/2^{-}$ ; $\pi$ =- favored from $\delta$ (7347 $\gamma$ ).<br>Presumed to differ from $5/2^{-}$ , 7349.5 22 and $1/2^{-}$ , 7349.9 22 levels in (p,p),(p,p' $\gamma$ ).                |
| 7350.0 20             | 5/2 <sup>-&amp;</sup>                | 22 eV 5                             | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7350.4 30             | 1/2 <sup>-&amp;</sup>                | 81 eV 10                            | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7352.8 <sup>1</sup> 4 | $(19/2^+)$                           |                                     |         | L | $J^{\pi}$ : D $\gamma$ to (17/2 <sup>+</sup> ), Q $\gamma$ to (15/2 <sup>+</sup> ), band assignment.                                                                                                                                                                                                                                    |
| 7356.5 20             | $(3/2^{-})^{\&}$                     | 154 eV 20                           | Cf      |   | XREF: f(7358).                                                                                                                                                                                                                                                                                                                          |
| 7365.6 20             | (5/2 <sup>-</sup> ) <sup>&amp;</sup> | 32 eV 10                            | Cf      |   | XREF: f(7358).                                                                                                                                                                                                                                                                                                                          |
| 7372.2 20             | $(3/2^{-})^{\&}$                     | 2.5 keV 2                           | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7384.0 20             | $(5/2^+)^{\&}$                       | 2.17 keV 30                         | BC      |   | E(level): From (p,p), $(p,p'\gamma)$ .                                                                                                                                                                                                                                                                                                  |
| 7394 4                | (5/2)+                               |                                     | B F     |   | E(level): From $(p,\gamma)$ . Note a comparable level at 7392.6 20 in $(p,p),(p,p'\gamma)$ may be the same level – but with $3/2^-$ .<br>J <sup><math>\pi</math></sup> : $5/2$ from $\gamma(\theta)$ in $(p,\gamma)$ ; L( <sup>3</sup> He,d)=2. Possible analogue of $5/2^{(+)}$ <sup>59</sup> Ni(3540 level).                          |
| 7398.6 20             | $(3/2^+)^{\&}$                       | 1.28 keV 16                         | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7407 4                | $(1/2^+)^{\&}$                       | 235 eV 25                           | BC      |   |                                                                                                                                                                                                                                                                                                                                         |
| 7413.4 20             | $(1/2^{-})^{\&}$                     | 215 eV 36                           | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7434.4 20             | $(5/2^+)^{\&}$                       | 0.60 keV 5                          | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7444 4                | (3/2+,5/2+)                          | 1.84 keV <i>18</i>                  | B d F   |   | XREF: d(7400).<br>E(level): From $(p,\gamma)$ .<br>Additional information 3.<br>J <sup><math>\pi</math></sup> : L( <sup>3</sup> He,d)=2 for 7447 9 level.<br>Probably same level as 3/2 <sup>+</sup> , 7438.4 22 level in $(p,p),(p,p'\gamma)$ .                                                                                        |
| 7444.6 <sup>f</sup> 3 | (21/2 <sup>-</sup> )                 |                                     |         | L | J <sup><math>\pi</math></sup> : Q $\gamma$ to (17/2 <sup>-</sup> ), D+Q $\gamma$ to (19/2 <sup>-</sup> ), band assignment.                                                                                                                                                                                                              |
| 7450                  | 7/2+,9/2+                            |                                     | D       |   | E(level), $J^{\pi}$ : L=4 component of L(d,n)=3+4 doublet.                                                                                                                                                                                                                                                                              |
| 7456.7 20             | (5/2 <sup>-</sup> ) <sup>&amp;</sup> | 10 eV 2                             | С       |   |                                                                                                                                                                                                                                                                                                                                         |
| 7461.4 20<br>7473 4   | $(3/2^+)^{\&}$                       | 60 eV <i>17</i><br>260 eV <i>25</i> | C<br>BC |   | E(level): From $(p,\gamma)$ . May be same level as $3/2^+$ , 7470.1 20 and/or                                                                                                                                                                                                                                                           |
|                       |                                      |                                     |         |   | 5/2, 7475.4 20 level from (p,p),(p,p γ).<br>Other Γ=40 eV 11.                                                                                                                                                                                                                                                                           |

# <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup>              | $J^{\pi #}$                          | T <sub>1/2</sub> <b>b</b>                               | XREF   |   | Comments                                                                                                                                                                                                     |
|------------------------------------|--------------------------------------|---------------------------------------------------------|--------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7474.2 22                          | (1/2 <sup>-</sup> )&                 | 3.8 keV 4                                               | BC     |   | E(level), $J^{\pi}$ : From (p,p), (p,p' $\gamma$ ). Possible analogue of $1/2^{-}$ , $3/2^{-}$                                                                                                               |
| 7488.3.20                          | $(5/2^{-})^{\&}$                     | 14 eV 4                                                 | C      |   |                                                                                                                                                                                                              |
| 7401 0 20                          | $(1/2^{-})^{\&}$                     | 1 30 keV 12                                             | C      |   |                                                                                                                                                                                                              |
| 7491.9 20                          | $(1/2^{+})$                          | 1.50 Ke v 12                                            | C      |   |                                                                                                                                                                                                              |
| 7496.2 20                          | $(1/2^{+})^{\infty}$                 | 25 eV 15                                                | C      |   |                                                                                                                                                                                                              |
| 7503 4                             | ŭ                                    | 87 eV 11                                                | вс     |   | E(level): From (p, $\gamma$ ). Probably comprised of two or more of 7496.2<br>20 (1/2 <sup>+</sup> ), 7502.6 20 (3/2 <sup>-</sup> ) and 7506.4 20 (5/2 <sup>+</sup> ) levels from<br>(p,p),(p,p' $\gamma$ ). |
| 7506.4 20                          | $(5/2^+)^{\&}$                       | 1.03 keV 9                                              | С      |   |                                                                                                                                                                                                              |
| 7511.7 20                          | $(3/2^+)^{\&}$                       | 1.52 keV 15                                             | С      |   |                                                                                                                                                                                                              |
| 7512.3 20                          | $(5/2^{-})^{\&}$                     | 55 eV 10                                                | С      |   |                                                                                                                                                                                                              |
| 7517 4                             | (5/2 <sup>-</sup> ) <sup>&amp;</sup> | 51 eV 11                                                | BCd    |   | XREF: $C(7519)d(7450)$ .                                                                                                                                                                                     |
| 7523 4                             |                                      |                                                         | В      |   | E(level): Four levels are reported near this energy in $(p,p)$ .                                                                                                                                             |
| 7525 2.20                          | $(5/2^{-})^{\&}$                     | 49 eV 11                                                | C      |   |                                                                                                                                                                                                              |
| 7525.9.20                          | $(1/2^+)^{\&}$                       | 2.3  keV 5                                              | C      |   |                                                                                                                                                                                                              |
| 7527.7 20                          | (1/2)<br>$3/2^+, 5/2^+$              | 1.85 keV 28                                             | C F    |   | E(level): From (p,p),(p,p' $\gamma$ ).<br>J <sup><math>\pi</math></sup> : L=2 in ( <sup>3</sup> He,d), ( <sup>3</sup> He,dp).                                                                                |
| 7528.7.20                          | $(3/2^{-})^{\&}$                     | 28 eV 10                                                | C      |   |                                                                                                                                                                                                              |
| 7539.4                             | $(3/2^{-})^{\&}$                     | 0.37 keV 4                                              | BCd    |   | XRFF: d(7550)                                                                                                                                                                                                |
| 1557 1                             | (3/2)                                | 0.57 KC 7 7                                             | bcu    |   | E(level): From $(p,\gamma)$ .<br>$J^{\pi}$ : Also $\gamma$ to $1/2^{-}$ state. $3/2^{-}$ state. $5/2^{-}$ state.                                                                                             |
| 7543.1 21                          |                                      |                                                         |        | L |                                                                                                                                                                                                              |
| 7616.5 10                          | $(21/2^{-})$                         |                                                         |        | L | $J^{\pi}$ : 1894 $\gamma$ to (17/2 <sup>-</sup> ).                                                                                                                                                           |
| 7650 4                             | 5/2+                                 |                                                         | BdF    |   | XREF: d(7730)F(7643).                                                                                                                                                                                        |
|                                    |                                      |                                                         |        |   | E(level): From $(p,\gamma)$ .                                                                                                                                                                                |
|                                    |                                      |                                                         |        |   | $J^{n}$ : L( <sup>3</sup> He,d)=2; D $\gamma$ to 3/2 <sup>-</sup> and 7/2 <sup>-</sup> .                                                                                                                     |
| 7692 9                             | (5/2)                                |                                                         | F      |   | $J^{n}$ : L=4 in <sup>36</sup> Ni( <sup>3</sup> He,d), ( <sup>3</sup> He,dp).                                                                                                                                |
| /69/4                              | (5/2)                                |                                                         | вα     |   | XREF: $0(7/30)$ .                                                                                                                                                                                            |
| 7708 6 6                           | $(10/2^{+})$                         |                                                         |        | т | $J': \gamma \text{ to } S/2$ and $S/2^{\vee}$ and $T/2$ .<br>$I^{\pi}: 2281 \text{ l}_{2} \text{ D} + \Omega \text{ to } (17/2^{+})$                                                                         |
| 7730                               | $7/2^+.9/2^+$                        |                                                         | D      | Ľ | $J^{\pi}$ : L(d,n)=4 component of E=7730. L=2+4 doublet.                                                                                                                                                     |
| 7765.0                             | .,_ ,,,_                             | ≈3.0 keV                                                | Cf     |   | · · _(_,_) · · · · · · · · · · · · · · · · · · ·                                                                                                                                                             |
| 7770.9                             |                                      | ≈2.5 keV                                                | BC f I |   | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                                                                                                        |
| 7786.4                             |                                      | ≈3.8 keV                                                | С      |   |                                                                                                                                                                                                              |
| 7794.7 <sup>°</sup> 5              | $(17/2^+)$                           |                                                         | I      | L | $J^{\pi}$ : 2890 $\gamma$ d to (15/2 <sup>-</sup> ), $\gamma$ to (13/2 <sup>+</sup> ).                                                                                                                       |
| 7798.4                             |                                      | $\approx 4.3 \text{ keV}$                               | C      |   |                                                                                                                                                                                                              |
| 7810.30                            |                                      | ≈2.3 KeV                                                | D D    |   |                                                                                                                                                                                                              |
| $7810\ 50$<br>$7827\ 7^{\circ}\ 5$ | $(17/2^+)$                           |                                                         | D      | L | $I^{\pi}$ : 2923 $\gamma$ d to (15/2 <sup>-</sup> ) $\gamma$ to (13/2 <sup>+</sup> )                                                                                                                         |
| 7857.1                             | (17/2)                               | ≈4.8 keV                                                | С      | - | $5 \cdot 2225 + 4 \cdot 6 \cdot (15/2 - ), + 6 \cdot (15/2 - ).$                                                                                                                                             |
| 7895.2                             |                                      | ≈11.1 keV                                               | BC     |   |                                                                                                                                                                                                              |
| 7901.0                             |                                      | ≈6.5 keV                                                | BC f   |   |                                                                                                                                                                                                              |
| 7906.1                             |                                      | ≈8.2 keV                                                | Cf     |   |                                                                                                                                                                                                              |
| 7920 30                            | $3/2^+, 5/2^+$                       |                                                         | B D    |   | $J^{n}$ : L(d,n)=2.                                                                                                                                                                                          |
| 7042 2                             | 1/2+,9/2+                            | v7 9 koV                                                | U<br>C |   | J': $L(a,n)=4$ component of $E=/940$ , $L=2+4$ doublet.                                                                                                                                                      |
| 7945.2<br>7946 3                   |                                      | $\approx 1.8 \text{ KeV}$<br>$\approx 1.2 \text{ keV}$  | C      |   |                                                                                                                                                                                                              |
| 7950.1                             |                                      | $\approx 1.2 \text{ keV}$<br>$\approx 10.4 \text{ keV}$ | BC     |   | E(level): From $(\mathbf{p},\mathbf{p})$ $(\mathbf{p},\mathbf{p}'\gamma)$                                                                                                                                    |
| 7976.3                             |                                      | ≈9.0 keV                                                | Č f    |   |                                                                                                                                                                                                              |
| 7993.1                             |                                      | ≈8.0 keV                                                | Cf     |   |                                                                                                                                                                                                              |
| 8013 4                             |                                      | ≈3.9 keV                                                | BCD    |   | XREF: D(8020).                                                                                                                                                                                               |
|                                    |                                      |                                                         |        |   | Possible analogue of $1/2$ , $3/2$ $\sim$ N1(4154 level).                                                                                                                                                    |

# <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup>                  | $J^{\pi #}$      | T <sub>1/2</sub> <b>b</b>                        | XRE   | EF | Comments                                                                                                              |
|----------------------------------------|------------------|--------------------------------------------------|-------|----|-----------------------------------------------------------------------------------------------------------------------|
| 8016.9                                 |                  | ≈6.4 keV                                         | С     |    |                                                                                                                       |
| 8028.0                                 |                  | ≈0.4 keV                                         | BC    |    | E(level): From $(p,p).(p,p'\gamma)$ .                                                                                 |
| 8041.2                                 |                  | ≈2.0 keV                                         | C     |    |                                                                                                                       |
| 8044.1                                 |                  | ≈3.0 keV                                         | C     |    |                                                                                                                       |
| 8054.0                                 |                  | $\approx 3.0 \text{ keV}$                        | BC    |    | E(level): From $(n, n)$ $(n, n' \gamma)$                                                                              |
| 8077 4                                 | $3/2^{(-)} 5/2$  | $\approx 7.5 \text{ keV}$                        | BCD F |    | XREF: D(8100)                                                                                                         |
| 0077 4                                 | 5/2 ,5/2         | ~7.5 KC V                                        | DCD T |    | $J^{\pi}$ : 8076 $\gamma$ D+Q to 3/2 <sup>+</sup> ; $\delta$ to $\pi$ =- large if J=3/2.                              |
| 8110.0                                 |                  | ≈3.0 keV                                         | С     |    |                                                                                                                       |
| 8112.0                                 |                  | ≈9.0 keV                                         | С     |    |                                                                                                                       |
| 8113.3 <sup>h</sup> 8                  | $(21/2^{-})$     |                                                  |       | L  | $J^{\pi}$ : 2063.4 $\gamma$ O to (17/2 <sup>-</sup> ), 1060 $\gamma$ D+O to (19/2 <sup>-</sup> ), band assignment.    |
| 8116 0k 1                              | $(21/2^+)$       |                                                  |       | т  | $I^{\pi}$ : 1/260 ( to (17/2 <sup>+</sup> ), 762 0) ( 0 to (10/2 <sup>+</sup> ) hand assignment                       |
| 81267                                  | (21/2)           | ~13.0 keV                                        | BC f  | L  | F(level): From (n n) (n n'a)                                                                                          |
| 8120.7                                 |                  | $\sim 13.0 \text{ keV}$                          |       |    | $E(ever). 110in (p,p), (p,p \gamma).$                                                                                 |
| 81 <i>J</i> 1.0                        |                  | $\sim 2.0 \text{ keV}$<br>$\sim 1.5 \text{ keV}$ |       |    | F(level): From $(n, n)$ $(n, n'a)$                                                                                    |
| 81/18 3                                |                  | $\sim 1.5 \text{ KeV}$<br>$\sim 8.0 \text{ keV}$ | C     |    | $E(ever). 110in (p,p), (p,p \gamma).$                                                                                 |
| 8140.5<br>8155.6 <sup><i>m</i></sup> 5 | $(10/2^{+})$     | ~0.0 KC V                                        | C     | т  | $I^{\pi}$ , D $\downarrow$ O $_{22}$ to $(17/2^{+})$ , D $_{22}$ to $(17/2^{-})$ hand assignment                      |
| 0155.0 5                               | (19/2)           | $\sim 27.5 \text{ keV}$                          | C     | L  | J . $D+Q^{\gamma}$ to $(17/2)$ , $D^{\gamma}$ to $(17/2)$ , band assignment.                                          |
| 0102.0<br>8102.6                       | $(5/2)^+$        | $\approx 57.5 \text{ KeV}$                       |       | т. | <b>VDEE</b> : $d(9210)$                                                                                               |
| 0195 0                                 | (3/2)            | $\approx 0.0 \text{ KeV}$                        | Cu r  | 1  | <b>AREF.</b> $u(0210)$ .                                                                                              |
|                                        |                  |                                                  |       |    | E(level): Suggested 5/2*** N(4506 level) analogue tragment (from                                                      |
|                                        |                  |                                                  |       |    | ( <sup>3</sup> He,d)), but E is low cf. systematics.                                                                  |
|                                        |                  |                                                  |       |    | J <sup><math>\pi</math></sup> : L( <sup>3</sup> He,d)=2; (5/2) from d-p angular correlation in ( <sup>3</sup> He,dp). |
| 8202.5                                 |                  | ≈4.8 keV                                         | BC    |    | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                 |
| 8208.4                                 |                  | ≈3.4 keV                                         | C     |    |                                                                                                                       |
| 8223 4                                 | $3/2^{(-)}, 5/2$ |                                                  | Βd    |    | XREF: d(8210).                                                                                                        |
|                                        |                  |                                                  |       |    | $J^{\pi}$ : 8222 $\gamma$ D+Q to 3/2 <sup>-</sup> ; $\delta$ to $\pi$ =- large if J=3/2 (p, $\gamma$ ).               |
| 8227.0                                 |                  | ≈3.0 keV                                         | С     |    |                                                                                                                       |
| 8230                                   | 7/2+,9/2+        |                                                  | D     |    | E(level), $J^{\pi}$ : L(d,n)=4 component of E=8230, L=2+4 doublet.                                                    |
| 8236.8                                 |                  | ≈4.5 keV                                         | BC    |    | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                 |
| 8242.7                                 |                  | ≈2.5 keV                                         | BC    |    | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                 |
| 8259 4                                 | $(5/2)^+$        | ≈19.5 keV                                        | BCD F | I  | XREF: D(8270).                                                                                                        |
|                                        |                  |                                                  |       |    | E(level): From (p, $\gamma$ ). Suggested 5/2 <sup>+</sup> <sup>59</sup> Ni(4506 level) analogue                       |
|                                        |                  |                                                  |       |    | iragment (Irom ( <sup>3</sup> He,d)), but E is low ci. systematics.                                                   |
|                                        |                  |                                                  |       |    | $J^{n}$ : L( <sup>3</sup> He,d)=2; (5/2) from d-p angular correlation in ( <sup>3</sup> He,dp).                       |
| 8266.3                                 |                  | $\approx$ 18.1 keV                               | BCd   |    | XREF: d(8270).                                                                                                        |
|                                        |                  |                                                  |       |    | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                 |
| 8276.1                                 |                  | $\approx 7.2 \text{ keV}$                        | BC    |    | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                 |
| 8281.0                                 |                  | ≈2.8 keV                                         | BC    |    | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                 |
| 8285.5                                 |                  | $\approx 1.6 \text{ keV}$                        | C     |    |                                                                                                                       |
| 8290.8                                 |                  | ≈4.9 keV                                         | C     |    |                                                                                                                       |
| 8515.4                                 |                  | $\approx 1.1 \text{ keV}$                        | C     |    |                                                                                                                       |
| 8333.1                                 |                  | ≈22.6 keV                                        | BC    |    | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                 |
| 8351.8                                 |                  | $\approx 5.7 \text{ keV}$                        | C     |    |                                                                                                                       |
| 8367.4                                 |                  | $\approx 0.5 \text{ keV}$                        | C     |    |                                                                                                                       |
| 8376.5                                 |                  | $\approx 5.4 \text{ keV}$                        | C     |    |                                                                                                                       |
| 8397.9                                 |                  | ≈5.9 keV                                         | Cd    |    | XREF: d(8390).                                                                                                        |
| 8400.5                                 |                  | $\approx 1.8 \text{ keV}$                        | C     |    |                                                                                                                       |
| 8435.3                                 |                  | $\approx 4.0 \text{ keV}$                        | C     |    |                                                                                                                       |
| 044/.1<br>94525                        |                  | $\approx 1.4 \text{ KeV}$                        | C     |    |                                                                                                                       |
| 0432.3<br>8450.0                       |                  | $\approx 3.1 \text{ keV}$                        | C     |    |                                                                                                                       |
| 8439.9                                 |                  | $\approx 9.6 \text{ keV}$                        | C     |    |                                                                                                                       |
| 85U5.1                                 | $(21/2^{-1})$    | ≈4.0 keV                                         | C     |    | $\pi_{1}$ 1501- (O) to (17/2 <sup>-</sup> )                                                                           |
| 0313 4                                 | (21/2)           | . 12.0.1.37                                      | 6     | L  | $J^{*}$ , 1591 $\gamma$ (Q) 10 (17/2).                                                                                |
| 8515.9<br>8525 9                       |                  | $\approx 12.0 \text{ keV}$                       | C     |    |                                                                                                                       |
| 0323.8<br>8540 5                       |                  | $\approx 3.0 \text{ KeV}$                        | C     |    |                                                                                                                       |
| 0340.3<br>8550 P                       | 7/2 + 0/2 +      | ≈9.0 KeV                                         |       | т  | VDEE: D(9620)                                                                                                         |
| 0000 0                                 | 1/2 ,9/2         |                                                  | ער    | 1  | AKEL $D(0000)$ .                                                                                                      |
|                                        |                  |                                                  |       |    |                                                                                                                       |

### Adopted Levels, Gammas (continued)

## <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup>             | $J^{\pi #}$                  | $T_{1/2}^{b}$                                           | XRE | F | Comments                                                                                                                             |
|-----------------------------------|------------------------------|---------------------------------------------------------|-----|---|--------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                              |                                                         |     |   | E(level): From ( <sup>3</sup> He,d), ( <sup>3</sup> He,dp). Possible 7/2 <sup>+</sup> ,9/2 <sup>+</sup> <sup>59</sup> Ni(4709 level) |
|                                   |                              |                                                         |     |   | analogue.                                                                                                                            |
|                                   |                              |                                                         |     |   | $J^{\pi}: L(^{3}He,d)=4.$                                                                                                            |
| 8564.1                            |                              | ≈5.9 keV                                                | С   |   |                                                                                                                                      |
| 8595.3                            |                              | ≈14.7 keV                                               | C   |   |                                                                                                                                      |
| 8614.7                            |                              | ≈0.9 keV                                                | C   |   |                                                                                                                                      |
| 8648.6                            |                              | $\approx 9.8 \text{ keV}$                               | C   |   |                                                                                                                                      |
| 8656.9                            | (21/2+)                      | $\approx 3.7 \text{ keV}$                               | C   |   | $\pi$ , 2220, $\Omega$ to $(17/2^{+})$                                                                                               |
| 8667.3                            | $(21/2^{+})$                 | $\sim 5.2 \text{ keV}$                                  | C   | L | $J^{*}: 5250\gamma \neq 0 \text{ to } (17/2^{+}).$                                                                                   |
| 8679.1                            |                              | $\sim 3.2 \text{ keV}$                                  | c   |   |                                                                                                                                      |
| 8691.4                            |                              | ≈5.9 keV                                                | c   |   |                                                                                                                                      |
| 8702.7                            |                              | $\approx 10.0 \text{ keV}$                              | č   |   |                                                                                                                                      |
| 8722.8                            |                              | ≈6.8 keV                                                | С   |   |                                                                                                                                      |
| 8729.8 <sup>n</sup> 5             | $(21/2^+)$                   |                                                         |     | L | $J^{\pi}$ : 3302 $\gamma$ Q to (17/2 <sup>+</sup> ), 574.1 $\gamma$ D+Q to (19/2 <sup>+</sup> ), band assignment.                    |
| 8732.7                            |                              | ≈6.8 keV                                                | С   |   |                                                                                                                                      |
| 8745.9                            |                              | ≈2.9 keV                                                | С   |   |                                                                                                                                      |
| 8764.6                            |                              | ≈13.9 keV                                               | C   |   |                                                                                                                                      |
| 8771.7                            | (22)                         | ≈4.7 keV                                                | C   |   |                                                                                                                                      |
| 8813.8° 4                         | $(23/2^{-})$                 | 17.2.1.37                                               | ~   | L | $J^{n}$ : 2204 $\gamma$ Q to (19/2 <sup>-</sup> ), 1368.7 $\gamma$ D+Q to (21/2 <sup>-</sup> ), band assignment.                     |
| 8831.6                            |                              | $\approx 1/.3 \text{ keV}$                              | C   |   |                                                                                                                                      |
| 8842.4                            | $(21/2^{-})$                 | ≈5.8 kev                                                | C   | т | $\pi_{1}$ 2055 5. D to $(10/2^{+})$                                                                                                  |
| 8862.2                            | (21/2)                       | $\sim 7.1 \text{ keV}$                                  | c   | L | $J^{*}$ . 2033.37 D to (19/2).                                                                                                       |
| 8883.4                            |                              | $\approx 1.1 \text{ keV}$                               | c   |   |                                                                                                                                      |
| 8888.3                            |                              | ≈ 1.1 ke v<br>≈5.7 keV                                  | c   |   |                                                                                                                                      |
| 8899.3                            |                              | ≈25.0 keV                                               | c   | J | E(level): From $(p,p).(p,p'\gamma)$ .                                                                                                |
| 8918.9                            |                              | ≈6.0 keV                                                | С   |   |                                                                                                                                      |
| 8932.7                            |                              | ≈6.0 keV                                                | С   |   |                                                                                                                                      |
| 8940.5                            |                              | ≈13.7 keV                                               | С   |   |                                                                                                                                      |
| 8943.5 <sup>1</sup> 4             | $(23/2^+)$                   |                                                         |     | L | $J^{\pi}$ : 1591.1 $\gamma$ Q to (19/2 <sup>+</sup> ), 827.4 $\gamma$ D+Q to (21/2 <sup>+</sup> ), band assignment.                  |
| 8948.4                            |                              | ≈6.1 keV                                                | С   |   |                                                                                                                                      |
| 8954.3                            |                              | ≈4.0 keV                                                | С   |   |                                                                                                                                      |
| 8960.2                            |                              | ≈2.8 keV                                                | C   |   |                                                                                                                                      |
| 8977.9                            |                              | ≈1.1 keV                                                | C   |   |                                                                                                                                      |
| 8989.4                            |                              | $\approx 2.5 \text{ keV}$                               | C   |   |                                                                                                                                      |
| 8992.2                            |                              | $\approx 10.4 \text{ keV}$                              | C   |   |                                                                                                                                      |
| 9001.8                            |                              | $\approx 10.4 \text{ keV}$<br>$\approx 4.0 \text{ keV}$ | C   |   |                                                                                                                                      |
| 9020.2                            |                              | $\approx 4.0 \text{ keV}$<br>$\approx 0.9 \text{ keV}$  | c   |   |                                                                                                                                      |
| 9029.0                            |                              | ≈6.8 keV                                                | c   |   |                                                                                                                                      |
| 9042.8                            |                              | ≈7.7 keV                                                | c   |   |                                                                                                                                      |
| 9059.0                            | +                            | ≈6.0 keV                                                | CD  |   | E(level): From $(p,p),(p,p'\gamma)$ .                                                                                                |
|                                   |                              |                                                         |     |   | $J^{\pi}$ : L(d,n)=4+2 doublet.                                                                                                      |
| 9077.2                            |                              | ≈4.8 keV                                                | С   |   |                                                                                                                                      |
| 9086.0                            |                              | ≈20.3 keV                                               | C   |   |                                                                                                                                      |
| 9112.1                            |                              | ≈11.5 keV                                               | C   |   |                                                                                                                                      |
| 9121.7                            |                              | $\approx 1.1 \text{ keV}$                               | C   |   |                                                                                                                                      |
| 9129.8                            |                              | $\approx 0.8 \text{ keV}$                               | C   |   |                                                                                                                                      |
| 9130.3                            |                              | $\approx 11.9 \text{ keV}$                              | C   |   |                                                                                                                                      |
| 9170.5<br>9174 5 <mark>8</mark> 6 | $(23/2^{-})$                 | ~0.0 KC V                                               | C   | т | $I^{\pi}$ , 2121 4y O to (19/2 <sup>-</sup> ) 1061y D+O to (21/2 <sup>-</sup> ) hand assignment                                      |
| 9175.3.15                         | $(23/2^{+})$<br>$(21/2^{+})$ |                                                         |     | L | $J^{\pi}$ : 3748 $\gamma$ O to (17/2 <sup>+</sup> ).                                                                                 |
| 9188.2                            | (=1,2)                       | ≈35.0 keV                                               | С   | - |                                                                                                                                      |
| 9252 20                           |                              |                                                         | F   |   |                                                                                                                                      |
| 9280                              | +                            |                                                         | D   |   | E(level), $J^{\pi}$ : L(d,n)=4+2 doublet.                                                                                            |
|                                   |                              |                                                         |     |   |                                                                                                                                      |

## <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $J^{\pi #}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XREF                                                                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{r} \hline \text{E(level)}^{\dagger} \\ \hline \text{9293.8 } 15 \\ 933.3 5 \\ 9433.2 8 \\ 9457.4^m 5 \\ 9626.1 \\ 12 \\ 9673.0^k 4 \\ 9780 \\ 9923.4 \\ 11 \\ 10120.3 8 \\ 10130 \\ 10143.0 7 \\ 10225.2 \\ 12 \\ 10277.8^n 5 \\ 10363.3 \\ 10 \\ 10372.3^h 7 \\ 10381.4 9 \\ 10500 \\ 10605.2^l 5 \\ 10657.4 \\ 19 \\ 10679.0^{ll} 9 \\ 10824.0 5 \\ 10867 \\ 3 \\ 11100 \\ 11122.4^V 6 \\ 1213.4^m 5 \\ 11216.6 \\ 10 \\ 11250 \\ 3 \\ 1171.4 \\ 11 \\ 1660.8^g 8 \\ 1721.3^{ll} 6 \\ 11839.2 \\ 7 \\ 1919.4^C 6 \\ 11938.3^s 5 \\ 11983.3^{\ddagger Cq} \\ 13 \\ 12040.8^C 7 \\ 12112.6 \\ 10 \\ 12245.4 \\ 9 \\ 12248.9^n 5 \\ 12375.4^V 6 \\ 12420.7^k 6 \\ 12554.1^l 5 \\ 12810.0 \\ 6 \\ 12859.4^l \\ 19 \\ 13105.5^{ll} 6 \\ 13128.1^{\ddagger q} \\ 12 \\ 13195.6^s 5 \\ 13353.5^0 \\ 8 \end{array} $ | $\begin{array}{c} \mathbf{J}^{\pi \#} \\ \hline (21/2^+) \\ (23/2^-) \\ (21/2^+) \\ (23/2^+) \\ (21/2^+) \\ (21/2^+) \\ (21/2^+) \\ (21/2^+) \\ (21/2^+) \\ (21/2^+) \\ (21/2^+) \\ (21/2^+) \\ (21/2^-) \\ (21/2^-) \\ (21/2^-) \\ (21/2^-) \\ (21/2^-) \\ (21/2^-) \\ (21/2^-) \\ (21/2^-) \\ (21/2^-) \\ (21/2^-) \\ (23/2^-) \\ (23/2^-) \\ (23/2^-) \\ (23/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ (25/2^-) \\ $ | XREF<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | Comments<br>JF: 3867y Q to $(17/2^+)$ ,<br>JF: p+Q to $(19/2^+)$ , 727.5y D+Q to $(21/2^+)$ , band assignment.<br>JF: 4200y to $(19/2^+)$ , 727.5y D+Q to $(23/2^+)$ , band assignment.<br>JF: 4200y to $(19/2^+)$ , 729.4y D+Q to $(23/2^+)$ , band assignment.<br>E(level),JF: L(d,n)=4+2 doublet.<br>JF: y to $(17/2^+)$ ,<br>JF: y to $(17/2^+)$ ,<br>JF: y to $(19/2^-)$ ,<br>E(level),JF: L(d,n)=4+2 doublet.<br>JF: y to $(17/2^+)$ , 433y D+Q to $(19/2^+)$ .<br>JF: y to $(17/2^+)$ , 433y D+Q to $(19/2^+)$ .<br>JF: 1548.8y Q to $(21/2^+)$ , 819.8y D+Q to $(23/2^+)$ , band assignment.<br>JF: 4937y Q to $(11/2^+)$ , y to $(19/2^-)$ .<br>JF: 2259y Q to $(21/2^-)$ , 1197.8y D+Q to $(23/2^-)$ , band assignment.<br>JF: 4047y to $(19/2^-)$ .<br>E(level),JF: L(d,n)=4+2 doublet.<br>JF: 1662.0y Q to $(23/2^+)$ , 932.1y D+Q to $(25/2^+)$ , band assignment.<br>JF: 4957y Q to $(17/2^-)$ , y to $(19/2^-)$ , band assignment.<br>JF: 4957y Q to $(17/2^-)$ , y to $(19/2^-)$ , band assignment.<br>JF: 3422y D+Q to $(21/2^-)$ .<br>E(level); double IAS from $(\pi^+\pi^-)$ .<br>JF: 3462y D+Q to $(21/2^-)$ .<br>JF: 3462y D+Q to $(21/2^-)$ .<br>JF: 3462y Q to $(21/2^-)$ .<br>JF: 3262y Q to $(21/2^-)$ .<br>JF: 2486y Q to $(21/2^-)$ .<br>JF: Q y to $(21/2^-)$ .<br>JF: Q y to $(21/2^+)$ . D y to $(25/2^-)$ , band assignment.<br>JF: Q y to $(21/2^-)$ .<br>JF: Q y to $(21/2^-)$ .<br>JF: Q y to $(21/2^+)$ . D y to $(23/2^-)$ .<br>JF: Q y to $(21/2^+)$ . D y to $(23/2^-)$ .<br>JF: Q y to $(21/2^+)$ . D y to $(23/2^-)$ .<br>JF: Q y to $(21/2^+)$ . D y to $(23/2^-)$ .<br>JF: Q y to $(23/2^-)$ . D y to $(23/2^-)$ .<br>JF: Q y to $(23/2^-)$ . D y to $(23/2^-)$ .<br>JF: Q y to $(23/2^-)$ . D y to $(23/2^-)$ .<br>JF: Q y to $(23/2^-)$ . D +Q y to $(27/2^+)$ .<br>JF: Q y to $(23/2^-)$ . D +Q y to $(27/2^+)$ .<br>Additional information 4.<br>JF: prom band assignment.<br>JF: Q y to $(23/2^-)$ . D +Q y to $(27/2^-)$ , band assignment.<br>JF: Q y to $(23/2^-)$ . D +Q y to $(27/2^-)$ , band assignment.<br>JF: Q y to $(23/2^-)$ . D +Q y to $(27/2^-)$ |
| 13128.1 <sup>‡</sup> <i>q</i> 12<br>13195.6 <sup><i>s</i></sup> 5<br>13353.5 <sup><i>o</i></sup> 8<br>13360.5 <sup><i>m</i></sup> 6<br>13422.6 18<br>13480.8 <sup><i>p</i></sup> 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} (27/2^{-}) \\ (29/2^{-})^{a} \\ (29/2^{+})^{a} \\ (31/2^{+})^{a} \\ (29/2^{-})^{a} \\ (27/2^{+})^{a} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L<br>L<br>L<br>L<br>L                                                 | $J^{\pi}$ : Q $\gamma$ to (23/2 <sup>-</sup> ), band assignment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13520.4 <sup>h</sup> 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(29/2^{-})^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| E(level) <sup>†</sup>             | $J^{\pi \#}$          | XREF    | Comments                  |
|-----------------------------------|-----------------------|---------|---------------------------|
| 13528.6.6                         | $(31/2)^{a}$          | L       |                           |
| 13920.3 <sup>V</sup> 6            | $(31/2^{-})^{a}$      | ĩ       |                           |
| $13020.5 \ 0$<br>$13034 \ 4t \ 7$ | $(31/2^{-})^{a}$      | -<br>I  |                           |
| 1/227 0 0                         | (31/2)                | L       |                           |
| 14237.9 9                         | $(29/2)^{a}$          | L       |                           |
| 14519.40                          | $(33/2)^{-1}$         | L       |                           |
| 14586.9" /                        | $(33/2^{+})^{\alpha}$ | L       |                           |
| 14654.1 <del>+</del> <i>q</i> 12  | $(31/2^{-})^{a}$      | L       |                           |
| 14700.4 22                        | ~                     | L       |                           |
| 14784.3 <sup>s</sup> 6            | $(33/2^{-})^{a}$      | L       |                           |
| 14952.8 <mark>0</mark> 9          | $(33/2^+)^a$          | L       |                           |
| 14957.3 <sup>4</sup> 8            | $(33/2^{-})^{a}$      | L       |                           |
| 15331.6 <sup>p</sup> 16           | $(31/2^+)^a$          | L       |                           |
| 15726.1 <sup>t</sup> 7            | $(35/2^{-})^{a}$      | L       |                           |
| 15900                             |                       | J       |                           |
| 15958.9 <sup>r</sup> 11           | $(33/2^{-})^{a}$      | L       |                           |
| 15986.0 <sup>v</sup> 9            | $(35/2^{-})^{a}$      | L       |                           |
| 16032.5 <sup>m</sup> 11           | $(35/2^+)^a$          | L       |                           |
| 16505.5 24                        |                       | L       |                           |
| 16561.1 <sup>‡q</sup> 16          | $(35/2^{-})^{a}$      | L       |                           |
| 16756.8 <sup>\$</sup> 8           | $(37/2^{-})^{a}$      | L       |                           |
| 16852.6°11                        | $(37/2^+)^a$          | L       |                           |
| 17125.1 <sup><i>u</i></sup> 10    | $(37/2^{-})^{a}$      | L       |                           |
| 17607.7 <mark>P</mark> 19         | $(35/2^+)^a$          | L       |                           |
| 17830.2 <sup>n</sup> 16           | $(37/2^+)^a$          | L       |                           |
| 17884 4                           |                       | L       |                           |
| 17963.1 <sup>t</sup> 12           | $(39/2^{-})^{a}$      | L       |                           |
| 18029.0 <sup>r</sup> 13           | $(37/2^{-})^{a}$      | L       |                           |
| 18310.3 <sup>v</sup> 11           | $(39/2^{-})^{a}$      | L       |                           |
| 18680 <i>3</i>                    |                       | L       |                           |
| 18883 <sup>‡</sup> <i>9</i> 3     | $(39/2^{-})^{a}$      | L       |                           |
| 18955 3                           | (=>1=)                | L       |                           |
| 19095.1° 13                       | $(41/2^+)^a$          | L       |                           |
| 19428.5 <sup>s</sup> 13           | $(41/2^{-})$          | L       | Additional information 5. |
| 19672.3 <sup>u</sup> 11           | $(41/2^{-})^{a}$      | I.      |                           |
| $19837^{m} 4$                     | $(39/2^+)^a$          | L       |                           |
| 19918 4                           | $(39/2^+)^a$          | L       |                           |
| 19930.7 <sup>p</sup> 22           | $(39/2^+)^a$          | L       |                           |
| 20524.1 <sup>r</sup> 17           | $(41/2^{-})^{a}$      | L       |                           |
| 20708 3                           |                       | L       |                           |
| 21096.3 <sup>v</sup> 17           | $(43/2^{-})^{a}$      | L       |                           |
| 21258 <sup>t</sup> 4              | $(43/2^{-})^{a}$      | L       |                           |
| $21641 \ddagger 9$ A              | $(13/2^{-})^{a}$      | -<br>T  |                           |
| 21706 10 17                       | $(45/2^+)^{a}$        | L       |                           |
| 22051 1                           | $(41/2^+)^a$          | L<br>I  |                           |
| $22031 \neq$<br>22580P 3          | (41/2)                | L       |                           |
| $22686 4^{\text{u}}$ 17           | $(45/2^{-})^{a}$      | L<br>T  |                           |
| 23459 <sup>r</sup> 3              | $(45/2^{-})^{a}$      | I       |                           |
| 23529 <sup>s</sup> 4              | $(45/2^{-})^{a}$      | L<br>T  |                           |
| 24318.6 <sup>V</sup> 20           | $(47/2^{-})^{a}$      | I I     |                           |
| 24710° 3                          | $(49/2^+)^a$          | L.      |                           |
| 21760 \$ 1                        | $(17/2^{-})^{a}$      | т.<br>т |                           |
| $24709^{14}$                      | $(47/2^+)^{a}$        | L       |                           |
| 2J017 J                           | (+//2)                | L       |                           |

#### <sup>59</sup>Cu Levels (continued)

| E(level) <sup>†</sup>       | $J^{\pi \#}$     | $T_{1/2}^{b}$ | XREF | Comments                                                                                                                                                                            |
|-----------------------------|------------------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26226 <sup><i>u</i></sup> 4 | $(49/2^{-})^{a}$ |               | L    |                                                                                                                                                                                     |
| 26840? <sup>r</sup> 4       | $(49/2^{-})^{a}$ |               | L    |                                                                                                                                                                                     |
| 27900                       |                  | 7.0 MeV 10    | K    | E(level), $T_{1/2}$ : from $(\pi^+, \pi^-)$ . For GDR $\otimes$ IAS resonance; not a discrete level. See source dataset for parameters for $T_<$ and $T_>$ components of resonance. |
| 28134 <sup>0</sup> 3        | $(53/2^+)^a$     |               | L    | -                                                                                                                                                                                   |
| 31961 <sup>0</sup> 3        | $(57/2^+)^a$     |               | L    |                                                                                                                                                                                     |
| x <sup>w</sup>              | (J)              |               | L    | Additional information 6.                                                                                                                                                           |
| 1631.0+x <sup>w</sup> 10    | (J+2)            |               | L    | Additional information 7.                                                                                                                                                           |
| 3647.0+x <sup>₩</sup> 10    | (J+4)            |               | L    |                                                                                                                                                                                     |
| 6005.1+x <sup>w</sup> 15    | (J+6)            |               | L    |                                                                                                                                                                                     |
| 8812.2+x <sup>w</sup> 25    | (J+8)            |               | L    |                                                                                                                                                                                     |

<sup>†</sup> From least-squares adjustment of adopted E $\gamma$  when measured data are available (i.e., excluding E $\gamma$  derived from level energy differences). Uncertainty doubled for two  $\gamma$ -rays, out of 327, during the fit, 1788.1 $\gamma$  from 6690.4 and 802.7 $\gamma$  from 4904.0 (std. dev. was 3 to 4). Without the increase  $\chi^2$ =1.5 and  $\chi^2$ =1.3 (critical). Five level energies, 4530.0, 5721.3, 7444, 12859.4, 19428.5-keV were held fixed for least-squares fit. Other E(level) from their unenumerated E $\gamma$  data (1978Sc07 in (<sup>3</sup>He,d $\gamma$ ) and 1985Di05, 1975Kl06, 1975Co21 in (p, $\gamma$ )), E(level) from resonance E(p) and S(p) (from 1957Bu64, 1970Ho34 in (p, $\gamma$ )), E(level) from (p,p),(p,p' $\gamma$ ) (for E>6305) and/or E(level) from Zn  $\varepsilon$  decay, otherwise. Data from (p,p),(p,p' $\gamma$ ) for E≤6305 are ≈8 keV low, and data from (<sup>3</sup>He,d) are typically 5-10 keV high for E>3 MeV; consequently, these values are considered only in the absence of information from other sources. For E(level)>6500, all possible analogue levels and levels from which  $\gamma$  rays have been observed are included in this table. Note that level energy deduced from least squares fit of adopted  $\gamma$  lead to about 1 to 2 keV difference compared to level energies in (<sup>28</sup>Si, $2\alpha p\gamma$ ) dataset.

<sup>‡</sup> 2000An32 labeled the 11923, 25/2<sup>+</sup> level as the lowest energy member of the SD band but, from the decay pattern given in fig. 1 of 2000An32, the 12042, 25/2<sup>+</sup> level can equally well be considered to be the lowest member. Authors C.E. Svensson and J.C. Waddington seem to confirm the viewpoint that it is difficult to distinguish between these levels as to which one is the lowest energy band member. Moreover, the two levels are likely to have heavily mixed configurations, as noted (dated April 2001) by C.M. Baglin in previous evaluation (2002Ba42).

<sup>#</sup> J<sup> $\pi$ </sup> assignments given without comment are from <sup>40</sup>Ca(<sup>28</sup>Si,2 $\alpha$ p $\gamma$ ) (2002An20). The assignments are based on multipolarities from  $\gamma\gamma(\theta)$ (DCO) data for selected transitions and on band associations or only based on transition multipolarities.

<sup>@</sup> L=1 for levels at E(d,n)=2299 and  $E(^{3}He,d)=2323$  7.

& From R-matrix resonance parameters for  $\sigma(E(p),\theta)$  in  $(p,p),(p,p'\gamma)$ .

<sup>*a*</sup> Assignment from (<sup>28</sup>Si, $2\alpha p\gamma$ ), based on (partial or all)  $\gamma$ -ray multipolarity, placement in the level, and band assignment.

<sup>b</sup> For E<5230: from <sup>58</sup>Ni(<sup>3</sup>He,d $\gamma$ ) DSA (1974Ne08), except as noted. For E≥5230:  $\Gamma$  from (p,p),(p,p' $\gamma$ ), except as noted.

- <sup>*c*</sup> Level deexcitation: Prompt proton emission competes with  $\gamma$  rays.
- <sup>*d*</sup> Band(A): p<sub>3/2</sub>.
- <sup>*e*</sup> Band(B):  $f_{7/2}^{-1}$ ,  $\alpha = -1/2$ .
- <sup>f</sup> Band(b):  $f_{7/2}^{-1}$ ,  $\alpha = +1/2$ .
- <sup>g</sup> Band(C): Band based on  $19/2^{-}$ ,  $\alpha = -1/2$ .
- <sup>h</sup> Band(c): Band based on  $17/2^{-}$ ,  $\alpha = +1/2$ .
- <sup>*i*</sup> Band(D):  $f_{5/2}$ .
- <sup>*j*</sup> Band(E): Band based on  $9/2^+$ .
- <sup>k</sup> Band(F): Band based on  $17/2^+$ ,  $\alpha = +1/2$ .
- <sup>*l*</sup> Band(f): Band based on  $15/2^+$ ,  $\alpha = -1/2$ .
- <sup>*m*</sup> Band(G): Band based on 19/2<sup>+</sup>,  $\alpha = -1/2$ . Average Q<sub>t</sub>=1.25 +13-10,  $\beta_2 = 0.24$  2.
- <sup>*n*</sup> Band(g): Band based on  $21/2^+$ ,  $\alpha = +1/2$ . Average Q<sub>t</sub>=1.25 +13-10,  $\beta_2 = 0.24$  2.
- <sup>o</sup> Band(H): SD-1 band (2000An32,2002An20). Average Q<sub>t</sub>=2.23 +27-22 (2002An20),  $\beta_2$ =0.41 5. Configuration= $\nu 4^2 \pi 4^1$ . Percent

#### <sup>59</sup>Cu Levels (continued)

population=30% relative to  $I(\gamma+ce) I\gamma(1399\gamma)$  (2000An32).

- <sup>*p*</sup> Band(h): SD-2 band (?)  $\alpha = -1/2$  (2002An20). Possible signature partner of SD-1 band (2002An20).
- <sup>*q*</sup> Band(I): Band based on 23/2<sup>-</sup>,  $\alpha = -1/2$ . Average Q<sub>t</sub>=1.95 +33-25 (2002An20),  $\beta_2 = 0.36$  4. Highly-deformed band.
- <sup>r</sup> Band(i): Band based on  $25/2^-$ ,  $\alpha = +1/2$ . Average Q<sub>t</sub>=1.95 +33-25 (2002An20),  $\beta_2 = 0.36$  4. Highly-deformed band.
- <sup>s</sup> Band(J): Band based on  $25/2^-$ ,  $\alpha = +1/2$ .
- <sup>t</sup> Band(j): Band based on  $27/2^{-}$ ,  $\alpha = -1/2$ .
- <sup>*u*</sup> Band(K): Band based on  $21/2^-$ ,  $\alpha = +1/2$ .
- <sup>v</sup> Band(k): Band based on 23/2<sup>-</sup>,  $\alpha = -1/2$ .
- <sup>w</sup> Band(L): Band structure.

|                        | Adopted Levels, Gammas (continued) |                                                                                                                                             |                                                                           |                                                                                                                             |                              |                                 |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                        |                                    |                                                                                                                                             |                                                                           |                                                                                                                             |                              | $\gamma(^5$                     | <sup>9</sup> Cu)                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$               | $E_{\gamma}^{\dagger}$                                                                                                                      | $I_{\gamma}^{h}$                                                          | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$                                                                                         | Mult. <sup>k</sup>           | δ <sup>ko</sup>                 | $\alpha^{n}$                                                                                     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 491.5                  | 1/2-                               | 491.22 <sup>c</sup> 10                                                                                                                      | 100                                                                       | 0.0 3/2-                                                                                                                    | M1(+E2)                      | <0.31                           | 0.00108 6                                                                                        | $\begin{aligned} \alpha(K) = 0.00097 \ 5; \ \alpha(L) = 9.6 \times 10^{-5} \ 6; \ \alpha(M) = 1.36 \times 10^{-5} \ 8\\ \alpha(N) = 4.12 \times 10^{-7} \ 2I\\ B(M1)(W.u.) > 0.18; \ B(E2)(W.u.) < 3.0 \times 10^{2}\\ Mult.: \ from \ \alpha(K)exp \ in \ (^{3}He,pn\gamma).\\ \delta: \ < 0.9 \ from \ \alpha(K)exp \ in \ (^{3}He,pn\gamma); \ < 0.37 \ is \ expected \ from \ RUL. \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 914.2                  | 5/2-                               | 422.6 <sup><i>f</i></sup> <i>p</i> 2                                                                                                        | 0.7 <sup>i</sup> 2                                                        | 491.5 1/2-                                                                                                                  |                              |                                 |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                        |                                    | 913.90 12                                                                                                                                   | 100 <sup>i</sup> 3                                                        | 0.0 3/2-                                                                                                                    | M1+E2                        | -0.21 2                         | 2.71×10 <sup>-4</sup>                                                                            | B(M1)(W.u.)<0.025; B(E2)(W.u.)<2.9<br>$\alpha$ (K)=0.000244 4; $\alpha$ (L)=2.40×10 <sup>-5</sup> 4; $\alpha$ (M)=3.38×10 <sup>-6</sup> 5<br>$\alpha$ (N)=1.037×10 <sup>-7</sup> 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                        |                                    |                                                                                                                                             |                                                                           |                                                                                                                             |                              |                                 |                                                                                                  | E <sub>γ</sub> : Unweighted average from $\varepsilon$ decay, (p,γ), ( <sup>3</sup> He,pnγ),<br>( <sup>3</sup> He,dγ), and ( <sup>28</sup> Si,2αpγ).<br>Mult.,δ: Mult from ( <sup>3</sup> He,pnγ)0.21 2 or -1.75 <i>12</i> from<br>(p,γ); $\delta$ <0.7 from $\alpha$ (K)exp in ( <sup>3</sup> He,pnγ). Other: -0.8<br>+5-9 from ( <sup>3</sup> He,pnγ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 1398.8                 | 7/2-                               | 484.40 <sup><i>a</i></sup> 14                                                                                                               | 15.9 <sup>j</sup> 12                                                      | 914.2 5/2-                                                                                                                  | M1+E2                        | -0.05 1                         | 1.06×10 <sup>-3</sup>                                                                            | α(K)=0.000951 14; α(L)=9.47×10-5 14; α(M)=1.332×10-5 19 α(N)=4.06×10-7 6 B(M1)(W.u.)=0.07 3; B(E2)(W.u.)=1.3 8 Mult.,δ: Mult from (3He,pnγ). δ from (28Si,2αpγ); Other: -0.09 12 (3He,pnγ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                        |                                    | 1398.44 <sup><i>a</i></sup> 22                                                                                                              | 100.0 17                                                                  | 0.0 3/2-                                                                                                                    | E2                           |                                 | 1.80×10 <sup>-4</sup>                                                                            | B(E2)(W.u.)=17 8<br>$\alpha(K)=0.0001135 \ 16; \ \alpha(L)=1.119\times10^{-5} \ 16; \ \alpha(M)=1.573\times10^{-6} \ 22$<br>$\alpha(N)=4.81\times10^{-8} \ 7; \ \alpha(IPF)=5.32\times10^{-5} \ 8$<br>Mult.: $\delta(Q,O)=-0.09 \ 12$ in $(p,\gamma)$ ; mult=Q from $(p,\gamma)$ ,<br>mult=M1,E2 from $(^{3}\text{He,pny})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 1864.8                 | 7/2-                               | 465.8 1                                                                                                                                     | 27.3 18                                                                   | 1398.8 7/2-                                                                                                                 |                              |                                 |                                                                                                  | I <sub><math>\gamma</math></sub> : Others: 59.0 <i>16</i> ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ), 38 in ( <sup>3</sup> He,d $\gamma$ ), 98 in ( <sup>3</sup> He,pn $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                        |                                    | 950.90 <sup>a</sup> 25                                                                                                                      | 100.0 18                                                                  | 914.2 5/2-                                                                                                                  | M1(+E2)                      | 0.00 5                          | 2.47×10 <sup>-4</sup>                                                                            | $\alpha(K)=0.000222 \ 4; \ \alpha(L)=2.19\times10^{-5} \ 3; \ \alpha(M)=3.08\times10^{-6} \ 5 \\ \alpha(N)=9.47\times10^{-8} \ 14 \\ Mult.: \ M1,E2 \ from \ (^{3}He,pn\gamma); \ D(+Q) \ from \ (p,\gamma). $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                        |                                    |                                                                                                                                             |                                                                           |                                                                                                                             |                              |                                 |                                                                                                  | δ: weighted average of $-0.02$ 6 in ( <sup>3</sup> He,pnγ) and $+0.10$ <i>I</i> 2 in (p,γ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                        |                                    | 1864.9 <sup>b</sup> 4                                                                                                                       | 54.6 18                                                                   | 0.0 3/2-                                                                                                                    | E2                           |                                 | 3.18×10 <sup>-4</sup>                                                                            | $\begin{aligned} &\alpha(\text{K}) = 6.43 \times 10^{-5} \ 9; \ \alpha(\text{L}) = 6.32 \times 10^{-6} \ 9; \ \alpha(\text{M}) = 8.88 \times 10^{-7} \\ I3 \\ &\alpha(\text{N}) = 2.73 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 0.000247 \ 4 \\ &\text{Other } I\gamma: \ 75 \ \text{in} \ (^{3}\text{He},\text{d}\gamma), \ 85 \ \text{in} \ (^{3}\text{He},\text{pn}\gamma). \\ &\text{Mult.}, \delta: \ \text{Mult from} \ (^{3}\text{He},\text{pn}\gamma). \ \delta(\text{Q},\text{O}) = -0.03 \ 4 \ \text{in} \ (\text{p},\gamma). \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 1398.8<br>1864.8       | 7/2-                               | 484.40 <sup><i>a</i></sup> 14<br>1398.44 <sup><i>a</i></sup> 22<br>465.8 1<br>950.90 <sup><i>a</i></sup> 25<br>1864.9 <sup><i>b</i></sup> 4 | 15.9 <sup><i>j</i></sup> 12<br>100.0 17<br>27.3 18<br>100.0 18<br>54.6 18 | 914.2 5/2 <sup>-</sup><br>0.0 3/2 <sup>-</sup><br>1398.8 7/2 <sup>-</sup><br>914.2 5/2 <sup>-</sup><br>0.0 3/2 <sup>-</sup> | M1+E2<br>E2<br>M1(+E2)<br>E2 | -0.05 <i>1</i><br>0.00 <i>5</i> | 1.06×10 <sup>-3</sup><br>1.80×10 <sup>-4</sup><br>2.47×10 <sup>-4</sup><br>3.18×10 <sup>-4</sup> | (*He,dy), and (**S1,2apy).<br>Mult., $\delta$ : Mult from ( <sup>3</sup> He,pny)0.21 2 or -1.75 12 fr<br>(p, $\gamma$ ); $\delta$ <0.7 from $\alpha$ (K)exp in ( <sup>3</sup> He,pny). Other: -0<br>+5-9 from ( <sup>3</sup> He,pny).<br>$\alpha$ (K)=0.000951 14; $\alpha$ (L)=9.47×10 <sup>-5</sup> 14;<br>$\alpha$ (M)=1.332×10 <sup>-5</sup> 19<br>$\alpha$ (N)=4.06×10 <sup>-7</sup> 6<br>B(M1)(W.u.)=0.07 3; B(E2)(W.u.)=1.3 8<br>Mult., $\delta$ : Mult from ( <sup>3</sup> He,pny). $\delta$ from ( <sup>28</sup> Si,2 $\alpha$ py);<br>Other: -0.09 12 ( <sup>3</sup> He,pny).<br>B(E2)(W.u.)=17 8<br>$\alpha$ (K)=0.0001135 16; $\alpha$ (L)=1.119×10 <sup>-5</sup> 16;<br>$\alpha$ (M)=1.573×10 <sup>-6</sup> 22<br>$\alpha$ (N)=4.81×10 <sup>-8</sup> 7; $\alpha$ (IPF)=5.32×10 <sup>-5</sup> 8<br>Mult: $\delta$ (Q,O)=-0.09 12 in (p, $\gamma$ ); mult=Q from (p, $\gamma$ ),<br>mult=M1,E2 from ( <sup>3</sup> He,pn $\gamma$ ).<br>I <sub><math>\gamma</math></sub> : Others: 59.0 16 ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ), 38 in ( <sup>3</sup> He,d $\gamma$ ), 98 ir<br>( <sup>3</sup> He,pn $\gamma$ ).<br>$\alpha$ (K)=0.000222 4; $\alpha$ (L)=2.19×10 <sup>-5</sup> 3; $\alpha$ (M)=3.08×10<br>$\alpha$ (N)=9.47×10 <sup>-8</sup> 14<br>Mult: M1,E2 from ( <sup>3</sup> He,pn $\gamma$ ); D(+Q) from (p, $\gamma$ ).<br>$\delta$ : weighted average of -0.02 6 in ( <sup>3</sup> He,pn $\gamma$ ) and +0.<br>in (p, $\gamma$ ).<br>$\alpha$ (K)=6.43×10 <sup>-5</sup> 9; $\alpha$ (L)=6.32×10 <sup>-6</sup> 9; $\alpha$ (M)=8.88×<br>13<br>$\alpha$ (N)=2.73×10 <sup>-8</sup> 4; $\alpha$ (IPF)=0.000247 4<br>Other I $\gamma$ : 75 in ( <sup>3</sup> He,d $\gamma$ ), 85 in ( <sup>3</sup> He,pn $\gamma$ ).<br>Mult., $\delta$ : Mult from ( <sup>3</sup> He,pn $\gamma$ ). $\delta$ (Q,O)=-0.03 4 in (p. |  |  |  |  |  |  |

Т

|                        |                        |                           |                           |        | A                    | dopted Leve        | ls, Gammas (con | tinued)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|------------------------|---------------------------|---------------------------|--------|----------------------|--------------------|-----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                        |                           |                           |        |                      | $\gamma(^{59}$     | Cu) (continued) |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$   | $E_{\gamma}^{\dagger}$    | $I_{\gamma}^{h}$          | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup> | δ <sup>ko</sup> | $\alpha^{n}$             | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1988.1                 | 5/2 <sup>(+)</sup>     | 1988.03 20                | 100                       | 0.0    | 3/2-                 | D+Q                | -1.23 9         |                          | E <sub>γ</sub> : weighted average from ( <sup>3</sup> He,pnγ) and (p,γ).<br>δ: if mult=E1+M2, δ implies $T_{1/2}>40$ ps based<br>on RUL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2266.5                 | 3/2+                   | 1775.4 5                  | 92.3 19                   | 491.5  | 1/2-                 | D+Q                | +1.9 7          |                          | E <sub>γ</sub> : weighted average from ( <sup>3</sup> He,dγ) and (p,γ).<br>Other Iγ: 104 in ( <sup>3</sup> He,dγ), ≈118 in ( <sup>3</sup> He,pnγ).<br>Mult.: $\Delta\pi$ =yes from level scheme; however,<br>$\delta$ (E1,M2)<0.063 is expected from RUL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                        | 2266.1 6                  | 100.0 19                  | 0.0    | 3/2-                 | D+Q                | +1.0 6          |                          | $E_{\gamma}$ : weighted average from ( <sup>3</sup> He,pn $\gamma$ ) and (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2318.5                 | $1/2^{(-)}, 5/2^{(-)}$ | 1827 <sup>f</sup> 1       | 20.5 12                   | 491.5  | $1/2^{-}$            |                    |                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                        | 2318 <sup>#</sup>         | 100.0 12                  | 0.0    | 3/2-                 |                    |                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2324.1                 | 3/2-                   | 337 <sup><i>f</i></sup> 1 |                           | 1988.1 | 5/2 <sup>(+)</sup>   |                    |                 |                          | $E_{\gamma}$ : reported only in a ( <sup>3</sup> He,pn $\gamma$ ) study in which<br>the 1409 $\gamma$ and 2324 $\gamma$ , known to de-excite the<br>2324 level, were absent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                        | 1409.1 <sup>g</sup> 4     | 11.1 <i>11</i>            | 914.2  | 5/2-                 | (M1+E2)            | -1.4 12         | 1.72×10 <sup>-4</sup> 16 | $\alpha(K)=0.000109 \ 6; \ \alpha(L)=1.07\times10^{-5} \ 6; \\ \alpha(M)=1.50\times10^{-6} \ 9 \\ \alpha(N)=4.61\times10^{-8} \ 24; \ \alpha(IPF)=5.2\times10^{-5} \ 9 \\ P(M)=0.011 \ A = 10^{-5} \ P(M) \ A = 10^{-5} \ B = 10^{-5} = 10^{-5} \$ |
|                        |                        | 2324.0 <sup>g</sup> 2     | 100.0 <i>11</i>           | 0.0    | 3/2-                 | M1                 |                 | 4.44×10 <sup>-4</sup>    | B(M1)(W.u.)=0.011 +13-10; B(E2)(W.u.)=20 12<br>Other Iy: 13.6 in ( <sup>3</sup> He,dy).<br>$\alpha(K)=4.17\times10^{-5} 6; \alpha(L)=4.08\times10^{-6} 6;$<br>$\alpha(M)=5.74\times10^{-7} 8$<br>$\alpha(N)=1.772\times10^{-8} 25; \alpha(IPF)=0.000398 6$<br>B(M1)(W.u.)=0.063 11<br>$\delta(D, O)=-0.03 6$ from (n $\alpha$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2390.8                 | 9/2-                   | 991.5 7                   | 11.8 <sup>i</sup> 8       | 1398.8 | 7/2-                 | D+Q                | -0.08 +7-10     |                          | $E_{\gamma}$ : Unweighted ave. of data from ( <sup>3</sup> He,pn $\gamma$ ) and ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ).<br>Mult $\delta$ : From ( <sup>28</sup> Si,2 $\alpha$ pm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                        | 1476.7 2                  | 100 <sup><i>i</i></sup> 3 | 914.2  | 5/2-                 | E2                 |                 | 1.91×10 <sup>-4</sup>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2587.3                 | $11/2^{-}$             | 196.3.2                   | 5.2 <sup>i</sup> 13       | 2390.8 | 9/2-                 |                    |                 |                          | With norm ( ne,phy).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | ,-                     | $722.8^{f}$ 2             | $\approx 1.2^{f}$         | 1864.8 | 7/2-                 |                    |                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                        | 1188.4 9                  | 100 <sup><i>i</i></sup> 6 | 1398.8 | 7/2-                 | Q <sup>i</sup>     |                 |                          | $E_{\gamma}$ : Unweighted average of data from ( <sup>3</sup> He,pnγ) and ( <sup>28</sup> Si,2αpγ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2664.6                 | (9/2 <sup>-</sup> )    | 798.9 4                   | 100 <sup><i>i</i></sup> 3 | 1864.8 | 7/2-                 | D+Q                | +0.32 4         |                          | <ul> <li>E<sub>γ</sub>: Unweighted average of data from (<sup>3</sup>He,pnγ) and (<sup>28</sup>Si,2αpγ).</li> <li>Mult.: from (<sup>3</sup>He,pnγ).</li> <li>δ: weighted average of +0.35 <i>10</i> in (p,γ) and +0.31 5 in (<sup>3</sup>He,pnγ).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

 $^{59}_{29}$ Cu<sub>30</sub>-19

|                        |                      |                                |                           | Ad                                       | opted Levels             | , Gammas (co    | ontinued)             |                                                                                                                         |
|------------------------|----------------------|--------------------------------|---------------------------|------------------------------------------|--------------------------|-----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                                |                           |                                          | <u>γ(<sup>59</sup>Cι</u> | a) (continued)  |                       |                                                                                                                         |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{h}$          | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup>       | δ <sup>ko</sup> | $\alpha^{n}$          | Comments                                                                                                                |
| 2664.6                 | (9/2 <sup>-</sup> )  | 1265.1 7                       | 7.1 <sup><i>i</i></sup> 5 | 1398.8 7/2-                              |                          |                 |                       | $E_{\gamma}$ : Unweighted average of data from ( <sup>3</sup> He,pnγ) and ( <sup>28</sup> Si,2αpγ).                     |
| 2706.3                 | 5/2-                 | 1307 <sup>#</sup>              | 23.7 17                   | 1398.8 7/2-                              |                          |                 |                       |                                                                                                                         |
|                        |                      | 1792.0 <sup><i>f</i></sup> 2   | 100.0 17                  | 914.2 5/2-                               | D(+Q)                    | -0.09 10        |                       |                                                                                                                         |
|                        |                      | 2215 <sup>#</sup>              | 45.8 17                   | 491.5 1/2-                               | Q                        |                 |                       | $\delta(Q,O)=0.05$ from $(p,\gamma)$ .                                                                                  |
| 2715.3                 | 7/2-                 | 727.5 <b>f</b> 2               | 41 3                      | 1988.1 5/2 <sup>(+)</sup>                |                          |                 |                       | Other Iy: 77 in $({}^{3}\text{He,pny})$ .                                                                               |
|                        |                      | 1316 <sup>#</sup>              | 54 <i>3</i>               | 1398.8 7/2-                              | D+Q                      | +1.3 4          |                       |                                                                                                                         |
|                        |                      | 1801.0 <sup>f</sup> 2          | 76 <i>3</i>               | 914.2 5/2-                               | D+Q                      | -3.3 6          |                       | Other Iy: 33 in $({}^{3}\text{He,pny})$ .                                                                               |
|                        |                      | 2714.6 <sup><i>f</i></sup> 2   | 100 3                     | 0.0 3/2-                                 | Q                        |                 |                       | $\delta(Q,O)=0.00 \ 8 \ \text{from } (p,\gamma).$                                                                       |
| 2928                   | $5/2^{(-)}$          | 940 <sup>#</sup>               | 24.4 22                   | 1988.1 5/2 <sup>(+)</sup>                | D+Q                      | +2.4 27         |                       |                                                                                                                         |
|                        |                      | 2014 <sup>#</sup>              | 100.0 22                  | 914.2 5/2-                               | D(+Q)                    | +0.15 25        |                       |                                                                                                                         |
|                        |                      | 2436 <sup>#</sup>              | 22.2 22                   | 491.5 1/2-                               |                          |                 |                       |                                                                                                                         |
|                        |                      | 2928 <sup>#</sup>              | 75.6 22                   | 0.0 3/2-                                 |                          |                 |                       |                                                                                                                         |
| 2992.0                 | 3/2,5/2-,7/2-        | 1004 <sup>#</sup>              | 8.6 17                    | 1988.1 5/2 <sup>(+)</sup>                |                          |                 |                       |                                                                                                                         |
|                        |                      | 2078 <sup>#</sup>              | 100.0 17                  | 914.2 5/2-                               |                          |                 |                       |                                                                                                                         |
|                        |                      | 2992 <sup>#</sup>              | 63.8 17                   | $0.0 \ 3/2^{-}$                          |                          |                 |                       |                                                                                                                         |
| 3024.8                 | $5/2^{(-)}$          | 2111 <sup>#</sup>              | 33.3 22                   | 914.2 5/2-                               |                          |                 |                       |                                                                                                                         |
|                        |                      | 2533.6 <sup>#</sup>            | 88.9 22                   | 491.5 1/2-                               |                          |                 |                       |                                                                                                                         |
|                        |                      | 3024 <sup>#</sup>              | 100.0 22                  | $0.0 \ 3/2^{-}$                          |                          |                 |                       |                                                                                                                         |
| 3042.5                 | 9/2+                 | 455.33 <sup>a</sup> 12         | 1.8 <sup>i</sup> 5        | 2587.3 11/2-                             | (E1)                     |                 | 6.79×10 <sup>-4</sup> | $\alpha(K)=0.000610 \ 9; \ \alpha(L)=6.03\times10^{-5} \ 9; \ \alpha(M)=8.47\times10^{-6}$<br>12                        |
|                        |                      |                                |                           |                                          |                          |                 |                       | $\alpha(N)=2.56\times10^{-7} 4$                                                                                         |
|                        |                      |                                |                           |                                          | -                        |                 | 1 22 10 1             | B(E1)(W.u.)=0.00010 5                                                                                                   |
|                        |                      | 1177.47 <sup><i>a</i></sup> 20 | 26.3 13                   | 1864.8 7/2-                              | (E1+M2)                  | +0.023 13       | $1.23 \times 10^{-4}$ | $\alpha(K) = 7.68 \times 10^{-5} \ 11; \ \alpha(L) = 7.54 \times 10^{-6} \ 11; \ \alpha(M) = 1.059 \times 10^{-6} \ 15$ |
|                        |                      |                                |                           |                                          |                          |                 |                       | $\alpha(N)=3.25\times10^{-8}$ 5; $\alpha(IPF)=3.72\times10^{-5}$ 6                                                      |
|                        |                      |                                |                           |                                          |                          |                 |                       | B(E1)(W.u.)≈9.0×10 <sup>-5</sup> ; B(M2)(W.u.)≈0.16                                                                     |
|                        |                      |                                |                           |                                          |                          |                 |                       | $I_{\gamma}$ : Other: 38.6 <i>18</i> ( <sup>28</sup> Si,2αpγ).                                                          |
|                        |                      |                                |                           |                                          |                          |                 |                       | Mult.: D+Q in $({}^{28}\text{Si}, 2\alpha p\gamma)$ , D(+Q) in $({}^{3}\text{He,pn}\gamma)$ and                         |
|                        |                      |                                |                           |                                          |                          |                 |                       | $(p,\gamma)$ .                                                                                                          |
|                        |                      |                                |                           |                                          |                          |                 |                       | o: wt. ave. of $-0.07 + 5-6$ in ("He,pny), $+0.011$ 18 in (p,y), and $+0.03$ 1 ( <sup>28</sup> Si, $2\alpha$ py).       |
|                        |                      | 1644.2 <sup>b</sup> 4          | 100.0 13                  | 1398.8 7/2-                              | E1+M2                    | +0.027 10       | $4.19 \times 10^{-4}$ | $\alpha(K)=4.37\times10^{-5}$ 7; $\alpha(L)=4.28\times10^{-6}$ 6;                                                       |
|                        |                      |                                |                           | ,                                        |                          |                 |                       | $\alpha(M) = 6.01 \times 10^{-7} 9$                                                                                     |
|                        |                      |                                |                           |                                          |                          |                 |                       | $\alpha(N)=1.85\times10^{-8}$ 3; $\alpha(IPF)=0.000371$ 6                                                               |
|                        |                      |                                |                           |                                          |                          |                 |                       | B(E1)(W.u.)=0.00012 5; B(M2)(W.u.)=0.14 13                                                                              |
|                        |                      |                                |                           |                                          |                          |                 |                       | Mult.: E1 in ( <sup>3</sup> He,pn $\gamma$ ), D+Q in (p, $\gamma$ ).                                                    |
|                        |                      |                                |                           |                                          |                          |                 |                       | $\delta$ : Other: $-0.025$ in ( <sup>3</sup> He,pn $\gamma$ ).                                                          |

 $^{59}_{29}$ Cu<sub>30</sub>-20

From ENSDF

|                        |                      |                                                                                          |                                               |                                                                                       | Adopted L                                 | evels, Gamma                | as (continued)        |                                                                                                                                                                                                                                                                                                                                |
|------------------------|----------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                                                                                          |                                               |                                                                                       | <u> </u>                                  | ( <sup>59</sup> Cu) (contin | ued)                  |                                                                                                                                                                                                                                                                                                                                |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                                                                   | $I_{\gamma}^{h}$                              | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                                              | Mult. <sup>k</sup>                        | δ <sup>ko</sup>             | $\alpha^{n}$          | Comments                                                                                                                                                                                                                                                                                                                       |
| 3042.5                 | 9/2+                 | 2128.5 <sup>#</sup>                                                                      | 4.0 13                                        | 914.2 5/2-                                                                            | [M2]                                      |                             | 2.69×10 <sup>-4</sup> | $\alpha(K)=8.34\times10^{-5}$ 12; $\alpha(L)=8.21\times10^{-6}$ 12;<br>$\alpha(M)=1.155\times10^{-6}$ 17<br>$\alpha(N)=3.56\times10^{-8}$ 5; $\alpha(IPF)=0.0001760$ 25<br>Vields $B(M2)(Wu)=2.2$ 12 – larger than $RUI = 1$                                                                                                   |
|                        |                      | 3042.4 <sup>#</sup>                                                                      | 1.3 13                                        | 0.0 3/2-                                                                              | [E3]                                      |                             | 6.02×10 <sup>-4</sup> | $\alpha(K)=4.01\times10^{-5} \ 6; \ \alpha(L)=3.94\times10^{-6} \ 6; \alpha(M)=5.54\times10^{-7} \ 8 \alpha(N)=1.705\times10^{-8} \ 24; \ \alpha(IPF)=0.000557 \ 8 B(E3)(W.u.)=4.E+1 \ 4 \gamma from (p,\gamma); absent in (3He,pn\gamma) and (3He,d\gamma).$                                                                  |
| 3114.4                 | 5/2-                 | 2623 <sup>#</sup>                                                                        | 38.9 14                                       | 491.5 1/2-                                                                            | [E2]                                      |                             | 6.51×10 <sup>-4</sup> | B(E2)(W.u.)=7 4<br>$\alpha(K)=3.51\times10^{-5} 5; \alpha(L)=3.44\times10^{-6} 5; \alpha(M)=4.83\times10^{-7} 7$                                                                                                                                                                                                               |
|                        |                      | 3114.0 <sup>g</sup> 5                                                                    | 100.0 14                                      | 0.0 3/2-                                                                              | M1+E2                                     |                             | 0.00081 5             | $ α(N)=1.489\times10^{-9} 21; α(PF)=0.000612.9 $ B(M1)(W.u.)=0.019 11; B(E2)(W.u.)=3.6 21<br>$α(K)=2.61\times10^{-5} 6; α(L)=2.55\times10^{-6} 6;$<br>$α(M)=3.59\times10^{-7} 8$<br>$α(N)=1.107\times10^{-8} 22; α(PF)=0.00078 5$<br>Mult.: D+Q from (p,γ); RUL requires<br>δ(E1,M2)<0.11.<br>δ: +0.52 10 or +4.2 10 in (p,γ). |
| 3121.9?                |                      | $2207^{f}$ 1                                                                             |                                               | 914.2 5/2-                                                                            |                                           |                             |                       | 4.07                                                                                                                                                                                                                                                                                                                           |
| 3129.9                 | 3/2-                 | $\begin{array}{c} 20315 & 1 \\ 2215.7^8 & 3 \\ 2638.6^8 & 3 \\ 3129.5^8 & 2 \end{array}$ | 100 <i>3</i><br>97 <i>3</i><br>81 <i>3</i>    | 491.5 1/2<br>914.2 5/2 <sup>-</sup><br>491.5 1/2 <sup>-</sup><br>0.0 3/2 <sup>-</sup> |                                           |                             |                       | Other I $\gamma$ : 72 in ( <sup>3</sup> He,d $\gamma$ ).<br>Other I $\gamma$ : 141 in ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                                                                                                          |
| 3309                   | 7/2 <sup>(-)</sup>   | 1910 <sup>#</sup><br>2395 <sup>#</sup><br>3309 <sup>#</sup>                              | 66.7 22<br>100.0 22<br>56.0 22                | 1398.8 7/2 <sup>-</sup><br>914.2 5/2 <sup>-</sup><br>0.0 3/2 <sup>-</sup>             |                                           |                             |                       |                                                                                                                                                                                                                                                                                                                                |
| 3329.4                 | (11/2 <sup>-</sup> ) | 664.9 <sup>&amp;</sup> 4                                                                 | 100 <sup><i>i</i></sup> 4                     | 2664.6 (9/2 <sup>-</sup> )                                                            | M1+E2                                     | +0.12 4                     | 5.28×10 <sup>-4</sup> | $\alpha(K)=0.000474\ 7;\ \alpha(L)=4.70\times10^{-5}\ 7;\ \alpha(M)=6.61\times10^{-6}\ 10$<br>$\alpha(N)=2.02\times10^{-7}\ 3$<br>Mult., $\delta$ : Mult from ( <sup>3</sup> He,pn $\gamma$ ). $\delta$ from wt. ave. of<br>+0.15 +4-5 ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ) and +0.09 5 ( <sup>3</sup> He,pn $\gamma$ ). |
|                        |                      | 741.75 <sup>&amp;</sup> 20<br>938.9 4<br>1464.16 <sup>&amp;</sup> 20                     | $25.9^{i}$ 19<br>$3.7^{i}$ 6<br>$48.1^{i}$ 19 | 2587.3 11/2 <sup>-</sup><br>2390.8 9/2 <sup>-</sup><br>1864.8 7/2 <sup>-</sup>        | D+Q<br>D+Q <sup>i</sup><br>Q <sup>i</sup> | +0.8 +3-2                   |                       | E <sub>γ</sub> : From ( <sup>28</sup> Si,2αpγ).                                                                                                                                                                                                                                                                                |
| 3434                   | 5/2                  | 1931.1 <sup>&amp;</sup> 4<br>2520 <sup>#</sup>                                           | 13.3 <sup><i>i</i></sup> 7<br>100.0 <i>14</i> | 1398.8 7/2 <sup>-</sup><br>914.2 5/2 <sup>-</sup>                                     | Q                                         |                             |                       | Mult.: from $({}^{3}\text{He,pn}\gamma)$ .                                                                                                                                                                                                                                                                                     |

|                        |                      |                                      |                  |        |                         | Adopted Lev                         | els, Gammas     | (continued)           |                                                                                                                                                                                                |
|------------------------|----------------------|--------------------------------------|------------------|--------|-------------------------|-------------------------------------|-----------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                                      |                  |        |                         | $\gamma(59)$                        | Cu) (continue   | <u>d)</u>             |                                                                                                                                                                                                |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$               | $I_{\gamma}^{h}$ | $E_f$  | $\mathbf{J}_{f}^{\pi}$  | Mult. <sup>k</sup>                  | δ <sup>ko</sup> | α <sup><b>n</b></sup> | Comments                                                                                                                                                                                       |
| 3434                   | 5/2                  | 3434#                                | 42.9 14          | 0.0    | 3/2-                    |                                     |                 |                       |                                                                                                                                                                                                |
| 3438                   | (1/2)                | 3438 <sup>#</sup>                    | 100              | 0.0    | 3/2-                    |                                     |                 |                       | 2                                                                                                                                                                                              |
| 3447.1                 | 13/2-                | 860.15 <sup>cc</sup> 20              | $19.0^{l} 24$    | 2587.3 | 11/2-                   | D+Q                                 | ≈-1             | 2.24 10-4             | Mult., $\delta$ : from ( <sup>3</sup> He,pn $\gamma$ ).                                                                                                                                        |
|                        |                      | 1056.4 2                             | 100° 5           | 2390.8 | 9/2                     | E2                                  |                 | 2.34×10               | $\alpha(K)=0.0002113; \alpha(L)=2.09\times10^{-5}3; \alpha(M)=2.93\times10^{-6}5 \alpha(N)=8.92\times10^{-8}13$<br>Mult.: from ( <sup>3</sup> He,pny).                                         |
| 3550.9                 | 5/2-                 | 2636.6 <sup>#</sup>                  | 100.0 15         | 914.2  | 5/2-                    |                                     |                 |                       |                                                                                                                                                                                                |
|                        |                      | 3550.5 <sup>g</sup> 13               | 53.8 15          | 0.0    | 3/2-                    |                                     |                 |                       |                                                                                                                                                                                                |
| 3574                   | 5/2,7/2              | 2175 <b>#</b>                        | 42.9 14          | 1398.8 | 7/2 <sup>-</sup>        |                                     |                 |                       |                                                                                                                                                                                                |
| 2570                   |                      | 2000"<br>1712 <b>#</b>               | 100.0 14         | 914.2  | 5/2<br>7/2-             |                                     |                 |                       |                                                                                                                                                                                                |
| 3378                   |                      | 1713<br>2664 <sup>#</sup>            | 973              | 01/1.2 | 1/2<br>5/2 <sup>-</sup> |                                     |                 |                       |                                                                                                                                                                                                |
|                        |                      | 2004<br>3578 <sup>#</sup>            | 100 3            | 0.0    | 3/2-                    |                                     |                 |                       |                                                                                                                                                                                                |
| 3580.5                 | 5/2+                 | 536.4 <sup>8</sup> 11                | 9 <i>g</i>       | 3042.5 | 9/2 <sup>+</sup>        | [E2]                                |                 | 1.46×10 <sup>-3</sup> | B(E2)(W.u.)=17 <i>10</i><br>$\alpha$ (K)=0.001309 <i>21</i> ; $\alpha$ (L)=0.0001318 <i>21</i> ;<br>$\alpha$ (M)=1.85×10 <sup>-5</sup> <i>3</i><br>$\alpha$ (M)=1.65×10 <sup>-7</sup> <i>3</i> |
|                        |                      | 1314.0 <sup>g</sup> 2                | 68 <sup>g</sup>  | 2266.5 | 3/2+                    | (M1+E2)                             | +0.07 5         | $1.54 \times 10^{-4}$ | $\alpha(N)=5.49\times10^{-7}$ 9<br>$\alpha(K)=0.0001173$ 17; $\alpha(L)=1.153\times10^{-5}$ 17;                                                                                                |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | $\alpha(M)=1.623\times10^{-6}\ 23$<br>$\alpha(N)=4.99\times10^{-8}\ 7;\ \alpha(IPF)=2.32\times10^{-5}\ 4$                                                                                      |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | B(M1)(W.u.)=0.0013 8; B(E2)(W.u.)=0.007 +11-6                                                                                                                                                  |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | Mult.: $D(+Q)$ in ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                                              |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | o: from ("He,dy).<br>B(M1)(W.u.) and B(E2)(W.u.) smaller than typical                                                                                                                          |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | in this mass region.                                                                                                                                                                           |
|                        |                      | 1500.28 4                            | 208              | 1000 1 | 5/2(+)                  | DIO                                 | 0.4.2           |                       | Additional information 8.                                                                                                                                                                      |
|                        |                      | 1592.38 4<br>1714 8 <mark>8</mark> 4 | 298<br>328       | 1988.1 | 5/2(*)<br>7/2-          | D+Q<br>[F1]                         | -0.4 3          | $4.71 \times 10^{-4}$ | Mult., o: from ( <sup>5</sup> He, $d\gamma$ ).<br>$\alpha(K) = 4.08 \times 10^{-5}$ 6: $\alpha(L) = 3.99 \times 10^{-6}$ 6:                                                                    |
|                        |                      | 1/11.0 /                             | 52               | 1001.0 | 1/2                     |                                     |                 | 1.71/10               | $\alpha(M) = 5.61 \times 10^{-7} 8$                                                                                                                                                            |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | $\alpha(N)=1.725\times10^{-8} 25; \alpha(IPF)=0.000425 6$                                                                                                                                      |
|                        |                      | 2192.28 4                            | 410              | 1200.0 | 7/0-                    | $(\mathbf{E} 1 \cdot \mathbf{M} 2)$ | .0.27.20        | 0.00076.6             | B(E1)(W.u.)=6.E-6.4                                                                                                                                                                            |
|                        |                      | 2182.38 4                            | 418              | 1398.8 | 1/2                     | (E1+M2)                             | +0.27 20        | 0.00076.0             | $\alpha(\mathbf{K})=3.2\times10^{-5}$ 6; $\alpha(\mathbf{L})=3.1\times10^{-5}$ 6;<br>$\alpha(\mathbf{M})=4.4\times10^{-7}$ 8                                                                   |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | $\alpha(N)=1.35\times10^{-8}$ 25; $\alpha(IPF)=0.00072$ 7                                                                                                                                      |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | B(E1)(W.u.)= $3.3 \times 10^{-6} 20$ ; B(M2)(W.u.)= $0.23$<br>+ $35-22$                                                                                                                        |
|                        |                      |                                      |                  |        |                         |                                     |                 |                       | Mult.: D+Q in ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                                                  |
|                        |                      | 2666.3 <sup>8</sup> 2                | 100 <sup>g</sup> | 914.2  | 5/2-                    | (E1(+M2))                           | -0.13 14        | 0.00107 4             | α(K)=2.20×10 <sup>-5</sup> 17; α(L)=2.14×10 <sup>-6</sup> 17;                                                                                                                                  |

From ENSDF

|                        |                                            |                          |                        | Adopt                                    | ted Levels, G                 | ammas (con      | tinued)                 |                                                                                                                                                                                                   |
|------------------------|--------------------------------------------|--------------------------|------------------------|------------------------------------------|-------------------------------|-----------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                            |                          |                        |                                          | $\gamma$ <sup>(59</sup> Cu) ( | (continued)     |                         |                                                                                                                                                                                                   |
| E <sub>i</sub> (level) | $J_i^\pi$                                  | $E_{\gamma}^{\dagger}$   | $I_{\gamma}^{h}$       | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup>            | δ <sup>ko</sup> | $\alpha^{n}$            | Comments                                                                                                                                                                                          |
|                        | <u> </u>                                   |                          |                        |                                          |                               |                 |                         | $ \frac{\alpha(M)=3.01\times10^{-7} \ 23}{\alpha(N)=9.3\times10^{-9} \ 8; \ \alpha(IPF)=0.00105 \ 4} \\ B(E1)(W.u.)=5.E-6 \ 3; \ B(M2)(W.u.)=0.05 \\ +11-5 \\ Mult : D(+Q) \ from (^{3}He \ dy) $ |
| 2590 5                 | 5/2+                                       | 2570 08 2                | 158                    | 0.0.2/2-                                 | $(\mathbf{E1} + \mathbf{M2})$ |                 | $1.51 \times 10^{-3}$ 2 | $\delta$ : from ( <sup>3</sup> He,dy).<br>$B(E_1)(W_1) \approx 1.2 \times 10^{-7}$ 0: $B(M_2)(W_1) \approx 0.05$                                                                                  |
| 3380.5                 | 5/2                                        | 5579.9° 5                | 130                    | 0.0 3/2                                  | (E1+M2)                       |                 | 1.51×10 * 2             | $B(E1)(w.u.) \approx 1.5 \times 10^{-5} 9$ ; $B(M2)(w.u.) \approx 0.05$<br>3                                                                                                                      |
|                        |                                            |                          |                        |                                          |                               |                 |                         | $\alpha(K)=1.47\times10^{-5} 3; \ \alpha(L)=1.43\times10^{-6} 3; \ \alpha(M)=2.01\times10^{-7} 4$                                                                                                 |
|                        |                                            |                          |                        |                                          |                               |                 |                         | $\alpha$ (N)=6.21×10 <sup>-9</sup> 11; $\alpha$ (IPF)=0.001493 23                                                                                                                                 |
|                        |                                            |                          |                        |                                          |                               |                 |                         | Mult.: D+Q from (°He,d $\gamma$ ); adopted $\Delta\pi$ =yes.<br>$\delta$ =-0.32 6 or -1.75 21 from ( <sup>3</sup> He,d $\gamma$ ).                                                                |
| 3615.3                 | 3/2-                                       | 3124 <sup>#</sup>        | 100.0 15               | 491.5 1/2-                               | (M1+E2)                       |                 | 0.00081 5               | $\alpha(K)=2.60\times10^{-5} 6; \ \alpha(L)=2.54\times10^{-6} 6; \ \alpha(M)=3.57\times10^{-7} 8$                                                                                                 |
|                        |                                            |                          |                        |                                          |                               |                 |                         | $\alpha(N)=1.102\times10^{-8}$ 22; $\alpha(IPF)=0.00079$ 5<br>$\delta$ : -0.16 10 or -2.6 5 in (p, $\gamma$ ).                                                                                    |
|                        |                                            | 3614.9 <mark>8</mark> 10 | 53.8 15                | 0.0 3/2-                                 |                               |                 |                         |                                                                                                                                                                                                   |
| 3699                   | 7/2-                                       | 2785#                    | 100                    | 914.2 5/2-                               |                               |                 |                         |                                                                                                                                                                                                   |
| 3729                   | 3/2,5/2                                    | 1405#                    | 100.0 22               | 2324.1 3/2-                              |                               |                 |                         |                                                                                                                                                                                                   |
|                        |                                            | 1741#                    | 77.8 22                | 1988.1 $5/2^{(+)}$                       |                               |                 |                         |                                                                                                                                                                                                   |
|                        | 2 (2                                       | 2330#                    | 55.6 22                | 1398.8 7/2-                              |                               |                 |                         |                                                                                                                                                                                                   |
| 3741                   | 3/2-                                       | 1753+                    | 25 8                   | $1988.1 5/2^{(+)}$                       | D+Q                           | -1.7 16         |                         | $I_{\gamma}$ ,Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                              |
|                        |                                            | 2827*                    | 98 10                  | 914.2 5/2                                | D                             |                 |                         | $E\gamma = 2823 \ 2$ in ( <sup>3</sup> He,pn $\gamma$ ) may be for this transition                                                                                                                |
|                        |                                            |                          |                        |                                          |                               |                 |                         | Mult.: $D(+O)$ in ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                                                 |
|                        |                                            |                          |                        |                                          |                               |                 |                         | $I_{\gamma},\delta$ : from ( <sup>3</sup> He,d $\gamma$ ). $\delta$ =-0.06 17.                                                                                                                    |
|                        |                                            | 3249.4 <sup>‡</sup>      | 100 13                 | 491.5 1/2-                               | D+Q                           | -0.7 6          |                         | $I_{\gamma}$ ,Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                              |
|                        |                                            | 3741‡                    | 28 5                   | 0.0 3/2-                                 | Q(+D)                         | ≤-0.25          |                         | $I_{\gamma}$ ,Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                              |
| 3758                   | 5/2 <sup>(+)</sup> ,7/2,9/2 <sup>(-)</sup> | 2359 <sup>#</sup>        | 66.7 17                | 1398.8 7/2-                              |                               |                 |                         |                                                                                                                                                                                                   |
|                        |                                            | 2844 <sup>#</sup>        | 100.0 17               | 914.2 5/2-                               |                               |                 |                         |                                                                                                                                                                                                   |
| 3884.7                 | 3/2-                                       | 1896.6 <sup>‡</sup>      | 21.7 <mark>8</mark> 17 | 1988.1 5/2 <sup>(+)</sup>                | D                             |                 |                         | $\delta$ : δ(D,Q)=-0.02 11 in ( <sup>3</sup> He,dγ).                                                                                                                                              |
|                        |                                            | 3393.1 <sup>‡</sup>      | 45 <mark>8</mark> 8    | 491.5 1/2-                               | D+Q                           |                 |                         | Mult., $\delta$ : From ( <sup>3</sup> He,d $\gamma$ ). $\delta$ =-0.13 <i>11</i> or -1.4 <i>3</i> in ( <sup>3</sup> He,d $\gamma$ ).                                                              |
|                        |                                            | 3884.3 <sup>‡</sup>      | 100 <mark>8</mark> 12  | 0.0 3/2-                                 | D+Q                           | -0.20 6         |                         | Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                                            |
| 3904.0                 | 3/2-                                       | 1917.4 <sup>‡</sup>      | 20 <sup>g</sup> 4      | 1988.1 5/2 <sup>(+)</sup>                | D                             |                 |                         | Mult.: from $({}^{3}\text{He},d\gamma)$ .<br>$\delta: \delta(D,Q) = -0.05 \ 20 \ \text{in} \ ({}^{3}\text{He},d\gamma)$ .                                                                         |
|                        |                                            | 2989.7 <sup>#</sup>      | 31 <sup>g</sup> 7      | 914.2 5/2-                               | D                             |                 |                         | <ul> <li>I<sub>γ</sub>: note that I(2992γ)/I(3906γ)=1.00 3 in (p,γ) cf. 0.31 8 here.</li> <li>Mult.: From (<sup>3</sup>He,dγ).</li> <li>δ(D,Q)=-0.02 29 in (<sup>3</sup>He,dγ).</li> </ul>        |

<sup>59</sup><sub>29</sub>Cu<sub>30</sub>-23

Т

|               |                      |                        |                     | Adop                               | ted Levels, G                 | ammas (contir   | ued)         |                                                                                                                                |
|---------------|----------------------|------------------------|---------------------|------------------------------------|-------------------------------|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------|
|               |                      |                        |                     |                                    | $\gamma$ <sup>(59</sup> Cu) ( | (continued)     |              |                                                                                                                                |
| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{h}$    | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup>            | δ <sup>ko</sup> | $\alpha^{n}$ | Comments                                                                                                                       |
|               |                      | 3412 <sup>‡</sup>      | 31 <sup>g</sup> 7   | 491.5 1/2-                         | D+Q                           |                 |              | Mult.: from ( <sup>3</sup> He,d $\gamma$ ).<br>$\delta$ : $\delta$ (D,O)=-0.04 20 or -1.9 8 in ( <sup>3</sup> He,d $\gamma$ ). |
|               |                      | 3904 <sup>#</sup>      | 100 <sup>g</sup> 11 | 0.0 3/2-                           | D+Q                           | -0.21 7         |              | Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ).                                                                         |

|                        |                         |                             |                       |        | Adopted                | Levels, Gai                    | nmas (cont      | inued)                                                                                                                                                                          |
|------------------------|-------------------------|-----------------------------|-----------------------|--------|------------------------|--------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                         |                             |                       |        | ,<br>-                 | $\gamma(^{59}\mathrm{Cu})$ (cc | ontinued)       |                                                                                                                                                                                 |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$    | $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{h}$      | $E_f$  | ${ m J}_f^\pi$         | Mult. <sup>k</sup>             | δ <sup>ko</sup> | Comments                                                                                                                                                                        |
| 930                    | 5/2+                    | 2531.2 <sup>#</sup>         | 100.0 13              | 1398.8 | 7/2-                   |                                |                 |                                                                                                                                                                                 |
|                        |                         | 3016#                       | 33.3 13               | 914.2  | 5/2-                   |                                |                 |                                                                                                                                                                                 |
| 4000                   | $(1/2)^{-}$             | 1676.1                      | 100 <mark>8</mark> 7  | 2324.1 | 3/2-                   |                                |                 |                                                                                                                                                                                 |
|                        |                         | 3508.8                      | 93 <mark>8</mark> 9   | 491.5  | 1/2-                   |                                |                 |                                                                                                                                                                                 |
|                        |                         | 3999.9                      | 34 <mark>8</mark> 5   | 0.0    | 3/2-                   |                                |                 |                                                                                                                                                                                 |
| 4051                   | 1/2-,3/2-               | 1026.2                      | 16 <mark>8</mark>     | 3024.8 | $5/2^{(-)}$            |                                |                 | Mult.: $W(90^{\circ})/W(147^{\circ})=1.6$ 7 in ( <sup>3</sup> He,d $\gamma$ ).                                                                                                  |
|                        |                         | 1727.1                      | 18 <mark>8</mark>     | 2324.1 | 3/2-                   |                                |                 | Mult.: W(90°)/W(147°)=0.8 3 in $({}^{3}\text{He},\text{d}\gamma)$ .                                                                                                             |
|                        |                         | 3559.7                      | 45 <mark>8</mark>     | 491.5  | $1/2^{-}$              |                                |                 | Mult.: $W(90^{\circ})/W(147^{\circ})=1.8 9$ in $({}^{3}\text{He},\text{d}\gamma)$ .                                                                                             |
|                        |                         | 4050.9 <sup>‡</sup>         | 100 <mark>8</mark>    | 0.0    | 3/2-                   |                                |                 |                                                                                                                                                                                 |
| 072                    | $(3/2, 5/2, 7/2)^{(-)}$ | 2084#                       | 100.0 13              | 1988.1 | $5/2^{(+)}$            |                                |                 |                                                                                                                                                                                 |
|                        |                         | 3158#                       | 33.3 13               | 914.2  | 5/2-                   |                                |                 |                                                                                                                                                                                 |
| 4100.4                 | $(13/2^{-})$            | 652.9 6                     | 9.8 <sup>1</sup> 11   | 3447.1 | 13/2-                  | D+Q <sup>1</sup>               |                 | $E_{\gamma}$ : Unweighted ave. of data from ( <sup>3</sup> He,pn $\gamma$ ) and ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ).                                                     |
|                        |                         | 770.8 2                     | 100 <sup>1</sup> 3    | 3329.4 | (11/2 <sup>-</sup> )   | D+Q                            | +0.14 6         | Mult., $\delta$ : from ( <sup>3</sup> He,pn $\gamma$ ). $\delta$ is wt. ave. of +0.19 4 ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ) and +0.07 5 ( <sup>3</sup> He,pn $\gamma$ ). |
|                        |                         | 1435.5 <mark>&amp;</mark> 2 | 50 <sup>i</sup> 5     | 2664.6 | (9/2 <sup>-</sup> )    | Q <sup>i</sup>                 |                 |                                                                                                                                                                                 |
|                        |                         | 1513.0 4                    | 4.2 <sup>i</sup> 6    | 2587.3 | $11/2^{-}$             | i                              |                 |                                                                                                                                                                                 |
|                        |                         | 1709.6 5                    | 2.2 <sup>i</sup> 5    | 2390.8 | 9/2-                   | i                              |                 | $E_{\gamma}$ : doublet structure in ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ).                                                                                                 |
| 108                    | 3/2-                    | 3194 <sup>‡</sup>           | 100 <mark>8</mark> 11 | 914.2  | 5/2-                   | D+Q                            |                 | Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ). $\delta$ =-0.3 2 or -2.2 10.                                                                                             |
|                        |                         | 3616.7 <sup>‡</sup>         | 34 <mark>8</mark> 7   | 491.5  | 1/2-                   | D(+Q)                          | -1.0 11         | Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                          |
|                        |                         | 4107.9 <sup>‡</sup>         | 7.0 <sup>8</sup> 28   | 0.0    | 3/2-                   | D,Q                            |                 | Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ). $\delta \leq +0.09$ or >+2.75.                                                                                           |
| 183                    | 5/2,9/2 <sup>(-)</sup>  | 1477 <sup>#</sup>           | 100.0 17              | 2706.3 | 5/2-                   |                                |                 |                                                                                                                                                                                 |
|                        |                         | 2784 <sup>#</sup>           | 66.7 17               | 1398.8 | 7/2-                   |                                |                 |                                                                                                                                                                                 |
| 207                    | $5/2,7/2^{(-)}$         | 1883.1 <sup>#</sup>         | 93 4                  | 2324.1 | 3/2-                   |                                |                 |                                                                                                                                                                                 |
|                        |                         | 2808.2 <sup>#</sup>         | 79 <i>4</i>           | 1398.8 | 7/2-                   |                                |                 |                                                                                                                                                                                 |
|                        |                         | 3292.9 <mark>#</mark>       | 100 4                 | 914.2  | 5/2-                   |                                |                 |                                                                                                                                                                                 |
|                        |                         | 4206.8 <sup>#</sup>         | 86 4                  | 0.0    | 3/2-                   |                                |                 |                                                                                                                                                                                 |
| 1293.9?                |                         | 2895 <sup><i>f</i></sup> 2  | 100                   | 1398.8 | 7/2-                   |                                |                 |                                                                                                                                                                                 |
| 301                    | $5/2^{(-)}$             | 2902.1 <sup>‡</sup>         | 100.0 17              | 1398.8 | 7/2-                   | D(+Q)                          |                 | Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ). $\delta$ =-0.02 7 or -7 3.                                                                                               |
|                        |                         | 3386.7 <sup>‡</sup>         | 66.7 17               | 914.2  | 5/2-                   | D(+Q)                          |                 | Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ). $\delta$ =-0.05 10 or +2.0 6.                                                                                            |
|                        |                         | 4300.5 <sup>‡</sup>         | 16 <mark>8</mark> 3   | 0.0    | 3/2-                   | D(+Q)                          |                 | Mult., $\delta$ : from ( <sup>3</sup> He,d $\gamma$ ). $\delta$ =+0.05 22 or $\geq$ -2.75.                                                                                      |
| 307                    | $5/2^{(-)}$             | 3393 <sup>#</sup>           | 100                   | 914.2  | 5/2-                   |                                |                 |                                                                                                                                                                                 |
| 349                    | $(1/2)^{-}$             | 1219.2 <sup>#</sup>         | 63 4                  | 3129.9 | 3/2-                   |                                |                 | Other I $\gamma$ : 37 in ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                        |
|                        |                         | 1324.1 <sup>#</sup>         | 30 4                  | 3024.8 | $5/2^{(-)}$            |                                |                 |                                                                                                                                                                                 |
|                        |                         | 2025.0 <sup>#</sup>         | 100 4                 | 2324.1 | 3/2-                   |                                |                 |                                                                                                                                                                                 |
|                        |                         | 2030.8 <sup>#</sup>         | 33 4                  | 2318.5 | $1/2^{(-)}, 5/2^{(-)}$ |                                |                 |                                                                                                                                                                                 |

 $^{59}_{29}\mathrm{Cu}_{30}$ -25

|                        |                                    |                                                                                                                            |                                                                                      |                                                    | Adopted Le                                                                                                  | evels, Gamm                                              | <mark>as</mark> (continue | <b>d</b> )               |                                                                                                                                                                                                                                   |
|------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                    |                                                                                                                            |                                                                                      |                                                    | <u>γ(</u>                                                                                                   | <sup>59</sup> Cu) (contin                                | nued)                     |                          |                                                                                                                                                                                                                                   |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$               | $E_{\gamma}^{\dagger}$                                                                                                     | $I_{\gamma}^{h}$                                                                     | $E_f$                                              | ${ m J}_f^\pi$                                                                                              | Mult. <sup>k</sup>                                       | δ <sup>ko</sup>           | $\alpha^{n}$             | Comments                                                                                                                                                                                                                          |
| 4349                   | (1/2)-                             | 2082.6 <sup>#</sup><br>3857.6 <sup>#</sup><br>4348.7 <sup>#</sup>                                                          | 63 4<br>59 4<br>22 4                                                                 | 2266.5<br>491.5                                    | 3/2 <sup>+</sup><br>1/2 <sup>-</sup><br>3/2 <sup>-</sup>                                                    |                                                          |                           |                          | Other I $\gamma$ : 46 in ( <sup>3</sup> He,d $\gamma$ ).                                                                                                                                                                          |
| 4441                   | 7/2+                               | 3042.2 <sup>#</sup><br>3526.9 <sup>#</sup>                                                                                 | 100 2<br>100 2                                                                       | 1398.8<br>914.2                                    | 7/2 <sup>-</sup><br>5/2 <sup>-</sup>                                                                        |                                                          |                           |                          |                                                                                                                                                                                                                                   |
| 4465                   | $5/2^{(+)}, 7/2, 9/2^{(-)}$        | 3550.9 <sup>#</sup>                                                                                                        | 100                                                                                  | 914.2                                              | 5/2-                                                                                                        |                                                          |                           |                          |                                                                                                                                                                                                                                   |
| 4500<br>4527.9         | $(1/2)^-$<br>$(13/2^+)$            | 4499.8 <sup>#</sup><br>1198.2 2<br>1485.6 <sup>&amp;</sup> 2<br>1941.2 4                                                   | $ \begin{array}{c} 100 \\ 11.5^{i} \ 15 \\ 100^{i} \ 5 \\ 8.0^{i} \ 20 \end{array} $ | 0.0<br>3329.4<br>3042.5<br>2587.3                  | 3/2 <sup>-</sup><br>(11/2 <sup>-</sup> )<br>9/2 <sup>+</sup><br>11/2 <sup>-</sup>                           | $\mathbf{D}^{i}$<br>$\mathbf{Q}^{i}$<br>$\mathbf{D}^{i}$ |                           |                          |                                                                                                                                                                                                                                   |
| 4530<br>4618           | $(7/2)^+$                          | 3615.9 <sup>#</sup><br>4618 <sup>#</sup>                                                                                   | 100<br>100                                                                           | 914.2<br>0.0                                       | 5/2 <sup>-</sup><br>3/2 <sup>-</sup>                                                                        | 2                                                        |                           |                          |                                                                                                                                                                                                                                   |
| 4699                   | (3/2)                              | 2375 <sup>#</sup><br>4207 <sup>#</sup><br>4699 <sup>#</sup>                                                                | 25.4 <i>16</i><br>33.3 <i>16</i><br>100.0 <i>16</i>                                  | 2324.1<br>491.5<br>0.0                             | 3/2 <sup>-</sup><br>1/2 <sup>-</sup><br>3/2 <sup>-</sup>                                                    |                                                          |                           |                          |                                                                                                                                                                                                                                   |
| 4774                   | 3/2 <sup>-</sup> ,5/2 <sup>-</sup> | 1033 <sup>#</sup><br>1337 <sup>#</sup><br>1644 <sup>#</sup><br>1846 <sup>#</sup><br>2059 <sup>#</sup><br>2068 <sup>#</sup> | 5.6 28<br>11 3<br>5.6 28<br>5.6 28<br>2.8 28<br>5.6 28                               | 3741<br>3438<br>3129.9<br>2928<br>2715.3<br>2706.3 | 3/2 <sup>-</sup><br>(1/2)<br>3/2 <sup>-</sup><br>5/2 <sup>(-)</sup><br>7/2 <sup>-</sup><br>5/2 <sup>-</sup> | D(+Q)                                                    |                           |                          | δ: $-0.04$ 5 or $-1.6$ 3 in (p,γ).                                                                                                                                                                                                |
|                        |                                    | 2455 <sup>#</sup><br>2507 <sup>#</sup> <i>p</i>                                                                            | 19 <i>3</i><br>22 <i>3</i>                                                           | 2318.5<br>2266.5                                   | 1/2 <sup>(-)</sup> ,5/2 <sup>(-)</sup><br>3/2 <sup>+</sup>                                                  | D+Q<br>(E1)                                              |                           | 9.91×10 <sup>-4</sup>    | δ: -0.11 5  or  -1.38 20  in  (p, γ).  B(E1)(W.u.)=0.00064 11<br>$ α(K)=2.33\times10^{-5} 4; α(L)=2.28\times10^{-6} 4; α(M)=3.20\times10^{-7} 5 $<br>$ α(N)=9.87\times10^{-9} 14; α(IPF)=0.000965 14 $<br>δ: +0.02 5  in  (p, γ). |
|                        |                                    | 2786 <sup>#</sup> 10                                                                                                       | 31 <i>3</i>                                                                          | 1988.1                                             | 5/2 <sup>(+)</sup>                                                                                          | (M1+E2)                                                  | -0.34 15                  | 6.42×10 <sup>-4</sup> 13 | $\alpha(K)=3.09\times10^{-5} 5; \ \alpha(L)=3.02\times10^{-6} 5; \alpha(M)=4.25\times10^{-7} 7 \alpha(N)=1.312\times10^{-8} 21; \ \alpha(IPF)=0.000608 \ 13 B(M1)(W,u,)=0.029 \ 5; \ B(E2)(W,u,)=0.8 \ 7 $                        |
|                        |                                    | 2909 <sup>#</sup>                                                                                                          | 8.3 28                                                                               | 1864.8                                             | 7/2-                                                                                                        | [E2]                                                     |                           | 7.74×10 <sup>-4</sup>    | B(E2)(W.u.)=1.7 6<br>$\alpha$ (K)=2.96×10 <sup>-5</sup> 5; $\alpha$ (L)=2.89×10 <sup>-6</sup> 4;<br>$\alpha$ (M)=4.07×10 <sup>-7</sup> 6<br>$\alpha$ (N)=1.254×10 <sup>-8</sup> 18: $\alpha$ (IPE)=0.000741 11                    |
|                        |                                    | 3860 <sup>#</sup> <i>p</i>                                                                                                 | 53 <i>3</i>                                                                          | 914.2                                              | 5/2-                                                                                                        | (M1+E2)                                                  | +0.54 11                  | 1.06×10 <sup>-3</sup> 2  | $\alpha(K)=1.25\times10^{-5} \ 3; \ \alpha(L)=1.81\times10^{-6} \ 3;$                                                                                                                                                             |

 $^{59}_{29}$ Cu $_{30}$ -26

|                        |                             |                                        |                      |                | Adopted                   | Levels, Gan                         | nmas (continued) |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|-----------------------------|----------------------------------------|----------------------|----------------|---------------------------|-------------------------------------|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                             |                                        |                      |                |                           | $\gamma$ <sup>(59</sup> Cu) (co     | ntinued)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E <sub>i</sub> (level) | $\mathrm{J}^{\pi}_{i}$      | $E_{\gamma}^{\dagger}$                 | $I_{\gamma}^{h}$     | $E_f$          | $\mathbf{J}_f^\pi$        | Mult. <sup>k</sup>                  | δ <sup>ko</sup>  | α <sup><i>n</i></sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4774                   | 3/2-,5/2-                   | 4282 <sup>#p</sup> 10                  | 100 3                | 491.5          | 1/2-                      | (M1+E2)                             |                  | 0.00123 6             | $\begin{aligned} &\alpha(M) = 2.54 \times 10^{-7} \ 4 \\ &\alpha(N) = 7.85 \times 10^{-9} \ 12; \ \alpha(IPF) = 0.001040 \ 17 \\ &B(M1)(W.u.) = 0.0161 \ 23; \ B(E2)(W.u.) = 0.60 \ 20 \\ &B(M1)(W.u.) = 0.0145 \ 15; \ B(E2)(W.u.) = 1.49 \ 15 \\ &\alpha(K) = 1.60 \times 10^{-5} \ 4; \ \alpha(L) = 1.56 \times 10^{-6} \ 4; \\ &\alpha(M) = 2.19 \times 10^{-7} \ 5 \\ &\alpha(N) = 6.77 \times 10^{-9} \ 14; \ \alpha(IPF) = 0.00121 \ 6 \end{aligned}$ |
|                        |                             | 4772#                                  | 0 2 20               | 0.0            | 2/2-                      |                                     |                  |                       | $\delta$ : -0.29 5 or -0.96 9 in (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4010                   | 2/2-                        | 4//3"                                  | 8.3 28               | 0.0            | 5/2<br>5/2                | $\mathbf{D}(\mathbf{r},\mathbf{O})$ |                  |                       | St. 10.05 8 are (2) in (n a)                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4818                   | 5/2                         | 1384"<br>2404 1 <b>#</b>               | 1.8 18               | 5454<br>2224 1 | 3/2<br>2/2-               | D(+Q)                               |                  |                       | $\delta$ : +0.05 $\delta$ or -0.2 in (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                             | 2494.1                                 | 2.5.10               | 2324.1         | 3/2<br>2/2+               | D                                   |                  |                       | $\delta(D,Q) = +0.07 \text{ from } (p,\gamma).$                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 2331.0 <sup>1</sup>                    | 12718                | 1088 1         | 5/2<br>5/2 <sup>(+)</sup> | D<br>D±O                            | $\pm 0.07.2$     |                       | $\delta(D,Q) = -0.04$ 0 from (p,y).                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                             | 2000.1<br>2003.9 <sup>#</sup> <i>p</i> | 91 18                | 914.2          | 5/2-                      | D+Q<br>D+O                          | +0.072           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | $4326.7^{\#P}$ 10                      | 100.0.18             | 491.5          | $1/2^{-}$                 | D+Q                                 | 10.22 5          |                       | $\delta = +0.06 l \text{ or } -2.02 7 \text{ in } (p.y)$                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                             | $4817.8^{\#}p.9$                       | 49 1 18              | 0.0            | $3/2^{-}$                 | $D(\pm 0)$                          |                  |                       | $\delta$ : +0.056 17 or +3.4.4 in (p,y).                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4904.0                 | (15/2 <sup>-</sup> )        | 802.7 2                                | $100.0^{i} 23$       | 4100.4         | $(13/2^{-})$              | $D+Q^{i}$                           | +0.23 6          |                       | Mult., $\delta$ : From ( <sup>3</sup> He,pn $\gamma$ ). Wt. ave. of +0.18<br>+5-6 ( <sup>28</sup> Si.2 $\alpha$ p $\gamma$ ) and +0.31 6 ( <sup>3</sup> He,pn $\gamma$ ).                                                                                                                                                                                                                                                                                    |
|                        |                             | 1457.3 <i>3</i>                        | 12.6 <sup>i</sup> 9  | 3447.1         | $13/2^{-}$                | D+O <sup>i</sup>                    | -0.21 +8-11      |                       | $E_{\gamma}$ : Doublet (see comment in ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ )).                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                             | 1574.7 <mark>&amp;</mark> 2            | 86 <sup>i</sup> 5    | 3329.4         | $(11/2^{-})$              | Q <sup>i</sup>                      |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 2316.7 <sup>#</sup>                    | 16.3 <sup>i</sup> 19 | 2587.3         | $11/2^{-}$                | $\tilde{Q}^{i}$                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4914.6                 | $5/2^{(+)}, 7/2, 9/2^{(-)}$ | 4000 <sup>#</sup>                      | 100                  | 914.2          | 5/2-                      |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5053.2                 | (5/2)-                      | 1938.8 <sup>#</sup>                    | 25 3                 | 3114.4         | 5/2-                      |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 2337.9 <sup>#</sup>                    | 19 <i>3</i>          | 2715.3         | $7/2^{-}$                 |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 2346.9 <sup>#</sup>                    | 8.3 28               | 2706.3         | 5/2-                      |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 3065.0 <sup>#</sup>                    | 100 3                | 1988.1         | $5/2^{(+)}$               |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 4138.8 <mark>#</mark>                  | 42 3                 | 914.2          | $5/2^{-}$                 |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 5052.7 <sup>#</sup>                    | 83 <i>3</i>          | 0.0            | 3/2-                      |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5105.3                 | $(1/2^-, 3/2, 5/2^-)$       | 4190.9 <sup>#</sup>                    |                      | 914.2          | 5/2-                      |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 4613.6#                                |                      | 491.5          | $1/2^{-}$                 |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 5104.8                                 |                      | 0.0            | 3/2-                      |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5220.3                 | 9/2                         | 1911.3 <sup>#</sup>                    | ≈6.9                 | 3309           | ·//2(-)                   |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 2177.8 <sup>#</sup>                    | 6.0                  | 3042.5         | 9/2*                      |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 2504.9"<br>2555.6#                     | 2.8                  | 2/15.3         | 1/2                       |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | 2000.6"<br>2255 4#                     | 5.0<br>16.6          | 2004.0         | (9/2)                     |                                     |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                             | >>>>.4"<br>2821 4 <b>#</b>             | 10.0                 | 1804.8         | 1/2<br>7/2-               | D                                   |                  |                       | $\delta(D, Q) = 0.00.2$ from $(n, z)$                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                             | 3821.4"                                | 100                  | 1398.8         | 1/2                       | D                                   |                  |                       | $o(D,Q)=0.00 \ 2 \ \text{irom} \ (p,\gamma).$                                                                                                                                                                                                                                                                                                                                                                                                                |

|                        |                      |                              |                  |                  |                        | $\gamma(^{59})$    | Cu) (continu    | ed)                      |                                                                                                                                                                                                                           |
|------------------------|----------------------|------------------------------|------------------|------------------|------------------------|--------------------|-----------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$       | $I_{\gamma}^{h}$ | $\mathbf{E}_{f}$ | ${ m J}_f^\pi$         | Mult. <sup>k</sup> | δ <sup>ko</sup> | a <sup>n</sup>           | Comments                                                                                                                                                                                                                  |
| 5230.6                 | 1/2-                 | 1792.6 <sup>#</sup>          | 1.2 12           | 3438             | (1/2)                  |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 2205.8 <sup>#</sup>          | 1.2 12           | 3024.8           | $5/2^{(-)}$            |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 2964.0 <sup>#</sup>          | 7.0 12           | 2266.5           | 3/2+                   |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 4738.9 <sup>#</sup>          | 7.0 12           | 491.5            | $1/2^{-}$              |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 5230.1 <sup>#</sup>          | 100.0 12         | 0.0              | 3/2-                   | D                  |                 |                          |                                                                                                                                                                                                                           |
| 5255.0?                |                      | 5254.8 <sup>#</sup> <i>p</i> | 100              | 0.0              | 3/2-                   |                    |                 |                          |                                                                                                                                                                                                                           |
| 5264                   | 3/2-                 | 1360.0 <sup>#</sup>          | 9                | 3904.0           | 3/2-                   | (M1(+E2))          |                 | 1.65×10 <sup>-4</sup> 12 | $\alpha(K)=0.000115 \ 6; \ \alpha(L)=1.13\times10^{-5} \ 6; \alpha(M)=1.59\times10^{-6} \ 8 \alpha(N)=4.89\times10^{-8} \ 23; \ \alpha(IPF)=3.7\times10^{-5} \ 6 \delta: \ -0.02 \ 8 \ or \ +4.1 \ 20 \ in \ (p,\gamma).$ |
|                        |                      | 1649 <sup>#</sup>            | <3               | 3615.3           | 3/2-                   |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 1827 <sup>#</sup>            | 3                | 3438             | (1/2)                  |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 1830 <sup>#</sup>            | 3                | 3434             | 5/2                    |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 2149.9 <sup>#</sup>          | 34 9             | 3114.4           | 5/2-                   | (M1+E2)            | +0.10 8         | 3.75×10 <sup>-4</sup>    | $\alpha(\mathbf{K})=4.77\times10^{-5} \ 7; \ \alpha(\mathbf{L})=4.67\times10^{-6} \ 7; \\ \alpha(\mathbf{M})=6.57\times10^{-7} \ 10 \\ \alpha(\mathbf{N})=2.03\times10^{-8} \ 3; \ \alpha(\mathbf{IPE})=0.000322 \ 5$     |
|                        |                      | 2335 8 <sup>#</sup>          | 20.9             | 2928             | 5/2(-)                 | D                  |                 |                          | $\delta(D, Q) = +0.03.8 \text{ from } (p, \gamma)$                                                                                                                                                                        |
|                        |                      | 2558 <sup>#</sup>            | 20.9             | 2706.3           | 5/2 <sup>-</sup>       | D(+0)              | +0.09.11        |                          | (2, <b>x</b> ) + oroc o nom (p, <i>y</i> ).                                                                                                                                                                               |
|                        |                      | 2940 <sup>#</sup>            | 20.9             | 2324.1           | 3/2-                   | - ( • 0            |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 2945.8 <sup>#</sup>          | 11 9             | 2318.5           | $1/2^{(-)}, 5/2^{(-)}$ |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 2997.6 <sup>#</sup>          | <3               | 2266.5           | 3/2+                   |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 3276.1 <sup>#</sup>          | 3                | 1988.1           | 5/2 <sup>(+)</sup>     |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 4349.9 <sup>#</sup>          | 11 9             | 914.2            | 5/2-                   |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 4772.7 <sup>#</sup>          | 51 9             | 491.5            | 1/2-                   | (M1+E2)            |                 | 0.00138 7                | $\alpha(K)=1.36\times10^{-5} 3; \alpha(L)=1.33\times10^{-6} 3; \alpha(M)=1.87\times10^{-7} 4$<br>$\alpha(N)=5.77\times10^{-9} 12; \alpha(IPF)=0.00137 6$<br>$\delta: -0.11 8 \text{ or } -2.3 6 \text{ in } (p, \gamma).$ |
|                        |                      | 5263.8 <sup>#</sup>          | 100 9            | 0.0              | 3/2-                   | (M1+E2)            | +0.18 9         | 1.46×10 <sup>-3</sup>    | $\alpha(K)=1.168\times10^{-5} \ 17; \ \alpha(L)=1.138\times10^{-6} \ 16; \alpha(M)=1.601\times10^{-7} \ 23 \alpha(N)=4.95\times10^{-9} \ 7; \ \alpha(IPF)=0.001448 \ 21$                                                  |
| 5306                   | $(1/2)^{-}$          | 1402 <sup>#</sup>            | 3.0              | 3904.0           | 3/2-                   |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 1691 <sup>#</sup>            | 3.0              | 3615.3           | 3/2-                   |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 1867 <sup>#</sup>            | 64               | 3438             | (1/2)                  |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 2176.3 <sup>#</sup>          | 15 5             | 3129.9           | 3/2-                   |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 2281.2 <sup>#</sup>          | 11 5             | 3024.8           | $5/2^{(-)}$            |                    |                 |                          |                                                                                                                                                                                                                           |
|                        |                      | 2982 <sup>#</sup>            | 100 5            | 2324.1           | 3/2-                   |                    |                 |                          |                                                                                                                                                                                                                           |

 $_{29}^{59}$ Cu<sub>30</sub>-28

|                        |                      |                        |                      |                                          | Adopt                     | ted Levels, Gammas (continued)                                                                                                 |
|------------------------|----------------------|------------------------|----------------------|------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                        |                      |                                          |                           | $\gamma$ <sup>(59</sup> Cu) (continued)                                                                                        |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{h}$     | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup>        | Comments                                                                                                                       |
| 5306                   | $(1/2)^{-}$          | 5305.7 <sup>#</sup>    | 14 4                 | 0.0 3/2-                                 |                           |                                                                                                                                |
| 5427.0                 | $(17/2^+)$           | 523.0 1                | 40.9 <sup>i</sup> 14 | 4904.0 (15/2                             | 2 <sup>-</sup> ) <i>i</i> |                                                                                                                                |
|                        |                      | 899.1 4                | 100 <sup>i</sup> 5   | 4527.9 (13/2                             | 2 <sup>+</sup> ) Q        | $E_{\gamma}$ : Unweighted average of data from ( <sup>3</sup> He,pn $\gamma$ ) and ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ). |
| 5442                   | $(3/2)^+$            | 2417 <sup>#</sup>      | 13.0 20              | 3024.8 5/2(-                             | -)                        |                                                                                                                                |
|                        |                      | 2514 <sup>#</sup>      | 43 6                 | 2928 5/2 <sup>(-</sup>                   | -)                        |                                                                                                                                |
|                        |                      | 2727 <mark>#</mark>    | 8.7 13               | 2715.3 7/2-                              |                           |                                                                                                                                |
|                        |                      | 2736 <sup>#</sup>      | 8.7 13               | 2706.3 5/2-                              |                           |                                                                                                                                |
|                        |                      | 3118#                  | 52 8                 | 2324.1 3/2-                              |                           |                                                                                                                                |
|                        |                      | 3175#                  | 22 3                 | 2266.5 3/2+                              |                           |                                                                                                                                |
|                        |                      | 3454#                  | 100 15               | $1988.1 \ 5/2^{(+)}$                     | -)                        |                                                                                                                                |
|                        |                      | 4528 <sup>#</sup>      | 61 9                 | 914.2 5/2-                               |                           |                                                                                                                                |
|                        |                      | 4950 <sup>#</sup>      | 78 12                | 491.5 1/2-                               |                           |                                                                                                                                |
|                        |                      | 5441 <sup>#</sup>      | 48 7                 | 0.0 3/2-                                 |                           |                                                                                                                                |
| 5473                   |                      | 5472 <sup>#</sup>      |                      | 0.0 3/2-                                 |                           |                                                                                                                                |
| 5482                   | $(5/2^{-})$          | 1901#                  | 13.3 20              | 3578                                     |                           |                                                                                                                                |
|                        |                      | 2368#                  | 16.7 25              | 3114.4 5/2-                              |                           |                                                                                                                                |
|                        |                      | 2439#                  | 10.0 15              | 3042.5 9/2+                              | 、<br>、                    |                                                                                                                                |
|                        |                      | 2457                   | 16.7 25              | 3024.8 5/2(-                             | -)                        |                                                                                                                                |
|                        |                      | 3158#                  | 50 8                 | 2324.1 3/2-                              |                           |                                                                                                                                |
|                        |                      | 3215#                  | 53 8                 | 2266.5 3/2+                              | ``                        |                                                                                                                                |
|                        |                      | 3494#                  | 20 3                 | 1988.1 5/2(4                             | -)                        |                                                                                                                                |
|                        |                      | 3617                   | 30 5                 | 1864.8 7/2-                              |                           |                                                                                                                                |
|                        |                      | 4083#                  | 10.0 15              | 1398.8 7/2-                              |                           |                                                                                                                                |
|                        |                      | 4568#                  | 13.3 20              | 914.2 5/2-                               |                           |                                                                                                                                |
|                        |                      | 4990                   | 100 15               | 491.5 1/2-                               |                           |                                                                                                                                |
| 5521                   | 3/2-,5/2             | 2806#                  | 1.1 11               | 2715.3 7/2-                              |                           |                                                                                                                                |
|                        |                      | 4122#                  | 4.5 11               | 1398.8 7/2-                              |                           |                                                                                                                                |
|                        |                      | 4607#                  | 6.7 11               | 914.2 5/2-                               |                           |                                                                                                                                |
|                        |                      | 5520 <b>"</b>          | 100.0 11             | 0.0 3/2-                                 | D(+Q)                     |                                                                                                                                |
| 5550                   | (3/2, 5/2)           | 1809 <sup>#</sup>      | 8.1 27               | 3741 3/2-                                |                           |                                                                                                                                |
|                        |                      | 1935 <b>#</b>          | 13.5 27              | 3615.3 3/2-                              |                           |                                                                                                                                |
|                        |                      | 2113"                  | 8.1 27               | 3438 (1/2)                               |                           |                                                                                                                                |
|                        |                      | 2116#                  | 2.7 27               | 3434 5/2                                 |                           |                                                                                                                                |
|                        |                      | 2436 <b>#</b>          | 10.8 27              | 3114.4 5/2-                              | -)                        |                                                                                                                                |
|                        |                      | 2622 <b>"</b>          | 18.9 27              | 2928 5/2(-                               | -)                        |                                                                                                                                |

From ENSDF

 $^{59}_{29}$ Cu<sub>30</sub>-29

|                        |                       |                        |                  |        |                                        | Adopted            | Levels, Gammas (              | continued)                                            |
|------------------------|-----------------------|------------------------|------------------|--------|----------------------------------------|--------------------|-------------------------------|-------------------------------------------------------|
|                        |                       |                        |                  |        |                                        | -                  | $\gamma(^{59}$ Cu) (continued | <u>l)</u>                                             |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$    | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{h}$ | $E_f$  | $J_f^\pi$                              | Mult. <sup>k</sup> | δ <sup>ko</sup>               | Comments                                              |
| 5550                   | (3/2,5/2)             | 3283 <sup>#</sup>      | 45.9 27          | 2266.5 | 3/2+                                   |                    |                               |                                                       |
|                        |                       | 3685 <sup>#</sup>      | 62.2 27          | 1864.8 | 7/2-                                   | D+Q                | -0.11 +7-6                    |                                                       |
|                        |                       | 5549 <sup>#</sup>      | 100.0 27         | 0.0    | 3/2-                                   | D+Q                |                               |                                                       |
| 5602                   | (3/2)                 | 2577 <sup>#</sup>      | 26.0 20          | 3024.8 | $5/2^{(-)}$                            |                    |                               |                                                       |
|                        |                       | 3283 <mark>#</mark>    | 20.0 20          | 2318.5 | $1/2^{(-)}, 5/2^{(-)}$                 |                    |                               |                                                       |
|                        |                       | 3335 <sup>#</sup>      | 22.0 20          | 2266.5 | 3/2+                                   |                    |                               |                                                       |
|                        |                       | 4688 <sup>#</sup>      | 6.0 20           | 914.2  | 5/2-                                   |                    |                               |                                                       |
|                        |                       | 5110 <sup>#</sup>      | 26.0 20          | 491.5  | 1/2-                                   |                    |                               |                                                       |
|                        |                       | 5601 <sup>#</sup>      | 100.0 20         | 0.0    | 3/2-                                   |                    |                               |                                                       |
| 5620                   | $7/2^{(-)}$           | 1437 <sup>#</sup>      | 23 6             | 4183   | 5/2,9/2 <sup>(-)</sup>                 |                    |                               |                                                       |
|                        |                       | 2577 <mark>#</mark>    | 66               | 3042.5 | 9/2+                                   | D                  |                               | $\delta(D,Q) = +0.05 \ 20 \ \text{from } (p,\gamma).$ |
|                        |                       | 2692 <mark>#</mark>    | 2                | 2928   | $5/2^{(-)}$                            |                    |                               |                                                       |
|                        |                       | 2905 <mark>#</mark>    | 4                | 2715.3 | 7/2-                                   |                    |                               |                                                       |
|                        |                       | 2914 <sup>#</sup>      | 23 6             | 2706.3 | 5/2-                                   |                    |                               |                                                       |
|                        |                       | 2955 <mark>#</mark>    | 40 6             | 2664.6 | (9/2 <sup>-</sup> )                    |                    |                               |                                                       |
|                        |                       | 3632 <b>#</b>          | 96               | 1988.1 | $5/2^{(+)}$                            |                    |                               |                                                       |
|                        |                       | 4221 <sup>#</sup>      | 4                | 1398.8 | 7/2-                                   | D+Q                | +0.78 10                      |                                                       |
|                        |                       | 5619 <sup>#</sup>      | 100 6            | 0.0    | 3/2-                                   |                    |                               |                                                       |
| 5642                   | $(3/2)^{-}$           | 1943 <b>#</b>          | 73               | 3699   | 7/2-                                   |                    |                               |                                                       |
|                        |                       | 2528 <mark>#</mark>    | 10 3             | 3114.4 | 5/2-                                   |                    |                               |                                                       |
|                        |                       | 2650 <mark>#</mark>    | 23 3             | 2992.0 | 3/2,5/2 <sup>-</sup> ,7/2 <sup>-</sup> |                    |                               |                                                       |
|                        |                       | 3318#                  | 10 3             | 2324.1 | 3/2-                                   |                    |                               |                                                       |
|                        |                       | 3323                   | 23 3             | 2318.5 | $1/2^{(-)}, 5/2^{(-)}$                 |                    |                               |                                                       |
|                        |                       | 3375                   | 33 3             | 2266.5 | 3/2+                                   |                    |                               |                                                       |
|                        |                       | 3654#                  | 73               | 1988.1 | $5/2^{(+)}$                            |                    |                               |                                                       |
|                        |                       | 3777"                  | 73               | 1864.8 | 7/2-                                   |                    |                               |                                                       |
|                        |                       | 4243 <b>"</b>          | 13 3             | 1398.8 | 7/2-                                   |                    |                               |                                                       |
|                        |                       | 4728 <b>"</b>          | 60 3             | 914.2  | 5/2-                                   | D+Q                | -0.16 +12-14                  |                                                       |
|                        |                       | 5150"                  | 40 3             | 491.5  | 1/2-                                   | D+Q                | +0.15 +7-9                    |                                                       |
|                        | <b>T</b> ( <b>D</b> - | 5641 <sup>#</sup>      | 100 3            | 0.0    | 3/2-                                   | D+Q                | -0.10 + 5 - 6                 |                                                       |
| 5658                   | 5/2-                  | 2043 <b></b>           | 3.8 8            | 3615.3 | 3/2-                                   | D                  |                               | $\delta(D,Q) = -0.05 \ 12 \ \text{from } (p,\gamma).$ |
|                        |                       | 2077"                  | 7.0 23           | 3578   | 5/2-                                   |                    |                               |                                                       |
|                        |                       | 210/#                  | 2.3 23           | 3550.9 | $5/2^{-}$                              |                    |                               |                                                       |
|                        |                       | 2633"                  | 2.3 23           | 3024.8 | $5/2^{(-)}$                            |                    |                               |                                                       |
|                        |                       | 2730 <del>″</del>      | 4.7 23           | 2928   | 5/2(-)                                 |                    |                               |                                                       |

 $^{59}_{29}$ Cu<sub>30</sub>-30

From ENSDF

 $^{59}_{29}$ Cu $_{30}$ -30

| Eq. (beve) $\frac{1}{7}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adopted Levels, Gammas (continued) |                      |                                 |                      |                  |                        |                         |                 |                                                           |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|---------------------------------|----------------------|------------------|------------------------|-------------------------|-----------------|-----------------------------------------------------------|--|--|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                      |                                 |                      |                  |                        | <u>γ(<sup>59</sup>0</u> | Cu) (continued) |                                                           |  |  |  |
| 5658         5/2"         2943 <sup>8</sup> 72.9         27         77.5         77.2         77.2         77.5         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2         77.2 <t< th=""><th>E<sub>i</sub>(level)</th><th><math>\mathbf{J}_i^{\pi}</math></th><th><math>E_{\gamma}^{\dagger}</math></th><th><math>I_{\gamma}^{h}</math></th><th><math>\mathbf{E}_{f}</math></th><th><math>{ m J}_f^\pi</math></th><th>Mult.<sup>k</sup></th><th>δ<sup>ko</sup></th><th>Comments</th></t<> | E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$          | $I_{\gamma}^{h}$     | $\mathbf{E}_{f}$ | ${ m J}_f^\pi$         | Mult. <sup>k</sup>      | δ <sup>ko</sup> | Comments                                                  |  |  |  |
| 339 <sup>1</sup> 7.0.23         2318,1         1/2 <sup>-1</sup> ,2/2 <sup>-1</sup> 3670 <sup>0</sup> 11.6.23         266.5         3/2 <sup>-1</sup> 0         MCD,0)=0.00 10 from (p,r).           379.3 <sup>0</sup> 7.0.23         189.8.8         7/2 <sup>-1</sup> 0         6:-0.05 10 for (D,Q) in (p,r).           429.9 <sup>0</sup> 100.2.23         198.8.7         0         6:-0.01 3 in (p,r).           5694         5693 <sup>10</sup> -0.0         3/2 <sup>-1</sup> 0         6:-0.01 3 in (p,r).           5712         5/2 <sup>-1</sup> 10.17 18         374.1         3/2 <sup>-1</sup> 0         6:-0.01 3 in (p,r).           2134 <sup>4</sup> 10.7 18         374.1         3/2 <sup>-1</sup> -         -         -           214         10.7 18         374.3         3/2 <sup>-1</sup> -         -         -           2134 <sup>4</sup> 10.7 18         3/14.4         5/2 <sup>-1</sup> -         -         -           2134 <sup>4</sup> 10.7 18         216.5         3/2 <sup>-1</sup> -         -         -           317.6 <sup>1</sup> 10.16 8         0.0         3/2 <sup>-1</sup> -         -         -           572.1         3/2 <sup>-1</sup> 12.5         9/2 <sup>-1</sup> -         -         -         <                                                                                                                                                                                                                                                                                         | 5658                               | 5/2-                 | 2943 <sup>#</sup>               | 27.9 23              | 2715.3           | 7/2-                   | D+Q                     | -0.10 5         |                                                           |  |  |  |
| 3391 <sup>4</sup> 138.6 2:         226.5         3/2*         D(+Q)         +0.05 4           3670 <sup>6</sup> 11.6 23         1988.1         5/2*         D         6(D,Q)=0.00 10 from (p, y).           3793 <sup>4</sup> 7.0 23         1864.8         7/2*         D         6: -0.05 10 for (D,Q) in (p, y).           4259 <sup>4</sup> 100.0 23         1948.8         7/2*         D         6: -0.01 3 in (p, y).           5694         5693 <sup>4</sup> 360 8         371         3/2*         6: -0.01 3 in (p, y).           5712         5/2*         1911 <sup>4</sup> 30.1         3/2*         7         7           2184 <sup>4</sup> 10.7 18         374         3/2*         7         7         7           5712         5/2*         1911 <sup>4</sup> 30.7         8         7         7           3415 <sup>6</sup> 10.7 18         373.5         7         7         7         7           3414 <sup>51</sup> 17.1 18         3114.8         5/2*         7         7         7           5721.8         3/2.5/2 <sup>41</sup> 12.5 18         914.2         5/2*         7         7           5721.8         3/2.5/2 <sup>41</sup> 10.3         10.8         10.9         2<                                                                                                                                                                                                                                                                                                                                        |                                    |                      | 3339 <sup>#</sup>               | 7.0 23               | 2318.5           | $1/2^{(-)}, 5/2^{(-)}$ |                         |                 |                                                           |  |  |  |
| 3670 <sup>#</sup> 11.6 23         198.1 5/2 <sup>(+)</sup> D         Ø(D)=0.00 / 0 from (p,r).           379.3 <sup>#</sup> 7.0 23         189.8 7/2 <sup>-</sup> D         &: -0.05 / 0 for (D,Q) in (p,r).           4259 <sup>#</sup> 100 23         139.8 7/2 <sup>-</sup> D         &: -0.01 3 in (p,r).           5702         5712         572 <sup>-</sup> 1971 <sup>#</sup> 3.6 / 18         374         3/2 <sup>-</sup> 5712         572 <sup>-</sup> 1971 <sup>#</sup> 3.6 / 18         374         3/2 <sup>-</sup> -           2134 <sup>#</sup> 10.7 / 18         374         3/2 <sup>-</sup> -         -         -           2278 <sup>#</sup> 7.1 / 18         311.4 5/2 <sup>-</sup> -         -         -         -           2297 <sup>#</sup> 7.1 / 18         314.4 5/2 <sup>-</sup> -         -         -         -           3445 <sup>#</sup> 12.5 / 18         914.2 5/2 <sup>-</sup> -         -         -         -           5721.8         3/2,5/2 <sup>(-)</sup> 296.9 <sup>#</sup> 14.3         302.8 5/2 <sup>(-)</sup> -         -           393.6 <sup>#</sup> 6.3         224.5 1/2 <sup>-</sup> -         -         -         -           5721.8         3/2,5/2 <sup>(-)</sup> 393.6 <sup>+</sup> 3100.3 10/5                                                                                                                                                                                                                                                                                              |                                    |                      | 3391 <sup>#</sup>               | 18.6 23              | 2266.5           | 3/2+                   | D(+Q)                   | +0.05 4         |                                                           |  |  |  |
| $3793^{#}$ $7.0.23$ $1864.8$ $7/2$ D $\delta: -0.05$ $10$ for (D,Q) in (p,y). $4744^{#}$ $30.2.23$ $914.2$ $5/2^-$ D+Q $+0.27$ $I3$ $5694$ $5693^{#}$ $00.32^ 138.8$ $7/2^ D+Q$ $+0.27$ $I3$ $5712$ $5/2^ 191^{#}$ $36.8$ $3741$ $3/2^ 2134^{#}$ $10.7$ $8$ $3741$ $3/2^ 2278^{0}$ $7.1$ $8$ $3144$ $5/2^ 2997^{#}$ $7.1$ $8$ $3144$ $5/2^ 2997^{#}$ $7.1$ $8$ $3145$ $5/2^ 3445^{#}$ $12.5$ $8$ $9/2^ 4134^{#}$ $17.9$ $8$ $30/2^ 5721.8^{0}$ $206.9^{#}$ $14.3$ $302.4^{+}$ $30/2^ 337.6^{+}$ $100.0$ $8$ $223.5^{1/2^-}$ $333.6^{+}$ $100.3$ $337.6^{+}$ $100.3$ $98.1$ $5/2^{+1}$ $5/2^{+1}$ $5/2^{+1}$ $5722.2^{*}$ $83.5^{*}$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                      | 3670 <sup>#</sup>               | 11.6 23              | 1988.1           | $5/2^{(+)}$            | D                       |                 | $\delta(D,Q) = 0.00 \ 10 \ \text{from} \ (p,\gamma).$     |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                      | 3793#                           | 7.0 23               | 1864.8           | 7/2-                   | D                       |                 | δ: -0.05 <i>10</i> for (D,Q) in (p,γ).                    |  |  |  |
| $4744^4$ $30.2 23$ $914.2 5/2^ D+Q$ $+0.27 I J$ $5694$ $5693^6$ $0.0 3/2^ 5712$ $5/2^ 1971^4$ $3.6 18$ $3741$ $2134^4$ $10.7 18$ $3578$ $2134^4$ $10.7 18$ $3578$ $2278^4$ $7.1 18$ $314.4 5/2^ 2997^4$ $7.1 18$ $314.4 5/2^ 2997^4$ $7.1 18$ $2115.3 7/2^ 3445^4$ $12.5 18$ $22665 3/2^+$ $4313^6$ $17.8$ $392.8 7/2^ 4131^6$ $112.5 18$ $914.2 5/2^ 5721.8$ $3/2,5/2^ 2606.9^4$ $14.3$ $203.7^4$ $203$ $292.8 5/2^ 3397.6^4$ $63.3$ $2234.1 3/2^ 343.3^2^4$ $43.3$ $2218.5 1/2^-, 5/2^ 333.6^4$ $100.3$ $198.1 5/2^{(+)}$ $523.00^4$ $9.3$ $491.5 1/2^ 5721.2^6$ $57.1^2$ $37.3$ $0.0 3/2^ 5722.2^6$ $17.5^4$ $37.3$ $0.0 3/2^ 5722.4^6$ $17.5 13$ $440.4$ $(13/2^-)$ $2275.8^6$ $17.5 13$ $410.4 (13/2^-)$ $Q^4$ $5777.5^4$ $176.9^4$ $100$ $0.0 3/2^ 5831$ $5/2^ 5830^4$ $1.4 14$ $369.3^6$ $43.14$ $2715.3 7/2^ 383^6$ $583.7^4$ $18.6 14$ $377.5^7$ $318.5 1/2^{(-)}, 5/2^{(-)}$ $383^6$ $5.7^4$ $383^6$ $5.7^4$ $383^6$ $5.74$ $383^6$ $5.74$ $383^6$ $5.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                      | 4259 <sup>#</sup>               | 100.0 23             | 1398.8           | 7/2-                   | D                       |                 | $\delta$ : -0.01 3 in (p, $\gamma$ ).                     |  |  |  |
| $5694$ $5693^{**}$ $0.0$ $3/2^ 5712$ $5/2^ 1911^{**}$ $3.6$ $3741$ $3/2^ 2134^{**}$ $10.7$ $8$ $3741$ $3/2^ 2278^{**}$ $7.1$ $8$ $3343$ $5/2^ 2997^{**}$ $7.1$ $8$ $3344$ $5/2^ 2997^{**}$ $7.1$ $8$ $372^ 4313^{**}$ $17.9$ $8$ $7/2^ 4797^{**}$ $12.5$ $8$ $226.5$ $7711^{**}$ $12.5$ $8$ $7/2^ 4797^{**}$ $12.5$ $8$ $7/2^ 5721.8$ $3/2.5/2^{(1)}$ $293.7^{**}$ $0.0$ $32^ 5721.8$ $3/2.5/2^{(1)}$ $203$ $292.8$ $5/2^{-1}$ $3397.6^{**}$ $0.0$ $32$ $322.8$ $5/2^{-1}$ $5721.8$ $372.6^{**}$ $318.5$ $1/2^{-5}/5^{-6}$ $10.3$ $198.1$ $572.5^{*}$ $520.0^{**}$ $318.5$ $1/2^{-5}/5^{-6}$ $10.5$ $15/2^ 5721.2^{**}$ <t< td=""><td></td><td></td><td>4744#</td><td>30.2 23</td><td>914.2</td><td>5/2-</td><td>D+Q</td><td>+0.27 13</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                      | 4744#                           | 30.2 23              | 914.2            | 5/2-                   | D+Q                     | +0.27 13        |                                                           |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5694                               |                      | 5693#                           |                      | 0.0              | 3/2-                   |                         |                 |                                                           |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5712                               | 5/2-                 | 1971#                           | 3.6 18               | 3741             | 3/2-                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 2134#                           | 10.7 18              | 3578             |                        |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 2278 <b>#</b>                   | 7.1 18               | 3434             | 5/2                    |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 2598 <del>"</del>               | 7.1 18               | 3114.4           | 5/2-                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 2997 <b>"</b>                   | 7.1 18               | 2715.3           | 7/2-                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 3445"                           | 12.5 18              | 2266.5           | 3/2+                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 4313"                           | 17.9 18              | 1398.8           | 1/2<br>5/2-            |                         |                 |                                                           |  |  |  |
| 5721.8 $3/2,5/2^{(-)}$ 2696.9 <sup>#</sup> 14 3 3024.8 $5/2^{(-)}$<br>2793,7 <sup>#</sup> 20 3 2928 $5/2^{(-)}$<br>3397.6 <sup>#</sup> 63 3 2324.1 $3/2^{-}$<br>3403.2 <sup>#</sup> 43 3 2318.5 $1/2^{(-)},5/2^{(-)}$<br>3733.6 <sup>#</sup> 100 3 1988.1 $5/2^{(+)}$<br>5230.0 <sup>#</sup> 9 3 491.5 $1/2^{-}$<br>5722.2 $(17/2^{-})$ 818.1 2 77.5 25 4904.0 $(15/2^{-})$ D+Q <sup>i</sup> +0.15 +4-5 I <sub>y</sub> : Other: 33 ( <sup>3</sup> He,pny).<br>1621.6 3 100 <sup>i</sup> 5 4100.4 $(13/2^{-})$ Q <sup>i</sup><br>2275.8 <sup>e</sup> 5 17.5 <sup>i</sup> 13 3447.1 13/2 <sup>-</sup> Q <sup>i</sup><br>5777.5 5776.9 <sup>#</sup> 100 0.0 3/2 <sup>-</sup><br>5833 5832 <sup>#</sup> 100 0.0 3/2 <sup>-</sup><br>5881 $3/2^{-},5/2^{-}$ 2182 <sup>#</sup> 1.4 14 3699 7/2 <sup>-</sup><br>3166 <sup>#</sup> 4.3 14 2715.3 7/2 <sup>-</sup><br>3662 <sup>#</sup> 18.6 14 2318.5 $1/2^{(-)},5/2^{(-)}$<br>3893 <sup>#</sup> 5.7 14 1988.1 $5/2^{(+)}$                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                      | 4/9/"<br>5711 <b>#</b>          | 12.5 18              | 914.2            | 5/2<br>2/2-            |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5701.0                             | 2/2 = 5/2(-)         | $3/11^{\circ}$                  | 100.0 18             | 2024.8           | $\frac{3}{2}$          |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3721.8                             | 5/2,5/2              | 2090.9<br>2703 7 <mark>#</mark> | 14.5                 | 2024.8<br>2028   | $5/2^{(-)}$            |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 2195.1<br>3307.6 <sup>#</sup>   | 63 3                 | 2920             | 3/2-                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | $3403.2^{\#}$                   | 43 3                 | 2318 5           | $1/2^{(-)} 5/2^{(-)}$  |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 3733.6 <sup>#</sup>             | 100 3                | 1988 1           | $5/2^{(+)}$            |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 5230.0 <sup>#</sup>             | 93                   | 491.5            | $1/2^{-}$              |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 5721.2 <sup>#</sup>             | 37.3                 | 0.0              | $3/2^{-}$              |                         |                 |                                                           |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5722.2                             | $(17/2^{-})$         | 818.1 2                         | 77.5 25              | 4904.0           | $(15/2^{-})$           | D+O <sup>i</sup>        | +0.15 + 4 - 5   | $I_{\gamma}$ : Other: 33 ( <sup>3</sup> He.pn $\gamma$ ). |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 1621.6 3                        | 100 <sup>i</sup> 5   | 4100.4           | $(13/2^{-})$           | $Q^i$                   |                 |                                                           |  |  |  |
| $5777.5$ $5776.9^{\#}$ $100$ $0.0$ $3/2^ 5833$ $5832^{\#}$ $100$ $0.0$ $3/2^ 5851$ $5/2^ 5850^{\#}$ $0.0$ $3/2^ 5881$ $3/2^-, 5/2^ 2182^{\#}$ $1.4$ $14$ $3699$ $7/2^ 5881$ $3/2^-, 5/2^ 2182^{\#}$ $1.4$ $14$ $3699$ $7/2^ 3166^{\#}$ $4.3$ $14$ $2715.3$ $7/2^ 3562^{\#}$ $18.6$ $14$ $2318.5$ $1/2^{(-)}, 5/2^{(-)}$ $3893^{\#}$ $5.7$ $14$ $1988.1$ $5/2^{(+)}$ $4967^{\#}$ $8.6$ $4$ $914.2$ $5/2^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                      | 2275.8 <sup>e</sup> 5           | 17.5 <sup>i</sup> 13 | 3447.1           | 13/2-                  | $Q^{i}$                 |                 |                                                           |  |  |  |
| 5833 $5832^{\#}$ 100 $0.0$ $3/2^-$ 5851 $5/2^ 5850^{\#}$ $0.0$ $3/2^-$ 5881 $3/2^-, 5/2^ 2182^{\#}$ $1.4$ $14$ $3699$ $7/2^ 3166^{\#}$ $4.3$ $14$ $2715.3$ $7/2^ 3562^{\#}$ $18.6$ $14$ $2318.5$ $1/2^{(-)}, 5/2^{(-)}$ $3893^{\#}$ $5.7$ $14$ $1988.1$ $5/2^{(+)}$ $4967^{\#}$ $8.6$ $44$ $914.2$ $5/2^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5777.5                             |                      | 5776.9 <sup>#</sup>             | 100                  | 0.0              | 3/2-                   |                         |                 |                                                           |  |  |  |
| 5851 $5/2^ 5850^\#$ $0.0 \ 3/2^-$ 5881 $3/2^-, 5/2^ 2182^\#$ $1.4 \ 14$ $3699 \ 7/2^ 3166^\#$ $4.3 \ 14$ $2715.3 \ 7/2^ 3562^\#$ $18.6 \ 14$ $2318.5 \ 1/2^{(-)}, 5/2^{(-)}$ $3893^\#$ $5.7 \ 14$ $1988.1 \ 5/2^{(+)}$ $4967^\#$ $8.6 \ 14$ $914.2 \ 5/2^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5833                               |                      | 5832 <sup>#</sup>               | 100                  | 0.0              | 3/2-                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5851                               | 5/2-                 | 5850 <sup>#</sup>               |                      | 0.0              | 3/2-                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5881                               | 3/2-,5/2-            | 2182 <sup>#</sup>               | 1.4 14               | 3699             | 7/2-                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 3166 <sup>#</sup>               | 4.3 14               | 2715.3           | 7/2-                   |                         |                 |                                                           |  |  |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      | 3562 <sup>#</sup>               | 18.6 14              | 2318.5           | $1/2^{(-)}, 5/2^{(-)}$ |                         |                 |                                                           |  |  |  |
| 4967 <sup>#</sup> 8.6 <i>14</i> 914.2 5/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                      | 3893 <sup>#</sup>               | 5.7 14               | 1988.1           | 5/2 <sup>(+)</sup>     |                         |                 |                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                      | 4967 <sup>#</sup>               | 8.6 14               | 914.2            | 5/2-                   |                         |                 |                                                           |  |  |  |

From ENSDF

 $^{59}_{29}$ Cu $_{30}$ -31

 $^{59}_{29}$ Cu<sub>30</sub>-31

| Adopted Levels, Gammas (continued) |                                         |                            |                  |        |                                    |                    |                 |                                                                                                                       |  |  |  |  |  |
|------------------------------------|-----------------------------------------|----------------------------|------------------|--------|------------------------------------|--------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                    | $\gamma$ <sup>(59</sup> Cu) (continued) |                            |                  |        |                                    |                    |                 |                                                                                                                       |  |  |  |  |  |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$                    | $E_{\gamma}^{\dagger}$     | $I_{\gamma}^{h}$ | $E_f$  | $\mathrm{J}_f^\pi$                 | Mult. <sup>k</sup> | δ <sup>ko</sup> | Comments                                                                                                              |  |  |  |  |  |
| 5881                               | 3/2-,5/2-                               | 5880 <sup>#</sup>          | 100.0 14         | 0.0    | 3/2-                               |                    |                 | $\delta(D,Q) = -0.45 \ 9 \text{ if } J(5881 \text{ level}) = 3/2, \text{ from } (p,\gamma).$                          |  |  |  |  |  |
| 5897                               | $7/2^{(-)}$                             | 2783 <sup>#</sup>          | 6.8 11           | 3114.4 | 5/2-                               | D                  |                 | $\delta(D,Q) = -0.1 \ 11 \ \text{from } (p,\gamma).$                                                                  |  |  |  |  |  |
|                                    |                                         | 3909 <sup>#</sup>          | 6.8 11           | 1988.1 | $5/2^{(+)}$                        | D+Q                | -2.5 11         |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 4498 <sup>#</sup>          | 100.0 11         | 1398.8 | 7/2-                               | D(+Q)              | -0.07 10        |                                                                                                                       |  |  |  |  |  |
| 5914                               | 5/2                                     | 2889 <mark>#</mark>        | 100              | 3024.8 | $5/2^{(-)}$                        | D                  |                 |                                                                                                                       |  |  |  |  |  |
| 5928                               | 5/2                                     | 5927 <mark>#</mark>        |                  | 0.0    | 3/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
| 5941                               | 3/2,5/2                                 | 3622 <sup>#</sup>          |                  | 2318.5 | $1/2^{(-)}, 5/2^{(-)}$             |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 3674 <sup>#</sup>          |                  | 2266.5 | 3/2+                               |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 5940 <sup>#</sup>          |                  | 0.0    | 3/2-                               | D+Q                |                 | $ δ: -0.77 \ 12 $ if J(5941 level)= $3/^2$ , In(p, γ).                                                                |  |  |  |  |  |
| 5957                               |                                         | 5956 <sup>#</sup>          |                  | 0.0    | 3/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
| 5968                               |                                         | 4569 <sup>#</sup> <i>p</i> |                  | 1398.8 | 7/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 5054 <sup>#</sup>          |                  | 914.2  | 5/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 5967 <sup>#</sup>          |                  | 0.0    | 3/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
| 5971                               |                                         | 4572 <sup>#</sup>          |                  | 1398.8 | 7/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 5057 <b>#</b> P            |                  | 914.2  | 5/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 5970 <sup>#</sup>          |                  | 0.0    | 3/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
| 6039                               | $(3/2^+)$                               | 2340"                      | 2.2 22           | 3699   | 7/2-                               |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 2461 <sup>#</sup>          | 8.7 22           | 3578   |                                    | D+Q                |                 | $\delta$ : +0.65 22 or +4 2 in (p, $\gamma$ ).                                                                        |  |  |  |  |  |
|                                    |                                         | 2488 <del>"</del>          | <2.2             | 3550.9 | $5/2^{-}$                          |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 3111"                      | 4.3 22           | 2928   | 5/2(-)                             |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 3324"                      | 4.3 22           | 2715.3 | 7/2-                               | D O                |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 3715"                      | 19.6 22          | 2324.1 | 3/2-                               | D,Q                | 157             | $\delta$ : +0.03 11 or <-3 in (p, $\gamma$ ).                                                                         |  |  |  |  |  |
|                                    |                                         | 3772"                      | 15.2.22          | 2266.5 | $3/2^{+}$                          | D+Q                | -1.5 7          |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 4051"<br>5125 <b>#</b>     | 17.4 22          | 1988.1 | 5/2(1)                             | D+Q                | -1.0 /          |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 5125"<br>5547 <b>#</b>     | 19.6 22          | 914.2  | 5/2                                | D,Q                |                 | $\delta$ : +0.06 <i>II</i> or <-4 in (p, $\gamma$ ).                                                                  |  |  |  |  |  |
|                                    |                                         | 554/"<br>6028 <b>#</b>     | 20.1 22          | 491.5  | 1/2                                | D(+Q)              |                 | $\delta$ : -0.05 8 or -1.5 3 in (p, $\gamma$ ).                                                                       |  |  |  |  |  |
| 6049.8                             | $(17/2^{-})$                            | 1145 5 2                   | 100.0 22         | 4904.0 | $\frac{5}{2}$ (15/2 <sup>-</sup> ) | D+O                |                 | $\delta = -0.174 \text{ or } < -10 \text{ III } (p, \gamma).$<br>$\delta = +4.1 + 16 - 8 \text{ or } +0.32 \text{ f}$ |  |  |  |  |  |
| 001710                             | (17/2)                                  | 1949.1 <i>4</i>            | 93 5             | 4100.4 | $(13/2^{-})$                       | Q                  |                 | 0. 11.1 110 0 01 10.52 0.                                                                                             |  |  |  |  |  |
|                                    |                                         | 2605 1                     | 21 4             | 3447.1 | 13/2-                              | Q                  |                 |                                                                                                                       |  |  |  |  |  |
| 6076                               | 3/2                                     | 5584 <sup>#</sup>          |                  | 491.5  | $1/2^{-}$                          | D+Q                | -0.10 8         |                                                                                                                       |  |  |  |  |  |
| 6091                               | (3/2)                                   | 2513 <sup>#</sup>          | 1.4 14           | 3578   |                                    |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 3066 <sup>#</sup>          | 4.3 14           | 3024.8 | $5/2^{(-)}$                        |                    |                 |                                                                                                                       |  |  |  |  |  |
|                                    |                                         | 3767 <mark>#</mark>        | 15.7 14          | 2324.1 | 3/2-                               | D+Q                |                 | $\delta$ : -0.5 <i>l</i> or -6 2.                                                                                     |  |  |  |  |  |
|                                    |                                         | 5599 <del>"</del>          | 21.4 14          | 491.5  | 1/2-                               | Q(+D)              |                 | $\delta$ : -0.4 2 or <-3.                                                                                             |  |  |  |  |  |
|                                    |                                         | 6090 <del>"</del>          | 100.0 14         | 0.0    | 3/2-                               | Q(+D)              |                 | $\delta$ : -0.29 4 or <-14.                                                                                           |  |  |  |  |  |

 $^{59}_{29}$ Cu $_{30}$ -32

Т

| Adopted Levels, Gammas (continued) |                      |                           |                                 |                                     |                                 |                         |                                                       |  |  |  |  |  |
|------------------------------------|----------------------|---------------------------|---------------------------------|-------------------------------------|---------------------------------|-------------------------|-------------------------------------------------------|--|--|--|--|--|
|                                    |                      |                           |                                 |                                     | <u> </u>                        | ( <sup>59</sup> Cu) (co | ontinued)                                             |  |  |  |  |  |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$    | $I_{\gamma}^{h}$                | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup>              | δ <sup>ko</sup>         | Comments                                              |  |  |  |  |  |
| 6125                               | 3/2-,5/2-            | 5633 <sup>#</sup>         |                                 | 491.5 1/2-                          | D(+Q)                           |                         |                                                       |  |  |  |  |  |
| 6174.0                             | $(15/2^{+})$         | $6124^{m}$                | 100                             | $0.0 \ 3/2^{-}$                     | Dİ                              |                         |                                                       |  |  |  |  |  |
| 6107                               | (13/2)               | $2074.2^{\circ}$ 4        | 100<br>56 / 26                  | 4100.4 (15/2)                       | D                               |                         |                                                       |  |  |  |  |  |
| 0197                               | (3/2)                | 2019<br>3482 <b>#</b>     | 20.5.26                         | 2715 3 7/2-                         |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3873 <sup>#</sup>         | 59.0.26                         | $2324.1 \ 3/2^{-1}$                 |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3930 <sup>#</sup>         | 20.5 26                         | $2266.5 \ 3/2^+$                    |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 5706 <sup>#</sup>         | 100.0 26                        | 491.5 1/2-                          |                                 |                         |                                                       |  |  |  |  |  |
| 6201                               | 3/2,5/2              | 2763 <sup>#</sup>         | 29 5                            | 3438 (1/2)                          |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3087 <sup>#</sup>         | 62 5                            | 3114.4 5/2-                         |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3176 <sup>#</sup>         | 24 5                            | 3024.8 5/2 <sup>(-)</sup>           |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3273 <sup>#</sup>         | 19 5                            | 2928 5/2 <sup>(-)</sup>             |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3495 <sup>#</sup>         | 19 5                            | 2706.3 5/2-                         |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3877 <mark>#</mark>       | 86 5                            | 2324.1 3/2-                         |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3934 <sup>#</sup>         | 24 5                            | 2266.5 3/2+                         |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 4213 <sup>#</sup>         | 100 5                           | 1988.1 $5/2^{(+)}$                  | D                               |                         | $\delta(D,Q) = -0.02 + 9 - 4.$                        |  |  |  |  |  |
|                                    |                      | 5287 <b>#</b>             | 29 5                            | 914.2 5/2-                          |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 5710"                     | 62 5                            | 491.5 1/2-                          | D(+Q)                           |                         |                                                       |  |  |  |  |  |
| 1 <b>0</b> 01                      | o vet                | 6200 <del>"</del>         | 24 5                            | 0.0 3/2-                            | D(+Q)                           |                         |                                                       |  |  |  |  |  |
| 6206                               | 9/21                 | 3092"                     | 3.6 12                          | 3114.4 5/2                          | $\mathbf{D}(\cdot, \mathbf{O})$ | .0.2.4                  |                                                       |  |  |  |  |  |
|                                    |                      | 3163"<br>2401#            | 100.0 12                        | 3042.5 9/2                          | D(+Q)                           | +0.3 4                  |                                                       |  |  |  |  |  |
|                                    |                      | 3491"<br>2610#            | 3.0 <i>12</i><br>7 1 <i>1</i> 2 | 2/15.3 //2                          | D                               |                         | S/D O)- 0 10 15                                       |  |  |  |  |  |
|                                    |                      | 1019<br>1018 <sup>#</sup> | 1.1 12                          | 2307.3 11/2<br>1088 1 $5/2^{(+)}$   | 0                               |                         | $\partial(D,Q) = -0.10$ 15.                           |  |  |  |  |  |
| 6238                               | 3/2-                 | $\frac{4210}{2660^{\#}}$  | 26.3                            | 3578                                | Q                               |                         |                                                       |  |  |  |  |  |
| 0250                               | 5/2                  | 3213 <sup>#</sup>         | 12.3                            | $3024 8 5/2^{(-)}$                  |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3971 <sup>#</sup>         | 21.3                            | $2266.5 \ 3/2^+$                    |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 4250 <sup>#</sup>         | 12 3                            | $1988.1 5/2^{(+)}$                  |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 4839 <sup>#</sup>         | 41 3                            | 1398.8 7/2-                         |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 5746 <sup>#</sup>         | 82 <i>3</i>                     | 491.5 1/2-                          |                                 |                         | $\delta(D,Q) = +0.02 \ 4 \ \text{from } (p,\gamma).$  |  |  |  |  |  |
|                                    |                      | 6237 <sup>#</sup>         | 100 3                           | 0.0 3/2-                            | D+Q                             |                         |                                                       |  |  |  |  |  |
| 6300                               | $(3/2^-, 5/2^-)$     | 2685 <sup>#</sup>         | 95                              | 3615.3 3/2-                         |                                 |                         |                                                       |  |  |  |  |  |
|                                    |                      | 3186 <sup>#</sup>         | 36 5                            | 3114.4 5/2-                         | Q(+D)                           |                         | $\delta$ : +0.33 20 or $\delta$ >8 in (p, $\gamma$ ). |  |  |  |  |  |
|                                    |                      | 3372 <sup>#</sup>         | 91 5                            | 2928 5/2 <sup>(-)</sup>             | Q(+D)                           |                         | $\delta$ : +0.18 9 or $\delta$ >8 in (p, $\gamma$ ).  |  |  |  |  |  |
|                                    |                      | 3585 <sup>#</sup>         | 23 5                            | 2715.3 7/2-                         |                                 |                         |                                                       |  |  |  |  |  |

 $^{59}_{29}$ Cu<sub>30</sub>-33

|                        | Adopted Levels, Gammas (continued)      |                        |                  |                  |                        |                    |                 |                                                                                                                            |  |  |  |  |  |
|------------------------|-----------------------------------------|------------------------|------------------|------------------|------------------------|--------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        | $\gamma$ <sup>(59</sup> Cu) (continued) |                        |                  |                  |                        |                    |                 |                                                                                                                            |  |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                    | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{h}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>k</sup> | δ <sup>ko</sup> | Comments                                                                                                                   |  |  |  |  |  |
| 6300                   | $(3/2^{-}, 5/2^{-})$                    | 3594 <sup>#</sup>      | 95               | 2706.3           | 5/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 3981 <sup>#</sup>      | 23 5             | 2324.1           | 3/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 4033 <sup>#</sup>      | 18 5             | 2266.5           | 3/2+                   | Q(+D)              |                 | $\delta$ : -0.35 +17-23 or $\delta$ >4 in (p, $\gamma$ ).                                                                  |  |  |  |  |  |
|                        |                                         | 4312 <sup>#</sup>      | 82 5             | 1988.1           | 5/2 <sup>(+)</sup>     | Q(+D)              |                 | δ: +0.28 <i>11</i> or $δ$ >10 in (p, $γ$ ).                                                                                |  |  |  |  |  |
|                        |                                         | 4435 <sup>#</sup>      | 23 5             | 1864.8           | 7/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 5808 <sup>#</sup>      | 100 5            | 491.5            | 1/2-                   | D(+Q)              |                 | $\delta$ : -0.09 7 or -1.43 10 in (p, $\gamma$ ).                                                                          |  |  |  |  |  |
|                        |                                         | 6299 <mark>#</mark>    | 41 5             | 0.0              | 3/2-                   | D(+Q)              |                 | $\delta$ : -0.19 5 or -16 -7+54 in (p, $\gamma$ ).                                                                         |  |  |  |  |  |
| 6323.9                 | (5/2)                                   | 3608.5 <sup>#</sup>    | 11.1 22          | 2715.3           | 7/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 4005.3 <sup>#</sup>    | 24.4 22          | 2318.5           | $1/2^{(-)}, 5/2^{(-)}$ |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 4057.3 <sup>#</sup>    | 8.9 22           | 2266.5           | 3/2+                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 4458.9 <mark>#</mark>  | 100.0 22         | 1864.8           | 7/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 4924.9 <sup>#</sup>    | 20.0 22          | 1398.8           | 7/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 5409.4 <sup>#</sup>    | 11.1 22          | 914.2            | 5/2-                   | D                  |                 | $\delta(D,Q)=0.002$ from $(p,\gamma)$ .                                                                                    |  |  |  |  |  |
|                        |                                         | 5832.1 <sup>#</sup>    | 28.9 22          | 491.5            | 1/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 6323.2 <sup>#</sup>    | 17.8 22          | 0.0              | 3/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
| 6326                   | $(3/2^{-})$                             | 4007 <sup>#</sup>      | 9.2 15           | 2324.1           | 3/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 4059 <sup>#</sup>      | 18.5 15          | 2266.5           | 3/2+                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 4461 <sup>#</sup>      | 18.5 15          | 1864.8           | 7/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 5834 <sup>#</sup>      | 7.7 15           | 491.5            | $1/2^{-}$              |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 6325 <sup>#</sup>      | 100.0 15         | 0.0              | 3/2-                   |                    |                 | $E_{\gamma}$ : in (p, $\gamma$ ), E(level)=6327.4 <i>6</i> based on possible doublet with $\gamma$ from level 4 keV below. |  |  |  |  |  |
| 6344.2                 | $(3/2^-, 5/2^-)$                        | 2645.1 <sup>#</sup>    | <2.2             | 3699             | 7/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 2763.6 <sup>#</sup>    | 6.5 22           | 3578             |                        |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 2793.3 <sup>#</sup>    | 17.4 22          | 3550.9           | 5/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 3319.3 <sup>#</sup>    | 2.2 22           | 3024.8           | $5/2^{(-)}$            |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 3352.1 <sup>#</sup>    | 6.5 22           | 2992.0           | 3/2,5/2-,7/2-          |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 3628.8 <mark>#</mark>  | 15.2 22          | 2715.3           | 7/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 4077.6 <sup>#</sup>    | 39.1 22          | 2266.5           | 3/2+                   | D+Q                |                 | Mult., $\delta$ : from (p, $\gamma$ ). $\delta$ (D,Q)=-0.4 +2-3 if J(6344 level)=3/2.                                      |  |  |  |  |  |
|                        |                                         | 5429.7 <sup>#</sup>    | 100.0 22         | 914.2            | 5/2-                   | D+Q                |                 | Mult., $\delta$ : from (p, $\gamma$ ). $\delta$ (D,Q)=+0.34 +14-11 if J(6344 level)=3/2.                                   |  |  |  |  |  |
|                        |                                         | 5852.4 <mark>#</mark>  | 15.2 22          | 491.5            | 1/2-                   | D                  |                 | Mult., $\delta$ : from (p, $\gamma$ ). $\delta$ (D,Q)=-0.06 +14-21 if J(6344 level)=3/2.                                   |  |  |  |  |  |
|                        |                                         | 6343.5 <sup>#</sup>    | 15.2 22          | 0.0              | 3/2-                   | D+Q                |                 | Mult., $\delta$ : from (p, $\gamma$ ). $\delta$ (D,Q)=-0.8 +4-5 if J(6344 level)=3/2.                                      |  |  |  |  |  |
| 6365.5                 | 3/2-                                    | 2787.4 <mark>#</mark>  | 20.0 25          | 3578             |                        |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 3659.1 <mark>#</mark>  | 7.5 25           | 2706.3           | 5/2-                   |                    |                 |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 5451.0 <mark>#</mark>  | 35.0 25          | 914.2            | 5/2-                   | D+Q                | +0.11 6         |                                                                                                                            |  |  |  |  |  |
|                        |                                         | 5873.7 <sup>#</sup>    | 100.0 25         | 491.5            | $1/2^{-}$              | D+Q                |                 |                                                                                                                            |  |  |  |  |  |

|               | Adopted Levels, Gammas (continued)   |                            |                  |                           |                                |              |                                                                      |  |  |  |  |  |  |
|---------------|--------------------------------------|----------------------------|------------------|---------------------------|--------------------------------|--------------|----------------------------------------------------------------------|--|--|--|--|--|--|
|               | $\gamma(^{59}\text{Cu})$ (continued) |                            |                  |                           |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | -1-                        | L                |                           | L                              | ha           | 2                                                                    |  |  |  |  |  |  |
| $E_i$ (level) | $J_i^{\pi}$                          | $E_{\gamma}$ !             | $I_{\gamma}^{n}$ | $E_f \qquad J_f^{\pi}$    | Mult. <sup><i>k</i></sup>      | δκο          | Comments                                                             |  |  |  |  |  |  |
| 6365.5        | 3/2-                                 | 6364.8 <sup>#</sup>        | 87.5 25          | 0.0 3/2-                  | D+Q                            | -0.14 7      |                                                                      |  |  |  |  |  |  |
| 6410          |                                      | 4422 <mark>#</mark>        |                  | 1988.1 5/2 <sup>(+)</sup> |                                |              | $\delta(D,Q) = +0.20 \ 14 \ \text{if J}(6410 \ \text{level}) = 3/2.$ |  |  |  |  |  |  |
|               |                                      | 6409 <sup>#</sup>          |                  | 0.0 3/2-                  |                                |              | $\delta(D,Q) = -0.61 \ 9 \text{ if } J(6410 \text{ level}) = 3/2.$   |  |  |  |  |  |  |
| 6419          | $3/2^{(-)}$                          | 4095 <sup>#</sup>          | 83               | 2324.1 3/2-               | D+Q                            | -0.45 +19-27 |                                                                      |  |  |  |  |  |  |
|               |                                      | 4152 <sup>#</sup>          | 100              | 2266.5 3/2+               | D+Q                            | -0.5 + 2 - 5 |                                                                      |  |  |  |  |  |  |
|               |                                      | 5505 <sup>#</sup>          | 83               | 914.2 5/2-                | D(+Q)                          | -0.15 10     |                                                                      |  |  |  |  |  |  |
|               |                                      | 5927 <b>#</b>              | 86               | 491.5 1/2-                | D(+Q)                          | +0.04 5      |                                                                      |  |  |  |  |  |  |
|               |                                      | 6418 <sup>#</sup>          | 79               | 0.0 3/2-                  |                                |              |                                                                      |  |  |  |  |  |  |
| 6451          |                                      | 6450 <sup>#</sup>          |                  | 0.0 3/2-                  |                                |              |                                                                      |  |  |  |  |  |  |
| 6457          | 5/2                                  | 2156 <sup>#</sup>          | 14.1 26          | 4301 $5/2^{(-)}$          | D+Q                            | -0.3 2       |                                                                      |  |  |  |  |  |  |
|               |                                      | 2758 <sup>#</sup>          | 12.1 26          | 3699 7/2-                 | D+Q                            | -1.4 12      |                                                                      |  |  |  |  |  |  |
|               |                                      | 2883#                      | 17.2 26          | 3574 5/2,7/2              | D+Q                            |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 2906 <sup>#</sup>          | 3.8 26           | 3550.9 5/2-               |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 3019#                      | 3.1 26           | 3438 (1/2)                |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 3023#                      | 4.4 26           | 3434 5/2                  |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 3327#                      | 3.6 26           | 3129.9 3/2-               |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 3343#                      | 4.4 26           | 3114.4 5/2-               |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 3465#                      | 6.9 26           | 2992.0 3/2,5/2-           | ,7/2 <sup>-</sup> D,Q          |              | δ: +0.2 2 or <-6 from (p,γ).                                         |  |  |  |  |  |  |
|               |                                      | 3529#                      | 2.8 26           | 2928 $5/2^{(-)}$          |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 3751"                      | 30.5 26          | 2706.3 5/2-               | D(+Q)                          |              | $δ: 0.0 I \text{ or } -1.3 3 \text{ from } (p, \gamma).$             |  |  |  |  |  |  |
|               |                                      | 4133#                      | 15.9 26          | 2324.1 3/2-               | D+Q                            | -0.2 1       |                                                                      |  |  |  |  |  |  |
|               |                                      | 4469 <del>"</del>          | 9.7 26           | 1988.1 5/2(+)             |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 5058                       | 11.3 26          | 1398.8 7/2-               | Q(+D)                          | >+0.27       |                                                                      |  |  |  |  |  |  |
|               |                                      | 5543 <b>"</b>              | 100.0 26         | 914.2 5/2-                | D(+Q)                          | -0.09 12     |                                                                      |  |  |  |  |  |  |
|               | a (a(-)                              | 6456 <sup>#</sup>          | 16.7 26          | 0.0 3/2-                  |                                |              |                                                                      |  |  |  |  |  |  |
| 6461          | $3/2^{(-)}$                          | 2883"                      | 18 4             | 3578                      | D+Q                            |              | $\delta$ : +0.4 2 or +11 8.                                          |  |  |  |  |  |  |
|               |                                      | 3331"                      | 29.4             | $3129.9 \ 3/2^{-1}$       | D,Q                            |              | $\delta(D,Q) = 0.0 \ I \text{ or } <-3.$                             |  |  |  |  |  |  |
|               |                                      | 3436"                      | 12.4             | 3024.8 5/2                | Q,D                            |              | $\delta$ : +0.2 2 or <-5.                                            |  |  |  |  |  |  |
|               |                                      | 3755"                      | 27.4             | 2706.3 5/2                |                                |              |                                                                      |  |  |  |  |  |  |
|               |                                      | 413/"                      | 46 4             | $2324.1 \ 3/2$            | D(+Q)                          |              | $\delta$ : -0.2 <i>II</i> or +2.4 9.                                 |  |  |  |  |  |  |
|               |                                      | 4142"<br>4104 <sup>#</sup> | 49 <i>4</i>      | $2318.5 1/2^{-1}, 5/2$    | $2^{\prime}$ $D+Q$             | 0.4.1        | O(D,Q) = -0.5 I  or  -0.9 I.                                         |  |  |  |  |  |  |
|               |                                      | 4194"<br>4472#             | 22 4<br>10 4     | $2200.3  3/2^{+}$         | D+Q                            | -0.4 1       |                                                                      |  |  |  |  |  |  |
|               |                                      | 44/3"<br>55/7#             | 10.4             | $1988.1 \ 5/2^{(1)}$      | $\mathbf{D}(\cdot,\mathbf{O})$ |              | (1, 0, 0) = 14 or $(4, 7, 25$ from $(n, r)$                          |  |  |  |  |  |  |
|               |                                      | 504/"                      | 100 4<br>52 4    | 914.2 $3/2$               | D(+Q)                          | 062          | 0. $-0.05$ 14 or $-4.7$ 25 from (p, $\gamma$ ).                      |  |  |  |  |  |  |
|               |                                      | 2909"                      | <b>35</b> 4      | 491.3 1/2                 | D+Q                            | -0.0 2       |                                                                      |  |  |  |  |  |  |

From ENSDF

 $^{59}_{29}$ Cu<sub>30</sub>-35

| Adopted Levels, Gammas (continued) |                                              |                                                                                    |                                        |                            |                                                               |                            |                 |                                                                                                                                                                                        |  |  |  |  |
|------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------|----------------------------|---------------------------------------------------------------|----------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                    |                                              |                                                                                    |                                        |                            |                                                               | <u>γ(<sup>59</sup>Cι</u>   | ı) (continued)  |                                                                                                                                                                                        |  |  |  |  |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$                         | $E_{\gamma}^{\dagger}$                                                             | $I_{\gamma}^{h}$                       | $E_f$                      | ${ m J}_f^\pi$                                                | Mult. <sup>k</sup>         | δ <sup>ko</sup> | Comments                                                                                                                                                                               |  |  |  |  |
| 6461<br>6470                       | 3/2 <sup>(-)</sup><br>3/2,5/2 <sup>(-)</sup> | 6460.6 <sup>#</sup><br>3764 <sup>#</sup><br>4151 <sup>#</sup><br>4202 <sup>#</sup> | 18 4                                   | 0.0<br>2706.3<br>2318.5    | $3/2^{-}$<br>$5/2^{-}$<br>$1/2^{(-)}, 5/2^{(-)}$<br>$2/2^{+}$ |                            |                 | $\delta(D,Q) = +0.19 \ 23 \text{ if } J(6470 \text{ level}) = 3/2 \text{ in } (p,\gamma).$                                                                                             |  |  |  |  |
|                                    |                                              | 4203<br>5556 <sup>#</sup><br>5978 <sup>#</sup>                                     |                                        | 914.2<br>491.5             | 5/2 <sup>-</sup><br>1/2 <sup>-</sup>                          |                            |                 | $\delta(D,Q) = +0.45 \ 9 \text{ if } J(6470 \text{ level}) = 3/2 \text{ in } (p,\gamma).$<br>$\delta(D,Q) = -0.16 \ 9 \text{ if } J(6470 \text{ level}) = 3/2 \text{ in } (p,\gamma).$ |  |  |  |  |
| 6493                               | 7/2 <sup>(-)</sup>                           | 2186 <sup>#</sup><br>2192 <sup>#</sup><br>2286 <sup>#</sup>                        | 86<br>76<br>306                        | 4307<br>4301<br>4207       | $5/2^{(-)}$<br>$5/2^{(-)}$<br>$5/2 7/2^{(-)}$                 | D<br>D(+Q)<br>D(+Q)        |                 | $\delta(D,Q) = +0.1 \ l \ from \ (p,\gamma).$                                                                                                                                          |  |  |  |  |
|                                    |                                              | 2280<br>2310 <sup>#</sup><br>2421 <sup>#</sup>                                     | 24 6<br>14 6                           | 4183<br>4072               | $5/2, 9/2^{(-)}$<br>$(3/2, 5/2, 7/2)^{(-)}$                   | D(+Q)<br>D(+Q)             |                 |                                                                                                                                                                                        |  |  |  |  |
|                                    |                                              | 2563 <sup>#</sup><br>2589 <sup>#</sup><br>2608 <sup>#</sup>                        | 86<br>76<br>116                        | 3930<br>3904.0<br>3884 7   | 5/2 <sup>+</sup><br>3/2 <sup>-</sup><br>3/2 <sup>-</sup>      |                            |                 |                                                                                                                                                                                        |  |  |  |  |
|                                    |                                              | 2794 <sup>#</sup><br>2919 <sup>#</sup>                                             | 23 6<br>27 6                           | 3699<br>3574               | 7/2 <sup>-</sup><br>5/2,7/2                                   | D+Q<br>D+Q                 | -0.5 2          |                                                                                                                                                                                        |  |  |  |  |
|                                    |                                              | 2942#<br>3059 <sup>#</sup><br>3184 <sup>#</sup>                                    | 12 6<br>40 6<br>90 6                   | 3550.9<br>3434<br>3309     | 5/2 <sup>-</sup><br>5/2<br>7/2 <sup>(-)</sup>                 | D<br>D+Q                   | -0.16 6         | $\delta(D,Q) = 0.00 \ 4 \ \text{in} \ (p,\gamma).$                                                                                                                                     |  |  |  |  |
|                                    |                                              | 3378 <sup>#</sup><br>3450 <sup>#</sup><br>2565 <sup>#</sup>                        | 96<br>116                              | 3114.4<br>3042.5           | $5/2^{-}$<br>$9/2^{+}$<br>5/2(-)                              | D<br>D                     | 0.0.2           | $\delta(D,Q)=0.0\ 2 \text{ in } (p,\gamma).$<br>$\delta(D,Q)=+0.05\ 16 \text{ in } (p,\gamma).$                                                                                        |  |  |  |  |
|                                    |                                              | 3778 <sup>#</sup><br>3787 <sup>#</sup>                                             | 43 0<br>100 6<br>39 6                  | 2928<br>2715.3<br>2706.3   | 5/2 <sup>-</sup><br>5/2 <sup>-</sup>                          | D+Q<br>D<br>D              | -0.9 2          | $\delta(D,Q) = -0.05 \ 11 \text{ in } (p,\gamma).$<br>$\delta(D,Q) = -0.03 \ 5 \text{ in } (p,\gamma).$                                                                                |  |  |  |  |
|                                    |                                              | 3828#<br>4505 <sup>#</sup><br>4628 <sup>#</sup>                                    | 14 6<br>2 6<br>55 6                    | 2664.6<br>1988.1<br>1864.8 | (9/2 <sup>-</sup> )<br>5/2 <sup>(+)</sup><br>7/2 <sup>-</sup> | D+Q<br>D+Q                 | -0.15 8         |                                                                                                                                                                                        |  |  |  |  |
| 6520.2                             | $(2/2^{-})$                                  | 5094 <sup>#</sup><br>5579 <sup>#</sup><br>6520.5 <sup>#</sup>                      | 29 6<br>16 6                           | 1398.8<br>914.2            | 7/2 <sup>-</sup><br>5/2 <sup>-</sup><br>2/2 <sup>-</sup>      | D                          |                 | $\delta(D,Q) = -0.1 \ I \ in \ (p,\gamma).$                                                                                                                                            |  |  |  |  |
| 6559<br>6610.6                     | (3/2)                                        | 6529.5 <sup>#</sup><br>6558 <sup>#</sup><br>888.1 2                                | 69.6 <sup>i</sup> 22                   | 0.0<br>0.0<br>5722.2       | 3/2 <sup>-</sup><br>(17/2 <sup>-</sup> )                      | D+Q <sup>i</sup>           | +0.16 +4-5      |                                                                                                                                                                                        |  |  |  |  |
| 6625.5                             | 3/2 <sup>(+)</sup>                           | 1707.4 <i>3</i><br>3047.4 <sup>#</sup><br>3191.4 <sup>#</sup>                      | 100 <sup>1</sup> 4<br>6.5 13<br>8.3 13 | 4904.0<br>3578<br>3434     | (15/2 <sup>-</sup> )<br>5/2                                   | Q <sup><i>t</i></sup><br>D |                 | $\delta(D,Q) = +0.2 \ l \ from \ (p,\gamma).$                                                                                                                                          |  |  |  |  |

From ENSDF

 $^{59}_{29}$ Cu $_{30}$ -36
# Adopted Levels, Gammas (continued)

# $\gamma$ (<sup>59</sup>Cu) (continued)

| $E_i$ (level) | $J_i^{\pi}$      | $E_{\gamma}^{\dagger}$       | $I_{\gamma}^{h}$     | $E_f \qquad J_f^{\pi}$                 | Mult. <sup>k</sup> | δ <sup>ko</sup> | Comments                                                 |
|---------------|------------------|------------------------------|----------------------|----------------------------------------|--------------------|-----------------|----------------------------------------------------------|
| 6625.5        | $3/2^{(+)}$      | 3697.4 <sup>#</sup>          | 2.7 13               | 2928 5/2 <sup>(-)</sup>                |                    |                 |                                                          |
|               | - 1              | 4301.2 <sup>#</sup>          | 6.3 13               | 2324.1 3/2-                            |                    |                 |                                                          |
|               |                  | 4306.8 <sup>#</sup>          | 7.0 13               | 2318.5 $1/2^{(-)}, 5/2^{(-)}$          |                    |                 |                                                          |
|               |                  | 6133.7 <sup>#</sup>          | 5.3 13               | 491.5 1/2-                             |                    |                 |                                                          |
|               |                  | 6624.8 <sup>#</sup>          | 100.0 13             | 0.0 3/2-                               | D(+Q)              |                 | $\delta$ : -0.03 3 or >-3.6 from (p, $\gamma$ ).         |
| 6645.5        | $(3/2^{-})$      | 6644.8 <sup>#</sup>          |                      | 0.0 3/2-                               |                    |                 |                                                          |
| 6662          |                  | 6661.3 <sup>#</sup>          |                      | 0.0 3/2-                               |                    |                 |                                                          |
| 6690.4        | $(17/2^+)$       | 515.4 2                      | 15.8 <sup>i</sup> 25 | 6174.9 (15/2 <sup>+</sup> )            | D+Q <sup>i</sup>   |                 |                                                          |
|               |                  | 1263.4 3                     | 17.5 25              | 5427.0 (17/2+)                         | <i>m</i> .         |                 |                                                          |
|               |                  | 1788.1 4                     | 100 <sup>1</sup> 4   | 4904.0 (15/2 <sup>-</sup> )            | D+Q <sup>1</sup>   | -0.05 1         |                                                          |
| 6692          |                  | 6691.3 <sup>#</sup>          |                      | 0.0 3/2-                               |                    |                 |                                                          |
| 6710          | $3/2^{(-)}$      | 3272 <mark>#</mark>          | 5.5 20               | 3438 (1/2)                             |                    |                 |                                                          |
|               |                  | 3580                         | 5.1 20               | 3129.9 3/2-                            |                    |                 |                                                          |
|               |                  | 3782 <mark>#</mark>          | 5.5 20               | 2928 $5/2^{(-)}$                       |                    |                 |                                                          |
|               |                  | 4386                         | 3.5 20               | 2324.1 3/2-                            |                    |                 |                                                          |
|               |                  | 4391#                        | 2.0 20               | 2318.5 $1/2^{(-)}, 5/2^{(-)}$          |                    |                 |                                                          |
|               |                  | 4443"                        | 6.9 20               | 2266.5 3/2+                            |                    |                 |                                                          |
|               |                  | 6218 <b>"</b>                | 100.0 20             | 491.5 1/2-                             | D+Q                |                 | $\delta$ : -0.16 4 or -1.1 1.                            |
|               |                  | 6709 <del>"</del>            | 75.5 20              | 0.0 3/2-                               | D+Q                |                 | $\delta$ : -0.02 3 or -4 1.                              |
| 6727          | $(3/2^-, 5/2^-)$ | 2823 <b>"</b>                | 2.4 13               | 3904.0 3/2-                            |                    |                 |                                                          |
|               |                  | 2842 <b>"</b>                | 2.9 13               | 3884.7 3/2-                            |                    |                 |                                                          |
|               |                  | 3149 <del>"</del>            | 5.1 13               | 3578                                   |                    |                 |                                                          |
|               |                  | 4012"                        | 3.5 13               | 2/15.3 7/2-                            |                    |                 |                                                          |
|               |                  | 4403"                        | 4.1 13               | 2324.1 3/2-                            |                    |                 |                                                          |
|               |                  | 5328"<br>(225 <sup>#</sup>   | 3.1 13               | 1398.8 7/2                             |                    |                 |                                                          |
|               |                  | 6235"<br>(726 <sup>#</sup>   | 100.0 13             | 491.5 1/2                              |                    |                 |                                                          |
| (740          | 5/ <b>2</b> (+)  | 0/20"<br>2864 <b>#</b>       | 2611                 | $0.0 \ 5/2$                            | D                  |                 | $S(D,Q) \rightarrow 0.1, 1$ if $V(2007, 1,,1) = 2/2$     |
| 0/49          | 5/2(*)           | 2804"<br>2175 <b>#</b>       | 2.0 11               | 3884.7 5/2                             |                    | . 2. 1          | o(D,Q) = +0.1 T  if  J(3887  level) = 3/2.               |
|               |                  | 5175"<br>4420 <mark>#</mark> | 2.0 11               | 33/4 $3/2, 1/223185$ $1/2(-)$ $5/2(-)$ | D+Q                | +2 I            | $\mathbf{E}$ : can commant in $(\mathbf{n}, \mathbf{a})$ |
|               |                  | 4450"                        | 5.5 11               | 2518.5 1/2 ,5/2                        | D(+Q)              |                 | $\delta$ : -0.04 <i>14</i> or -1.8 <i>4</i> .            |
|               |                  | 5350 <sup>#</sup>            | 4.8 11               | 1398.8 7/2-                            | D+Q                | +0.05 2         |                                                          |
| (750.0        | (17/0-1)         | 6748 <sup>#</sup>            | 100.0 11             | $0.0 \ 3/2^{-}$                        | D+Q                | +0.21 3         |                                                          |
| 6750.0        | $(1'/2^+)$       | 1322.9 4                     | 100                  | 542/.0 (17/2 <sup>+</sup> )            | m                  |                 |                                                          |
| 6760          | $(3/2^{-})$      | 4772"                        | 6                    | 1988.1 5/2(+)                          |                    |                 |                                                          |
|               |                  | 5361 <b>"</b>                | 8                    | 1398.8 7/2-                            |                    |                 |                                                          |

37

|                        | Adopted Levels, Gammas (continued) |                                                                                  |                                                                    |                                    |                                                                                |                       |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|------------------------|------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|-----------------------|-----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        |                                    |                                                                                  |                                                                    |                                    |                                                                                | $\gamma(^{59})$       | Cu) (continued) |                       |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$               | $E_{\gamma}^{\dagger}$                                                           | $I_{\gamma}^{h}$                                                   | $\mathbf{E}_{f}$                   | $\mathbf{J}_{f}^{\pi}$                                                         | Mult. <sup>k</sup>    | δ <sup>ko</sup> | α <sup><b>n</b></sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 6760<br>6797.3         | $(3/2^{-})$<br>$(19/2^{+})$        | 6759 <sup>#</sup><br>1370.1 <i>3</i>                                             | 100<br>100                                                         | 0.0<br>5427.0                      | 3/2 <sup>-</sup><br>(17/2 <sup>+</sup> )                                       | D+Q<br>D <sup>i</sup> | -0.19 +3-4      |                       |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 6811                   | 3/2 <sup>(-)</sup>                 | 3883 <sup>#</sup><br>4823 <sup>#</sup>                                           | 100 <i>20</i><br>32 <i>6</i>                                       | 2928<br>1988.1                     | 5/2 <sup>(-)</sup><br>5/2 <sup>(+)</sup>                                       | D+Q<br>D+Q            | +0.55 +9-20     |                       | $\delta$ : +0.66 +44–27; unacceptably large for                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                        |                                    | 6319 <sup>#</sup>                                                                | 56 11                                                              | 491.5                              | 1/2-                                                                           | D+Q                   | -0.30 +12-25    |                       | anticipated E1+M2 transition.                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 6836                   | (9/2+)                             | 6810"<br>1921 <sup>#</sup>                                                       | 12.0 20<br>2.8 15                                                  | 0.0<br>4914.6                      | 3/2<br>$5/2^{(+)}, 7/2, 9/2^{(-)}$                                             | D(+Q)                 | -0.02 +25-14    | 2                     |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                        |                                    | 3793#                                                                            | 100.0 15                                                           | 3042.5                             | 9/2+                                                                           | (M1)                  |                 | 1.01×10 <sup>-3</sup> | B(M1)(W.u.)=0.075 <i>12</i><br>$\alpha$ (K)=1.89×10 <sup>-5</sup> <i>3</i> ; $\alpha$ (L)=1.85×10 <sup>-6</sup> <i>3</i> ;<br>$\alpha$ (M)=2.60×10 <sup>-7</sup> <i>4</i><br>$\alpha$ (N)=8.02×10 <sup>-9</sup> <i>12</i> ; $\alpha$ (IPF)=0.000991 <i>14</i><br>B(M1)(W.u.) calculated assuming Γ <sub>γ</sub> =0.13 eV<br><i>2</i> from (p,p),(p,p'γ).<br>$\delta$ (D,Q)=-0.02 <i>7</i> . |  |  |  |  |
|                        |                                    | 4121 <sup>#</sup>                                                                | 2.0 15                                                             | 2715.3                             | 7/2-                                                                           | P                     |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                        |                                    | 4249"<br>5437 <sup>#</sup>                                                       | 18.6 <i>15</i><br>30.7 <i>15</i>                                   | 2587.3<br>1398.8                   | 11/2<br>7/2 <sup>-</sup>                                                       | D<br>(E1)             |                 | 0.00215               | δ(D,Q)=0.0 I.<br>B(E1)(W.u.)=1.6×10 <sup>-4</sup> 3<br>$α(K)=8.71×10^{-6} I3; α(L)=8.48×10^{-7} I2;$<br>$α(M)=1.192×10^{-7} I7$<br>$α(N)=3.68×10^{-9} 6; α(IPF)=0.00214 3$<br>B(E1)(W.u.) calculated assuming Γ <sub>γ</sub> =0.13 eV<br>2 from (p,p),(p,p'γ).<br>δ(D,Q)=0.00 5.                                                                                                            |  |  |  |  |
| 6843                   | 3/2                                | 4519 <sup>#</sup><br>4576 <sup>#</sup><br>5928 <sup>#</sup>                      | 7.8 18<br>5.7 18<br>8 9 18                                         | 2324.1<br>2266.5<br>914.2          | 3/2 <sup>-</sup><br>3/2 <sup>+</sup><br>5/2 <sup>-</sup>                       |                       |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                        |                                    | 6351 <sup>#</sup>                                                                | 55.2 18                                                            | 491.5                              | 1/2-                                                                           | D+Q                   |                 |                       | $\delta$ : +0.3 <i>1</i> or -4 <i>1</i> .                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                        |                                    | 6842 <sup>#</sup>                                                                | 100.0 18                                                           | 0.0                                | 3/2-                                                                           | D+Q                   |                 |                       | $\delta$ : -0.4 <i>I</i> or -7 2.                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 6867                   | (3/2 <sup>-</sup> )                | 4600#<br>5952 <sup>#</sup><br>6375 <sup>#</sup><br>6866 <sup>#</sup>             | 7.9 <i>16</i><br>10.0 <i>20</i><br>100 <i>20</i><br>13.2 <i>26</i> | 2266.5<br>914.2<br>491.5<br>0.0    | 3/2 <sup>+</sup><br>5/2 <sup>-</sup><br>1/2 <sup>-</sup><br>3/2 <sup>-</sup>   |                       |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 6879                   | (5/2+)                             | 3301 <sup>#</sup><br>3764 <sup>#</sup><br>3887 <sup>#</sup><br>4173 <sup>#</sup> | 14 <i>3</i><br>13 <i>3</i><br>44 <i>3</i><br>19 3                  | 3578<br>3114.4<br>2992.0<br>2706 3 | 5/2 <sup>-</sup><br>3/2,5/2 <sup>-</sup> ,7/2 <sup>-</sup><br>5/2 <sup>-</sup> |                       |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                        |                                    |                                                                                  |                                                                    |                                    | -, -                                                                           |                       |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |

From ENSDF

38

 $^{59}_{29}$ Cu<sub>30</sub>-38

|                        |                      |                            |                  |        | Adop                        | ted Levels, G            | ammas (cont     | inued)                |                                                                                                                                                                                                                                                                                                                          |
|------------------------|----------------------|----------------------------|------------------|--------|-----------------------------|--------------------------|-----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                            |                  |        |                             | $\gamma(^{59}\text{Cu})$ | (continued)     |                       |                                                                                                                                                                                                                                                                                                                          |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$     | $I_{\gamma}^{h}$ | $E_f$  | ${ m J}_f^\pi$              | Mult. <sup>k</sup>       | δ <sup>ko</sup> | α <sup>n</sup>        | Comments                                                                                                                                                                                                                                                                                                                 |
| 6879                   | $(5/2^+)$            | 4555 <mark>#</mark>        | 24 <i>3</i>      | 2324.1 | 3/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 5480 <sup>#</sup>          | 43 <i>3</i>      | 1398.8 | 7/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 5964 <sup>#</sup>          | 100 3            | 914.2  | 5/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 6878 <sup>#</sup>          | 62 <i>3</i>      | 0.0    | 3/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
| 6885                   | $(3/2^-, 5/2)$       | 2584 <sup>#</sup>          | 21 5             | 4301   | $5/2^{(-)}$                 |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 4179 <sup>#</sup>          | 26 5             | 2706.3 | 5/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 4566 <sup>#</sup>          | 32 5             | 2318.5 | $1/2^{(-)}, 5/2^{(-)}$      |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 4618 <sup>#</sup>          | 47 11            | 2266.5 | 3/2+                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 4897 <sup>#</sup>          | 53 11            | 1988.1 | 5/2 <sup>(+)</sup>          |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 5020 <sup>#</sup>          | 42 11            | 1864.8 | 7/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 5486 <sup>#</sup>          | 95 11            | 1398.8 | 7/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 5970 <sup>#</sup>          | 100 11           | 914.2  | 5/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 6884 <sup>#</sup>          | 63 11            | 0.0    | 3/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
| 6894                   | $5/2^{(-)}$          | 3343 <b>#</b>              | 28 5             | 3550.9 | 5/2-                        | D+Q                      | -0.5 3          |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 3779 <sup>#</sup>          | 18 5             | 3114.4 | 5/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 4179 <sup>#</sup>          | 30 5             | 2715.3 | 7/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 4188 <sup>#</sup>          | 25 5             | 2706.3 | 5/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 4570 <sup>#</sup>          | 53 5             | 2324.1 | 3/2-                        | D                        |                 |                       | $\delta$ : -0.04 <i>12</i> from (p, $\gamma$ ).                                                                                                                                                                                                                                                                          |
|                        |                      | 4627 <b>#</b>              | 65 5             | 2266.5 | 3/2+                        | D+Q                      | +0.5 2          |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 4906 <sup>#</sup>          | 71 5             | 1988.1 | $5/2^{(+)}$                 | D(+Q)                    | -0.2 2          |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 5495 <sup>#</sup>          | 100 5            | 1398.8 | 7/2-                        | D+Q                      | -1.4 11         |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 5979 <sup>#</sup>          | 56 5             | 914.2  | 5/2-                        | D+Q                      |                 |                       | $\delta$ : -0.6 3 or >+3 from (p, $\gamma$ ).                                                                                                                                                                                                                                                                            |
|                        |                      | 6893.6 <sup>#</sup>        | 55 <i>5</i>      | 0.0    | 3/2-                        |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
| 6905                   | 9/2+                 | 1685 <sup>#</sup> <i>p</i> | 3.0 4            | 5220.3 | 9/2                         | D+Q                      | -0.12 4         |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 1990 <mark>#</mark>        | 2.4 13           | 4914.6 | $5/2^{(+)}, 7/2, 9/2^{(-)}$ |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 2375#                      | 1.4 13           | 4530   | $(7/2)^+$                   |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 2440#                      | 1.2 13           | 4465   | $5/2^{(+)}, 7/2, 9/2^{(-)}$ |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 2464#                      | 2.6 13           | 4441   | 7/2+                        | (M1)                     |                 | 5.01×10 <sup>-4</sup> | B(M1)(W.u.)=0.07 4<br>$\alpha(K)=3.78\times10^{-5} 6; \alpha(L)=3.70\times10^{-6} 6; \alpha(M)=5.20\times10^{-7} 8$<br>$\alpha(N)=1.604\times10^{-8} 23; \alpha(IPF)=0.000459 7$<br>B(M1)(W.u.): assuming $\Gamma_{\gamma}=1.1 \text{ eV } 2$ from (p,p),(p,p' $\gamma$ ).<br>$\delta(D,Q)=-0.04 8$ from (p, $\gamma$ ). |
|                        |                      | 3147 <sup>#</sup>          | 2.0 13           | 3758   | $5/2^{(+)}, 7/2, 9/2^{(-)}$ |                          |                 |                       |                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 3862 <sup>#</sup>          | 100.0 13         | 3042.5 | 9/2+                        | (M1+E2)                  | -0.031 23       | $1.04 \times 10^{-3}$ | B(M1)(W.u.)=0.69 13; B(E2)(W.u.)=0.08 +13-7                                                                                                                                                                                                                                                                              |

From ENSDF

 $^{59}_{29}$ Cu<sub>30</sub>-39

|                        |                    |                        |                  |                                          | Adopted Leve       | els, Gammas (co | ontinued)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------|--------------------|------------------------|------------------|------------------------------------------|--------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                    |                        |                  |                                          | $\gamma(^{59})$    | Cu) (continued) |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{h}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup> | δ <sup>ko</sup> | α <sup>n</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                    |                        |                  | <u> </u>                                 |                    |                 |                | $\begin{aligned} &\alpha(\text{K}) = 1.84 \times 10^{-5} \ 3; \ \alpha(\text{L}) = 1.80 \times 10^{-6} \ 3; \ \alpha(\text{M}) = 2.52 \times 10^{-7} \ 4 \\ &\alpha(\text{N}) = 7.80 \times 10^{-9} \ 11; \ \alpha(\text{IPF}) = 0.001017 \ 15 \\ &\text{B}(\text{M}1)(\text{W.u.}), \ \text{B}(\text{E2})(\text{W.u.}): \ \text{assuming} \ \Gamma_{\gamma} = 1.1 \ \text{eV} \ 2 \ \text{from} \\ &(\text{p,p}), (\text{p,p}'\gamma). \end{aligned}$ |
| 6905                   | 9/2+               | 4190 <sup>#</sup>      | 3.5 13           | 2715.3 7/2-                              | D                  |                 |                | $\delta(D,Q) = -0.004 \ 22 \ from \ (p,\gamma).$                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                    | 4318 <sup>#</sup>      | 8.8 13           | 2587.3 11/2-                             | D                  |                 |                | $\delta(D,Q) = -0.02 \ 2 \ \text{from } (p,\gamma).$                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                    | 5040 <sup>#</sup>      | 1.4 13           | 1864.8 7/2-                              |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 5506#                  | 4.6 13           | 1398.8 7/2-                              | (E1+M2)            | +0.023 16       | 0.00217        | B(E1)(W.u.)=2.2×10 <sup>-4</sup> 8; B(M2)(W.u.)=0.018 +26-17<br>α(K)=8.58×10 <sup>-6</sup> 12; α(L)=8.35×10 <sup>-7</sup> 12;<br>α(M)=1.174×10 <sup>-7</sup> 17<br>α(N)=3.63×10 <sup>-9</sup> 5; α(IPF)=0.00216 3<br>B(E1)(W.u.), B(M2)(W.u.): assuming $\Gamma_{\gamma}$ =1.1 eV 2 from<br>(p,p),(p,p'γ).                                                                                                                                             |
|                        |                    | 5990 <sup>#</sup>      | 3.4 13           | 914.2 5/2-                               |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6922                   | $(17/2^{-})$       | 3475 <i>3</i>          | 100              | 3447.1 13/2-                             | $(Q)^{i}$          |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6923                   | $(5/2^+)$          | 3345 <sup>#</sup>      | 34.3 22          | 3578                                     |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 4935 <sup>#</sup>      | 100.0 22         | 1988.1 $5/2^{(+)}$                       |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 6008 <sup>#</sup>      | 83.0 22          | 914.2 5/2-                               |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6939                   | $3/2^{(-)}$        | 3210 <sup>#</sup>      | 73 5             | 3729 3/2,5/2                             | Q(+D)              |                 |                | $\delta$ : -0.30 5 or <-10.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                    | 3947 <sup>#</sup>      | 21 5             | 2992.0 3/2,5/2-,7/2-                     | -                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 4224 <sup>#</sup>      | 36 5             | 2715.3 7/2-                              |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 4615 <sup>#</sup>      | 44 5             | 2324.1 3/2-                              |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 4620 <sup>#</sup>      | 17 5             | 2318.5 $1/2^{(-)}, 5/2^{(-)}$            |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 4672 <sup>#</sup>      | 100 5            | 2266.5 3/2+                              | O(+D)              |                 |                | $\delta$ : -0.2 <i>l</i> or >+7.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                    | 5074 <sup>#</sup>      | 26 5             | 1864.8 7/2-                              |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 6024 <sup>#</sup>      | 39 5             | 914.2 5/2-                               | O(+D)              | >+0.3           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 6447 <sup>#</sup>      | 60 5             | 491.5 1/2-                               | D+O                |                 |                | $\delta$ : +0.25 11 or -4 2.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                    | 6938 <sup>#</sup>      | 35 5             | 0.0 3/2-                                 | C C                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6945                   | $1/2^{-}.3/2^{-}$  | 4621 <sup>#</sup>      | 15.6 22          | 2324.1 3/2-                              |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | 1 7-1              | 4626 <sup>#</sup>      | 28.5 22          | 2318.5 $1/2^{(-)}.5/2^{(-)}$             |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 4678 <sup>#</sup>      | 52.0 22          | 2266.5 3/2+                              |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 6453 <sup>#</sup>      | 23.2 22          | 491.5 1/2-                               |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 6944 <sup>#</sup>      | 100.0 22         | 0.0 3/2-                                 |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6959                   | (3/2)              | 4692 <sup>#</sup>      |                  | 2266.5 3/2+                              |                    |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | X-1 2              | 6958 <sup>#</sup>      |                  | 0.0 3/2-                                 | D+O                | +0.109          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6967                   | (3/2,5/2)          | 3389 <sup>#</sup>      | 6.8 17           | 3578                                     | x                  |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

 $^{59}_{29}$ Cu<sub>30</sub>-40

From ENSDF

 $^{59}_{29}$ Cu $_{30}$ -40

| 1                | Adopted Levels, Gammas (continued) |                      |                              |                        |                |                             |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|------------------|------------------------------------|----------------------|------------------------------|------------------------|----------------|-----------------------------|--------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                  |                                    |                      |                              |                        |                |                             |                    | $\gamma(^{59}$ Cu) (continue | <u>d)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| E <sub>i</sub> ( | (level)                            | $J^{\pi}_i$          | $E_{\gamma}^{\dagger}$       | $I_{\gamma}^{h}$       | E <sub>f</sub> | $J_f^{\pi}$                 | Mult. <sup>k</sup> | δ <sup>ko</sup>              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 696              | 67                                 | (3/2,5/2)            | 3837 <sup>#</sup>            | 3.5 17                 | 3129.9         | 3/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 4700 <sup>#</sup>            | 10.2 17                | 2266.5         | $3/2^{+}$                   |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 4979 <sup>#</sup>            | 10.9 17                | 1988.1         | 5/2 <sup>(+)</sup>          |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 6052 <sup>#</sup>            | 42.2 17                | 914.2          | 5/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 6966 <mark>#</mark>          | 100.0 17               | 0.0            | 3/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 701              | 16                                 |                      | 7015 <sup>#</sup>            |                        | 0.0            | $3/2^{-}$                   |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 702              | 29                                 | $(3/2^{-})$          | 7028 <sup>#</sup>            |                        | 0.0            | $3/2^{-}$                   |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 704              | 48                                 |                      | 7047#                        |                        | 0.0            | 3/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 705              | 53.2                               | (19/2 <sup>-</sup> ) | 1003.1 <sup><i>d</i></sup> 2 | 100 <sup>1</sup> 7     | 6049.8         | $(17/2^{-})$                | D+Q <sup>1</sup>   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 1331.2 3                     | 23 <sup>1</sup> 4      | 5722.2         | $(17/2^{-})$                | $D+Q^{l}$          |                              | $\delta: +0.5 > \delta > -1.7.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 2149.6 4                     | 20' 4                  | 4904.0         | $(15/2^{-})$                | Q'                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 707              | 74.4                               | $(17/2^+)$           | 2547 1                       | 100                    | 4527.9         | $(13/2^+)$                  | $Q^{t}$            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 710              | 57.5<br>D7                         | $(3/2^{-1})$         | /150.0 10<br>6282#           | 22                     | 0.0            | 5/2<br>5/2-                 |                    | +0.11 + 11 - 10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| /15              | 91                                 | (3/2)                | 6705 <sup>#</sup>            | 100                    | 914.2<br>401.5 | $\frac{3}{2}$               | D+Q                | +0.11 + 11 - 10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 724              | 51                                 | $(5/2 \ 3/2^{-})$    | 4545 <sup>#</sup>            | 23                     | 2706.3         | 1/2<br>5/2 <sup>-</sup>     | DŦŲ                | +0.04 J                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 12.              | 51                                 | (3/2,3/2)            | 4586 <sup>#</sup>            | 25                     | 2664.6         | $(9/2^{-})$                 |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 4984 <sup>#</sup>            | 19                     | 2266.5         | (2/2)                       |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 5852 <sup>#</sup>            | 31                     | 1398.8         | 7/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 6336 <sup>#</sup>            | 25                     | 914.2          | 5/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 7250.5 <sup>#</sup>          | 100                    | 0.0            | 3/2-                        | D                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 729              | 99                                 | $(3/2)^+$            | 4169 <sup>#</sup>            | 11.1 14                | 3129.9         | 3/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 4371 <sup>#</sup>            |                        | 2928           | $5/2^{(-)}$                 | D+Q                | +0.17 13                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 4593 <sup>#</sup> <i>p</i>   |                        | 2706.3         | 5/2-                        | D                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 5032 <sup>#</sup>            | 8.3 14                 | 2266.5         | $3/2^{+}$                   |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 5311#                        | 8.3 14                 | 1988.1         | $5/2^{(+)}$                 | D                  |                              | Other I $\gamma$ : 23 from 1994Ho31 in (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                  |                                    |                      | 5900 <sup>#</sup>            |                        | 1398.8         | 7/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 6384"                        | 11.1 14                | 914.2          | 5/2-                        | D                  |                              | Other I $\gamma$ : 6.3 from 1994Ho31 in (p, $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                  |                                    |                      | 7298.5#                      | 100.0 14               | 0.0            | 3/2-                        | D+Q                | -0.23 + 3 - 2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 733              | 32                                 | 3/2                  | 7331 <b>"</b>                | 100                    | 0.0            | 3/2-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 734              | 48                                 | $(3/2^{-})$          | 3770"<br>(420 <b>#</b>       | 29.4 15                | 3578           | 5/0-                        |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      | 6433"<br>7247#               | 17.6 15                | 914.2          | 5/2<br>2/2-                 |                    |                              | Mult Si from $(n, r)$ S= 0.5 L or 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 735              | 52.8                               | (19/2+)              | 555.3 2                      | 100.0 <i>15</i><br>7 2 | 0.0<br>6797.3  | 3/2<br>(19/2 <sup>+</sup> ) | D+Q<br>m           |                              | (1, 0) $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $(1, 0)$ $($ |  |  |  |  |
|                  |                                    |                      | 662.2 2                      | 70 <sup>1</sup> 8      | 6690.4         | $(17/2^+)$                  | $D+Q^{l}$          |                              | $E_{\gamma}$ : Doublet structure ( <sup>28</sup> Si,2 $\alpha$ p $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                  |                                    |                      | 1177.9 <i>3</i>              | 10 <sup>1</sup> 3      | 6174.9         | $(15/2^+)$                  | Q <sup>1</sup>     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                  |                                    |                      |                              |                        |                |                             |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |

 ${}^{59}_{29}$ Cu $_{30}$ -41

From ENSDF

 $^{59}_{29}$ Cu<sub>30</sub>-41

| Adopted Levels, Gammas (continued) |                      |                                |                     |                                                            |                       |                             |                                                              |  |  |  |  |  |
|------------------------------------|----------------------|--------------------------------|---------------------|------------------------------------------------------------|-----------------------|-----------------------------|--------------------------------------------------------------|--|--|--|--|--|
|                                    |                      |                                |                     |                                                            | $\gamma(^5$           | <sup>9</sup> Cu) (continued | <u>))</u>                                                    |  |  |  |  |  |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{h}$    | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$                         | Mult. <sup>k</sup>    | δ <sup>ko</sup>             | Comments                                                     |  |  |  |  |  |
| 7352.8                             | (19/2+)              | 1630.7 3                       | $100^{i} 10$        | 5722.2 (17/2 <sup>-</sup> )<br>5427.0 (17/2 <sup>+</sup> ) | $D^i$                 |                             |                                                              |  |  |  |  |  |
| 7394                               | $(5/2)^+$            | 3816 <sup>#</sup>              | 100.0 14            | 3578                                                       | D<br>D+O              | +0.13 5                     |                                                              |  |  |  |  |  |
|                                    |                      | 5406 <sup>#</sup>              | 18.1 14             | 1988.1 5/2 <sup>(+)</sup>                                  |                       |                             |                                                              |  |  |  |  |  |
|                                    |                      | 5529 <sup>#</sup>              | 11.1 14             | 1864.8 7/2-                                                |                       |                             |                                                              |  |  |  |  |  |
|                                    |                      | 7393 <sup>#</sup>              | 9.7 14              | 0.0 3/2-                                                   |                       |                             |                                                              |  |  |  |  |  |
| 7407                               | $(1/2^+)$            | 7406 <sup>#</sup>              | 100                 | 0.0 3/2-                                                   |                       |                             |                                                              |  |  |  |  |  |
| 7444                               | $(3/2^+, 5/2^+)$     | 3829#                          | 21.4 14             | 3615.3 3/2-                                                |                       |                             |                                                              |  |  |  |  |  |
|                                    |                      | 3866#                          | 21.4 14             | 3578                                                       |                       |                             |                                                              |  |  |  |  |  |
|                                    |                      | 7443 <sup>#</sup>              | 100.0 14            | $0.0 \ 3/2^{-}$                                            | ,                     |                             |                                                              |  |  |  |  |  |
| 7444.6                             | $(21/2^{-})$         | 833.7 2                        | 75' 5               | 6610.6 (19/2 <sup>-</sup> )                                | D+Q <sup>t</sup>      | +0.20 + 5 - 6               |                                                              |  |  |  |  |  |
| 7470                               |                      | 1723.3 3                       | 100' 5              | 5/22.2 (1//2 <sup>-</sup> )                                | Q <sup><i>i</i></sup> |                             |                                                              |  |  |  |  |  |
| 7473                               |                      | 7472"                          |                     | 0.0 3/2                                                    |                       |                             |                                                              |  |  |  |  |  |
| /503                               | (5/2-)               | /502"                          | 100 0 14            | $0.0 \ 3/2$                                                |                       |                             | $E_{\gamma}$ : 7498 3 for probable doublet in $(p,\gamma)$ . |  |  |  |  |  |
| /31/                               | (3/2)                | 0118"<br>7516 <sup>#</sup>     | 100.0 14            | 1398.8 7/2                                                 |                       |                             |                                                              |  |  |  |  |  |
| 7523                               |                      | 7522 <b>#</b>                  | 42.9 14             | $0.0 \ 3/2$                                                |                       |                             | $\mathbf{F}$ : probable doublet in $(\mathbf{p}, y)$         |  |  |  |  |  |
| 7525                               | $(3/2^{-})$          | 6624 <sup>#</sup>              | 36 4 18             | $914.2 5/2^{-}$                                            |                       |                             | $L_{\gamma}$ . probable doublet in (p, $\gamma$ ).           |  |  |  |  |  |
| 1559                               | (3/2)                | $7047^{\#}$                    | 100 0 18            | $4915 1/2^{-1}$                                            |                       |                             |                                                              |  |  |  |  |  |
|                                    |                      | 7538 <sup>#</sup>              | 45.4 18             | $0.0 \ 3/2^{-}$                                            |                       |                             |                                                              |  |  |  |  |  |
| 7543.1                             |                      | 2116 2                         | 100                 | 5427.0 (17/2 <sup>+</sup> )                                |                       |                             |                                                              |  |  |  |  |  |
| 7616.5                             | $(21/2^{-})$         | 1894 <i>1</i>                  | 100                 | 5722.2 (17/2 <sup>-</sup> )                                |                       |                             | $E_{\gamma}$ : Doublet structure.                            |  |  |  |  |  |
| 7650                               | 5/2+                 | 6251#                          | 66.7 17             | 1398.8 7/2-                                                | D                     |                             |                                                              |  |  |  |  |  |
|                                    |                      | 7649#                          | 100.0 17            | $0.0 \ 3/2^{-}$                                            | D                     |                             |                                                              |  |  |  |  |  |
| 7697                               | (5/2)                | 5709 <b>#</b>                  | 26.3 26             | $1988.1 \ 5/2^{(+)}$                                       |                       |                             |                                                              |  |  |  |  |  |
|                                    |                      | 5832#                          | 44.7 26             | 1864.8 7/2-                                                |                       |                             |                                                              |  |  |  |  |  |
|                                    |                      | 6298"<br>7696 <b>#</b>         | 47.4 26             | 1398.8 7/2-                                                |                       |                             |                                                              |  |  |  |  |  |
| 7700 (                             | (10/2+)              | 7696"                          | 100.0 26            | $0.0 \ 3/2$                                                | D. O                  |                             |                                                              |  |  |  |  |  |
| 77047                              | $(19/2^+)$           | $2281.1^{\circ}$ 3             | 100                 | $5427.0 (17/2^{+})$                                        | $\frac{D+Q}{m}$       |                             |                                                              |  |  |  |  |  |
| //94./                             | (17/2)               | 2073                           | $37\frac{1}{16}$    | $5722.2 (17/2^{-})$                                        | m                     |                             |                                                              |  |  |  |  |  |
|                                    |                      | 2890 1                         | $100^{i}$ 26        | $49040(15/2^{-1})$                                         | D <sup>i</sup>        |                             |                                                              |  |  |  |  |  |
|                                    |                      | 3266 2                         | $11^{i}$ 5          | $4527.9 (13/2^+)$                                          | D                     |                             |                                                              |  |  |  |  |  |
| 7827.7                             | $(17/2^{+})$         | $1077.8^{@p}$ 1                | <5.56 <sup>i</sup>  | $6750.0 (17/2^+)$                                          | m                     |                             |                                                              |  |  |  |  |  |
|                                    | (                    | 2105.3 <sup>@</sup> <i>p 1</i> | 28 <sup>i</sup> 11  | 5722.2 (17/2 <sup>-</sup> )                                | m                     |                             |                                                              |  |  |  |  |  |
|                                    |                      | 2400.7 <sup>@</sup> <i>p</i> 1 | $22^{i} 6$          | 5427.0 (17/2+)                                             | т                     |                             |                                                              |  |  |  |  |  |
|                                    |                      | 2923 1                         | 100 <sup>i</sup> 11 | 4904.0 (15/2 <sup>-</sup> )                                | D                     |                             |                                                              |  |  |  |  |  |
|                                    |                      |                                |                     |                                                            |                       |                             |                                                              |  |  |  |  |  |

 $_{29}^{59}$ Cu<sub>30</sub>-42

| Adopted Levels, Gammas (continued) |                      |                              |                          |                  |                              |                              |                              |                                                                                                           |  |  |  |  |
|------------------------------------|----------------------|------------------------------|--------------------------|------------------|------------------------------|------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                    |                      |                              |                          |                  |                              | $\gamma(^5$                  | <sup>9</sup> Cu) (continued) |                                                                                                           |  |  |  |  |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$ | $I_{\gamma}^{h}$         | $E_f$            | $\mathrm{J}_f^\pi$           | Mult. <sup>k</sup>           | <sub>δ</sub> ko              | Comments                                                                                                  |  |  |  |  |
| 7827.7                             | $(17/2^+)$           | 3298 2                       | 17 <sup>i</sup> 7        | 4527.9           | $(13/2^+)$                   |                              |                              |                                                                                                           |  |  |  |  |
| 8013                               |                      | 7521 <sup>#</sup>            | 49.3 15                  | 491.5            | 1/2-                         |                              |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 8012 <sup>#</sup>            | 100.0 15                 | 0.0              | 3/2-                         |                              |                              |                                                                                                           |  |  |  |  |
| 8077                               | $3/2^{(-)}, 5/2$     | 8076 <sup>#</sup>            | 100                      | 0.0              | 3/2-                         | D+Q                          |                              | $\delta$ : -0.09 2 if J(8077 level)=5/2; -1.0 2 or -1.7 3 if J=3/2.                                       |  |  |  |  |
| 8113.3                             | $(21/2^{-})$         | 1060 1                       | 29 7                     | 7053.2           | $(19/2^{-})$                 | D+Q                          |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 2063.4 <sup>@</sup>          | 100 7                    | 6049.8           | $(17/2^{-})$                 | Q                            |                              |                                                                                                           |  |  |  |  |
| 8116.0                             | $(21/2^+)$           | 762.9 2                      | 100 8                    | 7352.8           | $(19/2^+)$                   | $D+Q^{l}$                    | +0.10 +6-7                   |                                                                                                           |  |  |  |  |
|                                    |                      | 1426.0 3                     | 67 <sup>1</sup> 7        | 6690.4           | $(17/2^+)$                   | Q                            |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 1505.5 3                     | 41.7 17                  | 6610.6           | $(19/2^{-})$                 | $D^{t}$                      |                              |                                                                                                           |  |  |  |  |
| 0155                               | (10/0)               | 2688 <sup>w</sup> 1          | 13.3' 25                 | 5427.0           | $(17/2^+)$                   | n ci                         |                              |                                                                                                           |  |  |  |  |
| 8155.6                             | $(19/2^+)$           | 327.9 1                      | $100^{i} 3$              | 7827.7           | $(17/2^+)$                   | $D+Q^{i}$                    | +0.13 +7-9                   |                                                                                                           |  |  |  |  |
|                                    |                      | 360.9 I                      | 76° 3                    | 7/94.7           | $(1^{7}/2^{+})$              | $D+Q^{t}$                    | +0.15 7                      |                                                                                                           |  |  |  |  |
|                                    |                      | 1102.7 <b>°</b> <i>P</i> 4   | 83                       | 7053.2           | $(19/2^{-})$                 | nii<br>Di                    |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 2432.8 6                     | $81^{\circ} 0$           | 5722.2           | (17/2)                       | D'<br>D: Oİ                  | .0.45 . 12 . 10              |                                                                                                           |  |  |  |  |
| 8222                               | 2/2(-) = 5/2         | 2728 I<br>8222#              | 21. 3                    | 5427.0           | $(17/2^{-1})$                | D+Q.                         | +0.45 + 13 - 10              | (1, 0, 0, 7, 2; f, 1/2) = 1, f/2, 0, 0, 2, and 1, 0, 2; f, 1, 2/2, (a, b)                                 |  |  |  |  |
| 8223                               | $3/2^{(1)}, 3/2$     | 8222"<br>8258 <b>#</b>       | 100                      | 0.0              | 3/2<br>2/2-                  | D+Q                          | 0.02.2                       | $0: -0.07 \text{ 5 II J}(8223 \text{ level})=5/2; -0.9 2 \text{ or } -1.8 \text{ 5 II J}=5/2 (p,\gamma).$ |  |  |  |  |
| 8239<br>8512                       | $(3/2)^{+}$          | 8238"<br>1501 <u></u> 6 1    | 100                      | 6022             | $\frac{3}{2}$                | D(+Q)                        | -0.02 3                      |                                                                                                           |  |  |  |  |
| 0515<br>8657 7                     | (21/2)<br>$(21/2^+)$ | 3230.2                       | 100                      | 5427 0           | $(17/2^+)$                   | $(\mathbf{Q})^{r}$           |                              |                                                                                                           |  |  |  |  |
| 8720.8                             | $(21/2^{+})$         | 5250 2                       | $100^{i}$ 3              | 9427.0<br>8155.6 | (17/2)<br>$(10/2^+)$         | Q<br>D+0 <sup><i>i</i></sup> | $\pm 0.16 \pm 5 - 12$        |                                                                                                           |  |  |  |  |
| 0729.0                             | (21/2)               | 2118 7 7                     | $100^{-5}$<br>$12^{i}$ 3 | 6610.6           | $(19/2^{-})$                 | עדע<br>ח <sup>i</sup>        | $\pm 0.10 \pm J \pm 12$      |                                                                                                           |  |  |  |  |
|                                    |                      | 3302 1                       | $12^{i}$ $12^{i}$ $1$    | 5427.0           | $(17/2^+)$                   | $O^{i}$                      |                              |                                                                                                           |  |  |  |  |
| 8813.8                             | $(23/2^{-})$         | 1368 7 3                     | $100^{i}$ 6              | 7444 6           | $(11/2^{-})$                 | $\nabla + 0^{i}$             | +0.14.6                      |                                                                                                           |  |  |  |  |
| 0015.0                             | (23/2)               | 2204.0 4                     | $50^{i} 4$               | 6610.6           | $(21/2^{-})$<br>$(19/2^{-})$ | $O^{i}$                      | 10.110                       |                                                                                                           |  |  |  |  |
| 8852.6                             | $(21/2^{-})$         | 2055.5 4                     | 100                      | 6797.3           | $(19/2^+)$                   | $D^{i}$                      |                              |                                                                                                           |  |  |  |  |
| 8943.5                             | $(23/2^+)$           | 827.4 2                      | $100^{i}$ 10             | 8116.0           | $(21/2^+)$                   | D+O <sup>i</sup>             | +0.18 + 5 - 6                |                                                                                                           |  |  |  |  |
|                                    |                      | 1499.1 10                    | 80 <sup>i</sup> 20       | 7444.6           | $(21/2^{-})$                 | D <sup>i</sup>               |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 1591.1 <i>3</i>              | 100 <sup>i</sup> 10      | 7352.8           | $(19/2^+)$                   | Q <sup>i</sup>               |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 2147 <i>I</i>                | 6 <sup>i</sup> 2         | 6797.3           | $(19/2^+)$                   | Q <sup>i</sup>               |                              |                                                                                                           |  |  |  |  |
| 9174.5                             | $(23/2^{-})$         | 1061 <sup>e</sup> 1          | 30 <sup>i</sup> 10       | 8113.3           | $(21/2^{-})$                 | D+Q <sup>i</sup>             |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 1730 <sup>de</sup> 1         | 28 <sup>i</sup> 6        | 7444.6           | $(21/2^{-})$                 | D+Q <sup>i</sup>             |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 2121.4 8                     | 100 <sup>i</sup> 18      | 7053.2           | $(19/2^{-})$                 | Q <sup>i</sup>               |                              |                                                                                                           |  |  |  |  |
| 9175.3                             | $(21/2^+)$           | 3748 2                       | 100                      | 5427.0           | $(17/2^+)$                   | Q <sup>i</sup>               |                              |                                                                                                           |  |  |  |  |
| 9293.8                             | $(21/2^+)$           | 3867 2                       | 100                      | 5427.0           | $(17/2^+)$                   | Q <sup>i</sup>               |                              |                                                                                                           |  |  |  |  |
| 9333.3                             | $(23/2^{-})$         | 1888.5 <sup>e</sup> 4        | 100 <sup>i</sup> 10      | 7444.6           | $(21/2^{-})$                 |                              |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 2724 1                       | 18 <sup>i</sup> 4        | 6610.6           | $(19/2^{-})$                 |                              |                              |                                                                                                           |  |  |  |  |
| 9433.2                             | $(21/2^+)$           | 1725 <sup>e</sup> 1          | 27 <sup>1</sup> 7        | 7708.6           | $(19/2^+)$                   | D+Q <sup>i</sup>             |                              |                                                                                                           |  |  |  |  |
|                                    |                      | 2636 1                       | 100 <sup>i</sup> 20      | 6797.3           | $(19/2^+)$                   | D+Q <sup>i</sup>             |                              |                                                                                                           |  |  |  |  |

From ENSDF

| Adopted Levels, Gammas (continued) |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|------------------------------------|--------------------|----------------------------------------|---------------------------|------------------------------------------------------------|-------------------------|-----------------|--|----------|--|--|--|
|                                    |                    |                                        |                           |                                                            | <u>γ(<sup>59</sup>C</u> | cu) (continued) |  |          |  |  |  |
| E <sub>i</sub> (level)             | $\mathrm{J}_i^\pi$ | ${\rm E}_{\gamma}^{\dagger}$           | $I_{\gamma}^{h}$          | $E_f \qquad J_f^{\pi}$                                     | Mult. <sup>k</sup>      | δ <sup>ko</sup> |  | Comments |  |  |  |
| 9457.4                             | (23/2+)            | $727.5^{e}$ 1<br>1302 1 <sup>e</sup> 3 | $100^{i} 8$<br>$31^{i} 4$ | 8729.8 (21/2 <sup>+</sup> )<br>8155.6 (19/2 <sup>+</sup> ) | $D+Q^i$<br>$Q^i$        |                 |  |          |  |  |  |
|                                    |                    | 1502.1 5                               | 51 1                      | 0100.0 (1)/2 )                                             | ×                       |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
|                                    |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |
| 1                                  |                    |                                        |                           |                                                            |                         |                 |  |          |  |  |  |

| Adopted Levels, Gammas (continued) |                      |                         |                          |                  |                          |                       |                           |                                    |  |  |  |  |
|------------------------------------|----------------------|-------------------------|--------------------------|------------------|--------------------------|-----------------------|---------------------------|------------------------------------|--|--|--|--|
|                                    |                      |                         |                          |                  |                          | $\gamma$              | ( <sup>59</sup> Cu) (cont | ntinued)                           |  |  |  |  |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{h}$         | $E_f$            | $\mathbf{J}_{f}^{\pi}$   | Mult. <sup>k</sup>    | δ <sup>ko</sup>           | Comments                           |  |  |  |  |
| 9626.1                             | $(21/2^+)$           | 4200 3                  | 100                      | 5427.0           | $(17/2^+)$               |                       |                           |                                    |  |  |  |  |
| 9673.0                             | $(25/2^+)$           | 729.4 <sup>e</sup> 1    | $100^{i}$ 9              | 8943.5           | $(23/2^+)$               | D+Q <sup>i</sup>      |                           |                                    |  |  |  |  |
|                                    |                      | 1557.1 <i>3</i>         | 82 <sup>i</sup> 9        | 8116.0           | $(21/2^+)$               | Q <sup>i</sup>        |                           |                                    |  |  |  |  |
| 9923.4                             | $(21/2^+)$           | 4498 <i>3</i>           | 100                      | 5427.0           | $(17/2^+)$               |                       |                           |                                    |  |  |  |  |
| 10120.3                            | $(21/2^+)$           | 2410 2                  | 100' 50                  | 7708.6           | $(19/2^+)$               |                       |                           |                                    |  |  |  |  |
|                                    |                      | 3323 2                  | 100' 50                  | 6797.3           | $(19/2^+)$               |                       |                           |                                    |  |  |  |  |
|                                    |                      | 3512 2                  | 100' 50                  | 6610.6           | $(19/2^{-})$             |                       |                           |                                    |  |  |  |  |
| 10143.0                            | $(21/2^+)$           | 517 1                   | <12.5                    | 9626.1           | $(21/2^+)$               | 1                     |                           |                                    |  |  |  |  |
|                                    |                      | 2433 1                  | 381 13                   | 7708.6           | $(19/2^+)$               | $D+Q^{t}$             |                           |                                    |  |  |  |  |
|                                    |                      | 2791 2                  | <12.5                    | 7352.8           | $(19/2^+)$               |                       |                           |                                    |  |  |  |  |
|                                    |                      | 3069 1                  | 38' 13                   | 7074.4           | $(17/2^+)$               | - i                   |                           |                                    |  |  |  |  |
| 10225.2                            | $(21/2^+)$           | 4716 2<br>3615 <i>3</i> | $100^{\prime} 25$<br>100 | 5427.0<br>6610.6 | $(17/2^+)$<br>$(19/2^-)$ | Q <sup>t</sup>        |                           |                                    |  |  |  |  |
| 10277.8                            | $(25/2^+)$           | 819.8 <sup>e</sup> 2    | 100 <sup>i</sup> 6       | 9457.4           | $(23/2^+)$               | D+Q <sup>i</sup>      |                           | $\delta$ : +0.21 5 or +6.3 +78–14. |  |  |  |  |
|                                    |                      | 1548.8 4                | 76 <sup>1</sup> 11       | 8729.8           | $(21/2^+)$               | $Q^i$                 |                           |                                    |  |  |  |  |
| 10363.3                            | $(21/2^+)$           | 3611 <i>3</i>           | <12.5 <sup>1</sup>       | 6750.0           | $(17/2^+)$               |                       |                           |                                    |  |  |  |  |
|                                    |                      | 3753 <sup>e</sup> 2     | 100 <sup>1</sup> 62      | 6610.6           | $(19/2^{-})$             |                       |                           |                                    |  |  |  |  |
|                                    |                      | 4937 <i>4</i>           | 38 <sup>1</sup> 13       | 5427.0           | $(17/2^+)$               | Q <sup>i</sup>        |                           |                                    |  |  |  |  |
| 10372.3                            | $(25/2^{-})$         | 1197.8 6                | 17.5 <sup>1</sup> 25     | 9174.5           | $(23/2^{-})$             | D+Q <sup>1</sup>      |                           |                                    |  |  |  |  |
|                                    |                      | 2259 1                  | 100 <sup>1</sup> 22      | 8113.3           | $(21/2^{-})$             | Q <sup>i</sup>        |                           |                                    |  |  |  |  |
|                                    |                      | 2928 1                  | 20 <sup>1</sup> 7        | 7444.6           | $(21/2^{-})$             | $Q^{l}$               |                           |                                    |  |  |  |  |
| 10381.4                            | $(21/2^+)$           | 3586 <i>3</i>           | 60 <sup>1</sup> 20       | 6797.3           | $(19/2^+)$               |                       |                           |                                    |  |  |  |  |
|                                    |                      | 3770 2                  | 100 <sup>1</sup> 40      | 6610.6           | $(19/2^{-})$             |                       |                           |                                    |  |  |  |  |
| 10605.2                            | $(27/2^+)$           | 932.1 2                 | 100 <sup>1</sup> 7       | 9673.0           | $(25/2^+)$               | $D+Q^{l}$             | +0.24 5                   |                                    |  |  |  |  |
|                                    |                      | 1662.0 <i>3</i>         | 57 <sup>1</sup> 4        | 8943.5           | $(23/2^+)$               | $Q^{l}$               |                           |                                    |  |  |  |  |
| 10657.4                            | $(21/2^{-})$         | 4047 4                  | 100                      | 6610.6           | $(19/2^{-})$             | mi                    |                           |                                    |  |  |  |  |
| 10679.0                            | $(21/2^{-})$         | 3234 2                  | $100^{i} 33$             | 7444.6           | $(21/2^{-})$             | mi                    |                           |                                    |  |  |  |  |
|                                    |                      | 4072 4                  | <33 <sup>1</sup>         | 6610.6           | $(19/2^{-})$             |                       |                           |                                    |  |  |  |  |
|                                    |                      | 4629 3                  | $67^{i} 33$              | 6049.8           | $(17/2^{-})$             | e i                   |                           |                                    |  |  |  |  |
|                                    |                      | 4957 4                  | 674 33                   | 5722.2           | $(1^{7}/2^{-})$          | Q <sup>i</sup>        |                           |                                    |  |  |  |  |
| 10824.0                            | $(25/2^{-})$         | 2010.4 4                | 100                      | 8813.8           | $(23/2^{-})$             | $(D+Q)^{t}$           |                           |                                    |  |  |  |  |
| 10867                              | $(23/2^{-})$         | 3422 3                  | 100                      | 7444.6           | $(21/2^{-})$             | $D+Q^{i}$             |                           |                                    |  |  |  |  |
| 11122.4                            | $(23/2^{-})$         | 3007 2                  | 100' 15                  | 8116.0           | $(21/2^+)$               | $D^{\prime}$          |                           |                                    |  |  |  |  |
|                                    |                      | 3505 2                  | 25' 5                    | 7616.5           | $(21/2^{-})$             | $D+Q^{t}$             |                           |                                    |  |  |  |  |
|                                    | (a.m. 1.)            | 3678 2                  | 75' 10                   | 7444.6           | $(21/2^{-})$             | D+Q <sup>t</sup>      |                           | $\delta: -0.2 > \delta > -2.0.$    |  |  |  |  |
| 11213.4                            | $(27/2^+)$           | 935.0 <sup>e</sup> 2    | 76' 6                    | 10277.8          | $(25/2^+)$               | e i                   |                           |                                    |  |  |  |  |
| 110166                             | $(22/2^{+})$         | 1756.3 <i>3</i>         | 100' 6                   | 9457.4           | $(23/2^+)$               | Q <sup><i>t</i></sup> |                           |                                    |  |  |  |  |
| 11210.0                            | $(23/2^{+})$         | 4420 3                  | <100<100                 | 6797.3           | $(21/2^+)$<br>$(19/2^+)$ |                       |                           |                                    |  |  |  |  |

 $^{59}_{29}$ Cu $_{30}$ -45

From ENSDF

 $^{59}_{29}\mathrm{Cu}_{30}$ -45

| Adopted Levels, Gammas (continued) |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|------------------------------------|------------------------|--------------------------------|------------------|------------------|------------------------------|--------------------|----------------------------|------|--------|-----|--|
|                                    |                        |                                |                  |                  |                              | <u>γ(</u>          | <sup>59</sup> Cu) (continu | ued) |        |     |  |
| $E_i$ (level)                      | $\mathbf{J}_i^{\pi}$   | $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{h}$ | $\mathbf{E}_{f}$ | $J_f^{\pi}$                  | Mult. <sup>k</sup> | δ <sup>ko</sup>            |      | Commen | nts |  |
| 11250<br>11371.4                   | (23/2)<br>$(25/2^{-})$ | 3805 <i>3</i><br>3926 <i>3</i> | 100 2<br>100 5   | 7444.6<br>7444.6 | $(21/2^{-})$<br>$(21/2^{-})$ | $\frac{D^l}{Q}$    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |
|                                    |                        |                                |                  |                  |                              |                    |                            |      |        |     |  |

|                        | Adopted Levels, Gammas (continued) |                         |                  |                  |                              |                    |                                 |  |  |  |  |
|------------------------|------------------------------------|-------------------------|------------------|------------------|------------------------------|--------------------|---------------------------------|--|--|--|--|
|                        |                                    |                         |                  |                  |                              | <u>)</u>           | $v(^{59}\text{Cu})$ (continued) |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}^{\pi}_{i}$             | $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{h}$ | $\mathrm{E}_{f}$ | $J_f^\pi$                    | Mult. <sup>k</sup> | Comments                        |  |  |  |  |
| 11660.8                | $(27/2^{-})$                       | 1288.7 <sup>@</sup> 1   | 36 27            | 10372.3          | $(25/2^{-})$                 |                    |                                 |  |  |  |  |
|                        | ,                                  | 2328 1                  | 73 27            | 9333.3           | $(23/2^{-})$                 | Q <sup>i</sup>     |                                 |  |  |  |  |
|                        |                                    | 2486 1                  | 100 45           | 9174.5           | (23/2-)                      | Q <sup>i</sup>     |                                 |  |  |  |  |
| 11721.3                | $(25/2^{-})$                       | 598.8 1                 | 100 8            | 11122.4          | $(23/2^{-})$                 | D <sup>i</sup>     |                                 |  |  |  |  |
|                        |                                    | 1042.4 9                | 35 5             | 10679.0          | $(21/2^{-})$                 | Q <sup>i</sup>     |                                 |  |  |  |  |
|                        |                                    | 1064 2                  | 5.0 25           | 10657.4          | $(21/2^{-})$                 |                    |                                 |  |  |  |  |
|                        |                                    | 2870 1                  | 20 5             | 8852.6           | $(21/2^{-})$                 | Q <sup>t</sup>     |                                 |  |  |  |  |
|                        |                                    | 3608.1 <sup>w</sup>     | 7.5 25           | 8113.3           | $(21/2^{-})$                 | _ i                |                                 |  |  |  |  |
| 11020.2                | (25/2+)                            | 4277 3                  | 50 5             | 7444.6           | $(21/2^{-})$                 | $Q^{i}$            |                                 |  |  |  |  |
| 11839.2                | $(25/2^{+})$                       | 1614 <i>I</i><br>1606 2 | 100 25           | 10225.2          | $(21/2^+)$<br>$(21/2^+)$     | Q                  |                                 |  |  |  |  |
|                        |                                    | 1718 <sup>e</sup> 1     | 63 13            | 10145.0          | $(21/2^{+})$<br>$(21/2^{+})$ |                    |                                 |  |  |  |  |
|                        |                                    | 1916 <i>I</i>           | 75 13            | 9923.4           | $(21/2^+)$                   |                    |                                 |  |  |  |  |
|                        |                                    | 2506 1                  | 50 13            | 9333.3           | $(23/2^{-})$                 | D <sup>i</sup>     |                                 |  |  |  |  |
|                        |                                    | 2665 <sup>@</sup> 2     | <12.5            | 9175.3           | $(21/2^+)$                   |                    | $E_{\gamma}$ : doublet.         |  |  |  |  |
| 11010.4                | (25/2+)                            | 2896 2                  | 100 25           | 8943.5           | $(23/2^+)$                   | D+Q <sup>1</sup>   |                                 |  |  |  |  |
| 11919.4                | $(25/2^{+})$                       | 703 1                   | 63<br>356        | 11216.6          | $(23/2^+)$<br>$(21/2^+)$     |                    |                                 |  |  |  |  |
|                        |                                    | 1556 <sup>e</sup> 1     | 100 10           | 10363.3          | $(21/2^{+})$                 | $O^{i}$            |                                 |  |  |  |  |
|                        |                                    | 1776 1                  | 74 3             | 10143.0          | $(21/2^+)$<br>$(21/2^+)$     | $Q^{i}$            |                                 |  |  |  |  |
|                        |                                    | 1800 <i>I</i>           | 16 3             | 10120.3          | $(21/2^+)$<br>$(21/2^+)$     | ×                  |                                 |  |  |  |  |
|                        |                                    | 1996 2                  | 10 3             | 9923.4           | $(21/2^+)$                   |                    |                                 |  |  |  |  |
|                        |                                    | 2462 1                  | 77 13            | 9457.4           | $(23/2^+)$                   | D+Q <sup>1</sup>   |                                 |  |  |  |  |
|                        |                                    | 2583 2                  | 45 13            | 9333.3           | $(23/2^{-})$                 | $D^{l}$            |                                 |  |  |  |  |
|                        |                                    | 2626 2                  | 03<br>133        | 9293.8           | $(21/2^+)$<br>$(21/2^+)$     |                    |                                 |  |  |  |  |
|                        |                                    | 3104 2                  | 26.6             | 8813.8           | $(21/2^{-})$<br>$(23/2^{-})$ | D <sup>i</sup>     |                                 |  |  |  |  |
|                        |                                    | 3192 2                  | 63               | 8729.8           | $(21/2^+)$                   | 2                  |                                 |  |  |  |  |
|                        |                                    | 3261 2                  | 32 10            | 8657.7           | $(21/2^+)$                   | Q <sup>i</sup>     |                                 |  |  |  |  |
| 11020.2                | (25/2-)                            | 3802 2                  | 26 10            | 8116.0           | $(21/2^+)$                   |                    |                                 |  |  |  |  |
| 11938.3                | (25/2)                             | 2998 2<br>3425 P 3      | <100             | 8943.5<br>8513   | $(23/2^+)$<br>$(21/2^-)$     |                    |                                 |  |  |  |  |
| 11983.3                | $(23/2^{-})$                       | 4931 2                  | 100              | 7053.2           | $(21/2^{-})$<br>$(19/2^{-})$ |                    |                                 |  |  |  |  |
| 12040.8                | $(25/2^+)$                         | 1763 <i>1</i>           | 29 14            | 10277.8          | $(25/2^+)$                   | т                  |                                 |  |  |  |  |
|                        |                                    | 2584 1                  | 71 21            | 9457.4           | $(23/2^+)$                   | D+Q <sup>i</sup>   |                                 |  |  |  |  |
|                        |                                    | 2608 1                  | 36 21            | 9433.2           | $(21/2^+)$                   |                    |                                 |  |  |  |  |
|                        |                                    | 3311 2                  | 14 /<br>14 7     | 8943.5<br>8729.8 | $(23/2^{+})$<br>$(21/2^{+})$ |                    |                                 |  |  |  |  |
|                        |                                    | 3383 <sup>@</sup> 2     | <7.14            | 8657.7           | $(21/2^+)$                   |                    |                                 |  |  |  |  |
|                        |                                    | 3922 2                  | 100 21           | 8116.0           | $(21/2^+)$                   | Q <sup>i</sup>     |                                 |  |  |  |  |
| 12112.6                | $(27/2^{-})$                       | 3299 2                  | 100              | 8813.8           | (23/2 <sup>-</sup> )         | Q <sup>i</sup>     |                                 |  |  |  |  |

|                        |                      |                              |                  |           | A                    | dopted                | Levels, Gammas (continued)    |          |
|------------------------|----------------------|------------------------------|------------------|-----------|----------------------|-----------------------|-------------------------------|----------|
|                        |                      |                              |                  |           |                      |                       | $\gamma(^{59}Cu)$ (continued) |          |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$ | $I_{\gamma}^{h}$ | $E_f$     | $\mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup>    |                               | Comments |
| 12245.4                | (25/2+)              | 1864 <i>1</i>                | 75 25            | 10381.4 ( | 21/2+)               | Q <sup><i>i</i></sup> |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |
|                        |                      |                              |                  |           |                      |                       |                               |          |

 $^{59}_{29}$ Cu<sub>30</sub>-48

|                                         | Adopted Levels, Gammas (continued) |                                  |                  |                                                      |                    |                 |                         |                                                                                                |  |  |  |
|-----------------------------------------|------------------------------------|----------------------------------|------------------|------------------------------------------------------|--------------------|-----------------|-------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| $\gamma$ <sup>(59</sup> Cu) (continued) |                                    |                                  |                  |                                                      |                    |                 |                         |                                                                                                |  |  |  |
| E <sub>i</sub> (level)                  | $\mathbf{J}_i^{\pi}$               | $E_{\gamma}^{\dagger}$           | $I_{\gamma}^{h}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$             | Mult. <sup>k</sup> | δ <sup>ko</sup> | α <sup>n</sup>          | Comments                                                                                       |  |  |  |
| 12245 4                                 | $(25/2^+)$                         | 3431.2                           | 100.25           | 8813.8 (23/2-)                                       | $D^{i}$            |                 |                         |                                                                                                |  |  |  |
| 12243.4                                 | $(29/2^+)$                         | 1035.0.3                         | 46 7             | $112134(27/2^+)$                                     | $D+O^i$            | +0.21 + 10 - 11 |                         |                                                                                                |  |  |  |
| 122 10.9                                | (2)/2)                             | 1971 7 4                         | 100 12           | $10277.8(25/2^+)$                                    | $O^i$              | 10.21 110 11    |                         |                                                                                                |  |  |  |
| 12375.4                                 | $(27/2^{-})$                       | 654.0 1                          | 100 12           | $10277.0$ ( $25/2^{-}$ )<br>$11721.3$ ( $25/2^{-}$ ) | $\nabla + O^{i}$   |                 |                         |                                                                                                |  |  |  |
| 1207011                                 | (= //= )                           | 1253.6.3                         | 73 13            | $11122.4 (23/2^{-})$                                 | $O^i$              |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1552 <i>I</i>                    | 10.0 25          | 10824.0 (25/2 <sup>-</sup> )                         | ×.                 |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 3042 2                           | 30 8             | 9333.3 (23/2-)                                       | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 3202 3                           | 28 15            | 9174.5 (23/2 <sup>-</sup> )                          | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 3561 2                           | 50 13            | 8813.8 (23/2-)                                       | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
| 12420.7                                 | $(29/2^+)$                         | 1815.6 4                         | 100 13           | 10605.2 (27/2+)                                      | D+Q <sup>i</sup>   | +0.23 +7-8      |                         |                                                                                                |  |  |  |
| 10554.1                                 | (27/2-)                            | 2748 1                           | 63 3             | 9673.0 (25/2 <sup>+</sup> )                          |                    |                 |                         |                                                                                                |  |  |  |
| 12554.1                                 | (27/2)                             | 615.8 <i>I</i>                   | 40 20            | 11938.3 (25/2)<br>10277.8 (25/2)                     | D                  |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | $2883^{e}$ 2                     | 80.30            | $9673.0 (25/2^+)$                                    | D                  |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 3743 3                           | <10              | 8813.8 (23/2 <sup>-</sup> )                          | 2                  |                 |                         |                                                                                                |  |  |  |
| 12810.0                                 | (29/2)                             | 2204.5 4                         | 100              | 10605.2 (27/2+)                                      | D+Q <sup>l</sup>   | -0.10 8         |                         |                                                                                                |  |  |  |
| 13105.5                                 | $(29/2^{-})$                       | 730.0 1                          | 100 10           | 12375.4 (27/2-)                                      | D+Q <sup>i</sup>   |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1385.1 9                         | 100.0 25         | 11721.3 (25/2-)                                      | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 2501 I                           | 33 5             | 10605.2 (27/2+)                                      | D <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
| 13128.1                                 | $(27/2^{-})$                       | 1145 <i>1</i>                    | 86 14            | 11983.3 (23/2-)                                      | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 4313 2                           | 100 14           | 8813.8 (23/2-)                                       | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
| 13195.6                                 | $(29/2^{-})$                       | 641.4 <i>1</i>                   | 50 10            | 12554.1 (27/2 <sup>-</sup> )                         | D+Q <sup>i</sup>   |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1083 <i>1</i>                    | 10 3             | 12112.6 (27/2-)                                      | D+Q <sup>i</sup>   |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1257.9 <i>3</i>                  | 20 10            | 11938.3 (25/2 <sup>-</sup> )                         | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1476 <sup>e</sup> 1              | 13 3             | $11721.3 (25/2^{-})$                                 |                    |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1824 <i>1</i><br>1981 1 <i>4</i> | <3.3<br>37.10    | 113/1.4 (25/2)<br>11213.4 (27/2+)                    |                    |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 2372 1                           | 13 3             | $10824.0 (25/2^{-})$                                 |                    |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 2591 <i>I</i>                    | 100 13           | $10605.2 (27/2^+)$                                   | D <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 2824 2                           | 27 10            | 10372.3 (25/2-)                                      | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
| 13353.5                                 | $(29/2^+)$                         | 1108 <i>1</i>                    | 6.5 6            | 12245.4 (25/2+)                                      | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1313 <i>I</i>                    | 28.8 18          | 12040.8 (25/2+)                                      | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1434 <i>1</i>                    | 100 6            | 11919.4 (25/2+)                                      | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
|                                         |                                    | 1514 <i>1</i>                    | 24.1 18          | 11839.2 (25/2+)                                      | Q <sup>i</sup>     |                 |                         |                                                                                                |  |  |  |
| 13360.5                                 | $(31/2^+)$                         | 1111.0 6                         | 26 5             | 12248.9 (29/2+)                                      | (M1+E2)            | +0.44 +10-12    | $1.86 \times 10^{-4} 4$ | $\alpha(K)=0.000167 \ 3; \ \alpha(L)=1.64\times10^{-5} \ 3; \ \alpha(M)=2.31\times10^{-6} \ 4$ |  |  |  |
|                                         |                                    |                                  |                  |                                                      |                    |                 |                         | $\alpha(N)=7.09\times10^{-8}$ 13; $\alpha(IPF)=8.6\times10^{-7}$ 4                             |  |  |  |
|                                         |                                    | 2147.1 5                         | 100 7            | 11213.4 (27/2 <sup>+</sup> )                         | Q                  |                 |                         |                                                                                                |  |  |  |
| 13422.6                                 | (29/2 <sup>-</sup> )               | 3050 3                           | 100              | 10372.3 (25/2 <sup>-</sup> )                         | Q                  |                 |                         |                                                                                                |  |  |  |
| 13480.8                                 | $(27/2^+)$                         | 3110 <sup>e</sup> 3              | 100              | 10372.3 (25/2-)                                      | $D^{l}$            |                 |                         |                                                                                                |  |  |  |

From ENSDF

 $^{59}_{29}$ Cu<sub>30</sub>-49

|                                         |                      | Adopted Levels, Gammas (continued) |                               |         |                              |                    |                 |                |          |  |  |
|-----------------------------------------|----------------------|------------------------------------|-------------------------------|---------|------------------------------|--------------------|-----------------|----------------|----------|--|--|
| $\gamma$ <sup>(59</sup> Cu) (continued) |                      |                                    |                               |         |                              |                    |                 |                |          |  |  |
| $E_i$ (level)                           | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$             | $I_{\gamma}^{h}$              | $E_f$   | $J_f^{\pi}$                  | Mult. <sup>k</sup> | δ <sup>ko</sup> | a <sup>n</sup> | Comments |  |  |
| 13520.4                                 | (29/2-)              | 1858.9 <i>20</i><br>3148 3         | 44 <i>23</i><br>100 <i>23</i> | 11660.8 | $(27/2^{-})$<br>$(25/2^{-})$ | $(0)^{\mathbf{i}}$ |                 |                |          |  |  |
| 13528.6                                 | (31/2)               | 718.6 1                            | 100 23                        | 12810.0 | (29/2)                       | $D+Q^{i}$          |                 |                |          |  |  |

 $^{59}_{29}$ Cu $_{30}$ -50

|                        |                      |                                  |                  |                                          | Adopte             | d Levels, Gammas (continued)            |
|------------------------|----------------------|----------------------------------|------------------|------------------------------------------|--------------------|-----------------------------------------|
|                        |                      |                                  |                  |                                          |                    | $\gamma$ <sup>(59</sup> Cu) (continued) |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$           | $I_{\gamma}^{h}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult. <sup>k</sup> | $\delta^{ko}$                           |
| 13528.6                | (31/2)               | 1108.0 2                         | 45 8             | $12420.7$ $(29/2^+)$                     | D+O <sup>li</sup>  | +0.16 + 11 - 8                          |
| 13920.3                | $(31/2^{-})$         | 814.6 2                          | 80 4             | 13105.5 (29/2 <sup>-</sup> )             | $D+O^{i}$          |                                         |
|                        |                      | 1545.6 3                         | 100 20           | $12375.4 (27/2^{-})$                     | 0 <sup>i</sup>     |                                         |
| 13934.4                | $(31/2^{-})$         | 739 <sup>e</sup> 1               | 6.7 22           | 13195.6 (29/2-)                          | $D+O^{i}$          |                                         |
|                        |                      | 1379 <i>1</i>                    | 22 4             | 12554.1 (27/2 <sup>-</sup> )             | Q <sup>i</sup>     |                                         |
|                        |                      | 1560 <sup>e</sup> 1              | 100 11           | 12375.4 (27/2 <sup>-</sup> )             | $Q^i$              |                                         |
| 14237.9                | $(29/2^{-})$         | 1378 <sup>e</sup> 1              | 100 33           | 12859.4 (25/2 <sup>-</sup> )             |                    |                                         |
|                        |                      | 2579 <mark>d</mark> 2            | 67 17            | 11660.8 (27/2-)                          | D+Q <sup>i</sup>   |                                         |
| 14519.4                | (33/2)               | 990.8 2                          | 100              | 13528.6 (31/2)                           | D+Q <sup>i</sup>   | +0.16 6                                 |
| 14586.9                | $(33/2^+)$           | 1225 <sup>d</sup> 1              | 41 9             | 13360.5 (31/2+)                          |                    |                                         |
|                        |                      | 2338.3 5                         | 100 14           | 12248.9 (29/2 <sup>+</sup> )             | Q <sup>i</sup>     |                                         |
| 14654.1                | $(31/2^{-})$         | 1526 <i>1</i>                    | 100              | 13128.1 (27/2 <sup>-</sup> )             | Q <sup>i</sup>     |                                         |
| 14700.4                |                      | 4095 3                           | 100 20           | $10605.2 (27/2^+)$                       |                    |                                         |
| 14704.2                | (22/2-)              | 4328 3                           | 40 20            | 103/2.3 (25/2)                           | D. OI              | . 1                                     |
| 14/84.3                | (33/2)               | 850 7                            | 13 3             | 13934.4 (31/2)                           | $D+Q^{i}$          | ≈+1                                     |
| 14052.0                | $(22/2^{+})$         | 1588./ 3                         | 100 /            | 13195.6 (29/2)                           | Q                  |                                         |
| 14952.8                | $(33/2^+)$           | 1599.3 5                         | 100              | $13353.5 (29/2^+)$                       | Q <sup>e</sup>     | 0.15 . 5 . 7                            |
| 14957.3                | (33/2)               | 1038° 1                          | /1 14            | 13920.3 (31/2)                           | $D+Q^{i}$          | -0.15 +5-7                              |
| 15001 (                | $(21/2^{+})$         | 1850.9 8                         | 100 14           | 13105.5(29/2)                            | Q <sup>i</sup>     |                                         |
| 15331.6                | $(31/2^{+})$         | 1811° 1<br>1851 <mark>° 1</mark> | 100 33           | 13520.4 (29/2)<br>13480.8 (27/2+)        | D.                 |                                         |
|                        |                      | 1909 <sup>e</sup> 1              | 56 22            | $13422.6 (29/2^{-})$                     |                    |                                         |
| 15726.1                | $(35/2^{-})$         | 942 1                            | 24 4             | 14784.3 (33/2 <sup>-</sup> )             | D+O <sup>i</sup>   | ≈+2                                     |
|                        |                      | 1791.6 4                         | 100 12           | 13934.4 (31/2 <sup>-</sup> )             | 0 <sup>i</sup>     |                                         |
|                        |                      | 1806 <i>1</i>                    | 40 8             | 13920.3 (31/2 <sup>-</sup> )             | $\tilde{Q}^{i}$    |                                         |
| 15958.9                | $(33/2^{-})$         | 1304.8 <sup>e</sup> 5            | 33 8             | 14654.1 (31/2-)                          | D+Q <sup>i</sup>   |                                         |
|                        |                      | 1721 <sup>e</sup> 1              | 100 17           | 14237.9 (29/2 <sup>-</sup> )             | Q <sup>i</sup>     |                                         |
| 15986.0                | $(35/2^{-})$         | 1028 <i>1</i>                    | 53 21            | 14957.3 (33/2 <sup>-</sup> )             | D+Q <sup>i</sup>   | -0.15 +5-7                              |
|                        |                      | 2066 <sup>e</sup> 1              | 100 21           | 13920.3 (31/2 <sup>-</sup> )             | Q <sup>i</sup>     |                                         |
| 16032.5                | $(35/2^+)$           | 1445 <sup>@</sup> 1              | 24 6             | 14586.9 (33/2+)                          |                    |                                         |
|                        |                      | 2672 <sup>e</sup> 1              | 100 18           | 13360.5 (31/2+)                          | Q <sup>i</sup>     |                                         |
| 16505.5                |                      | 1805 <i>1</i>                    | 100              | 14700.4                                  |                    |                                         |
| 16561.1                | $(35/2^{-})$         | 1907 <i>1</i>                    | 100              | 14654.1 (31/2 <sup>-</sup> )             | Q <sup>i</sup>     |                                         |
| 16756.8                | $(37/2^{-})$         | 1031 <sup>e</sup> 1              | 9.1 18           | 15726.1 (35/2 <sup>-</sup> )             | $D+Q^{l}$          | $\approx +1$                            |
|                        |                      | 1972.4 <mark>°</mark> 6          | 100.0 18         | 14784.3 (33/2 <sup>-</sup> )             | Q                  |                                         |
| 16852.6                | $(37/2^+)$           | 1899.8 6                         | 100              | 14952.8 (33/2+)                          | Q <sup>1</sup> .   |                                         |
| 17125.1                | $(37/2^{-})$         | 1139 <i>1</i>                    | 33 17            | 15986.0 (35/2 <sup>-</sup> )             | D+Q <sup>1</sup>   | +0.69 +6-8                              |
|                        |                      | 2168 1                           | 100 17           | 14957.3 (33/2 <sup>-</sup> )             | Q <sup>1</sup>     |                                         |
| 17607.7                | $(35/2^+)$           | 2276 <sup>e</sup> 1              | 100              | 15331.6 (31/2+)                          | Q <sup>1</sup>     |                                         |

|                        |                      |                                      |                               |                    |                          | Adopted Levels, Gammas (continued) |                 |  |  |
|------------------------|----------------------|--------------------------------------|-------------------------------|--------------------|--------------------------|------------------------------------|-----------------|--|--|
|                        |                      |                                      |                               |                    |                          |                                    | ed)             |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$               | $I_{\gamma}^{h}$              | $E_f$              | $\mathbf{J}_f^\pi$       | Mult. <sup>k</sup>                 | δ <sup>ko</sup> |  |  |
| 17830.2                | (37/2 <sup>+</sup> ) | 1798 <sup><i>d</i></sup> 2<br>3243 2 | 33 <i>17</i><br>100 <i>33</i> | 16032.5<br>14586.9 | $(35/2^+)$<br>$(33/2^+)$ |                                    |                 |  |  |

# $\gamma(^{59}Cu)$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$         | $E_{\gamma}^{\dagger}$        | $I_{\gamma}^{h}$ | $E_f$            | $\mathbf{J}_{f}^{\pi}$       | Mult. <sup>k</sup> | δ <sup>ko</sup> |
|------------------------|------------------------------|-------------------------------|------------------|------------------|------------------------------|--------------------|-----------------|
| 17884                  |                              | 4523 4                        | 100              | 13360.5          | $(31/2^+)$                   |                    |                 |
| 17963.1                | $(39/2^{-})$                 | 2237 1                        | 100              | 15726.1          | $(35/2^{-})$                 | Q <sup>i</sup>     |                 |
| 18029.0                | $(37/2^{-})$                 | 2070.1 <sup>e</sup> 7         | 100              | 15958.9          | $(33/2^{-})$                 | Q <sup>i</sup>     |                 |
| 18310.3                | $(39/2^{-})$                 | 1184.7 <mark>°</mark> 10      | 50 15            | 17125.1          | $(37/2^{-})$                 | D+Q <sup>i</sup>   | +0.12 5         |
|                        |                              | 2324 1                        | 100 9            | 15986.0          | $(35/2^{-})$                 | Q <sup>i</sup>     |                 |
| 18680                  |                              | 4160 4                        | 100              | 14519.4          | (33/2)                       |                    |                 |
| 18883                  | $(39/2^{-})$                 | 2322 2                        | 100              | 16561.1          | $(35/2^{-})$                 | Q <sup>i</sup>     |                 |
| 18955                  |                              | 4435 4                        | 100              | 14519.4          | (33/2)                       |                    |                 |
| 19095.1                | $(41/2^+)$                   | 2242.4 7                      | 100              | 16852.6          | $(37/2^+)$                   | Q <sup>1</sup>     |                 |
| 19428.5                | $(41/2^{-})$                 | 2674 <sup><b>@</b></sup> 1    | 100              | 16756.8          | $(37/2^{-})$                 | Q <sup>1</sup>     |                 |
| 19672.3                | $(41/2^{-})$                 | 1361.9 <i>3</i>               | 28 13            | 18310.3          | $(39/2^{-})$                 | D+Q <sup>1</sup>   | +0.02 1         |
|                        |                              | 2548 1                        | 100 13           | 17125.1          | $(37/2^{-})$                 | Q <sup>1</sup>     |                 |
| 19837                  | $(39/2^+)$                   | 2006 <sup>@</sup> 1           | <25              | 17830.2          | $(37/2^+)$                   |                    |                 |
| 10010                  | (20/2+)                      | 3804 3                        | 100 25           | 16032.5          | $(35/2^+)$                   |                    |                 |
| 19918                  | $(39/2^+)$                   | 3885 3                        | 100              | 16032.5          | $(35/2^+)$                   | (Q)                |                 |
| 20524 1                | (39/2)<br>$(41/2^{-})$       | 2325 1                        | 100              | 18029.0          | (33/2)<br>$(37/2^{-})$       | Q<br>0             |                 |
| 20708                  | (11/2)                       | 1753 2                        | <100             | 18955            | (37/2)                       | ×                  |                 |
|                        |                              | 2028 1                        | <100             | 18680            |                              |                    |                 |
| 21096.3                | $(43/2^{-})$                 | 1424 2                        | 15 5             | 19672.3          | $(41/2^{-})$                 | D+Q <sup>i</sup>   |                 |
|                        |                              | 2786 2                        | 100 20           | 18310.3          | (39/2 <sup>-</sup> )         | Q <sup>i</sup>     |                 |
| 21258                  | $(43/2^{-})$                 | 3295 <i>3</i>                 | 100              | 17963.1          | $(39/2^{-})$                 |                    |                 |
| 21641                  | $(43/2^{-})$                 | 2758 2                        | 100              | 18883            | $(39/2^{-})$                 | Q <sup>1</sup>     |                 |
| 21706.1                | $(45/2^+)$                   | 2611 <i>I</i>                 | 100              | 19095.1          | $(41/2^+)$                   | Q <sup>1</sup>     |                 |
| 22051                  | $(41/2^+)$<br>$(42/2^+)$     | 2214 <i>I</i>                 | 100              | 19837            | $(39/2^+)$                   |                    |                 |
| 22380                  | (45/2)                       | 2049 2<br>1500 <sup>e</sup> 1 | 75 25            | 19950.7          | (39/2)                       | D                  |                 |
| 22080.4                | (43/2)                       | 1390- 1                       | 100 20           | 21090.5          | (43/2)                       | D+Q <sup>r</sup>   |                 |
| 22450                  | $(A \in [0])$                | 3014 2                        | 100 38           | 19072.5          | (41/2)                       | Q <sup>i</sup>     |                 |
| 23439                  | (45/2)                       | 2935 2                        | 100              | 20524.1          | (41/2)<br>$(41/2^{-})$       | (Q) <sup>•</sup>   |                 |
| 24318.6                | $(47/2^{-})$                 | 1632 1                        | 67 17            | 22686.4          | (41/2)<br>$(45/2^{-})$       |                    |                 |
|                        |                              | 3223 3                        | 100 33           | 21096.3          | $(43/2^{-})$                 |                    |                 |
| 24710                  | $(49/2^+)$                   | 3004 2                        | 100              | 21706.1          | $(45/2^+)$                   | Q                  |                 |
| 24769                  | $(47/2^{-})$                 | 3128 2                        | 100              | 21641            | $(43/2^{-})$                 |                    |                 |
| 25679                  | $(47/2^{+})$<br>$(40/2^{-})$ | 3099 3                        | 100              | 22580<br>22686 4 | $(43/2^{+})$<br>$(45/2^{-})$ |                    |                 |
| 26840?                 | $(49/2^{-})$                 | $3382^{p}$ 3                  | <100             | 22080.4          | $(45/2^{-})$                 |                    |                 |
| 28134                  | $(53/2^+)$                   | 3424 1                        | 100              | 24710            | $(49/2^+)$                   | $O^{i}$            |                 |
| 31961                  | $(57/2^+)$                   | 3827 1                        | <100             | 28134            | $(53/2^+)$                   | ×                  |                 |
| 1631.0+x               | (J+2)                        | 1631 <i>1</i>                 | 100              | Х                | (J)                          |                    |                 |
| 3647.0+x               | (J+4)                        | 2016 <i>I</i>                 | 100              | 1631.0+x         | (J+2)                        |                    |                 |
| 6005.1+x               | (J+6)                        | 2358 1                        | 100              | 3647.0+x         | (J+4)                        |                    |                 |

53

|                                    |                           |                            |                              |                            | Ado                                           | Adopted Levels, Gammas (con |                 |  |  |
|------------------------------------|---------------------------|----------------------------|------------------------------|----------------------------|-----------------------------------------------|-----------------------------|-----------------|--|--|
|                                    |                           |                            |                              |                            |                                               | <u>γ(<sup>59</sup>Cι</u>    | 1) (continued)  |  |  |
| E <sub>i</sub> (level)<br>8812.2+x | $\frac{J_i^{\pi}}{(J+8)}$ | Ε <sub>γ</sub> †<br>2807 2 | $\frac{I_{\gamma}^{h}}{100}$ | E <sub>f</sub><br>6005.1+x | $\frac{\mathbf{J}_{f}^{\pi}}{(\mathbf{J+6})}$ | Mult. <sup>k</sup>          | δ <sup>ko</sup> |  |  |
|                                    |                           |                            |                              |                            |                                               |                             |                 |  |  |

#### Adopted Levels, Gammas (continued)

# $\gamma$ (<sup>59</sup>Cu) (continued)

<sup>†</sup> Unless noted otherwise,  $E\gamma$  values are from <sup>40</sup>Ca(<sup>28</sup>Si,  $2\alpha p\gamma$ ). Most of the  $E\gamma$  values are in good agreement with values in other datasets, however, some are discrepant. Calculated  $\gamma$ -ray energies are added by the evaluator to list  $\gamma$ -ray properties when reported by authors without the energy. Note that some of these calculated  $\gamma$ -ray energies might be different compared calculated values in source dataset due to differences in level energies. <sup>‡</sup> Calculated by evaluator from level energy difference and recoil energy subtraction (placement in 1978Sc07 (<sup>3</sup>He, $d\gamma$ )). E $\gamma$  excluded from least-squares level energy adjustment. <sup>#</sup> Calculated by evaluator from level energy difference and recoil energy subtraction (placement in 1985Di05 (p, $\gamma$ )). E $\gamma$  excluded from least-squares level energy adjustment. <sup>@</sup> From level energy difference ( ${}^{28}Si, 2\alpha p\gamma$ ), omitted in least-squares fit. <sup>&</sup> Weighted average of data from (<sup>3</sup>He,pn $\gamma$ ) and (<sup>28</sup>Si,2 $\alpha$ p $\gamma$ ). <sup>*a*</sup> Weighted average of data from (<sup>3</sup>He,pn $\gamma$ ), (<sup>28</sup>Si,2 $\alpha$ p $\gamma$ ) and (<sup>3</sup>He,d $\gamma$ ). <sup>b</sup> Unweighted average from (<sup>3</sup>He,pn $\gamma$ ), (<sup>28</sup>Si,2 $\alpha$ p $\gamma$ ) and (<sup>3</sup>He,d $\gamma$ ). <sup>c</sup> Weighted average from  $\varepsilon$  decay, (p, $\gamma$ ), (<sup>3</sup>He,pn $\gamma$ ), (<sup>3</sup>He,d $\gamma$ ), and (<sup>28</sup>Si,2 $\alpha$ p $\gamma$ ). <sup>d</sup> Doublet with intense transitions in  ${}^{57}$ Co or  ${}^{58}$ Ni ( ${}^{28}$ Si.2 $\alpha$ py). <sup>*e*</sup> Doublet structure ( $^{28}$ Si, $2\alpha$ p $\gamma$ ). <sup>*f*</sup> From (<sup>3</sup>He,pn $\gamma$ ). <sup>g</sup> From (<sup>3</sup>He,d $\gamma$ ). <sup>*h*</sup> From (p, $\gamma$ ), except as noted. <sup>*i*</sup> From (<sup>28</sup>Si,  $2\alpha p\gamma$ ). <sup>j</sup> Weighted average of data from  $(p,\gamma)$  and  $({}^{28}Si,2\alpha p\gamma)$ . <sup>k</sup> From  $\gamma(\theta)$  in <sup>58</sup>Ni(p, $\gamma)$ , except as noted. For more than one  $\delta$  values from a dataset, additional one listed in comments section with equal preferences, unless noted otherwise. Sign assigned based on RUL, if level lifetime available. <sup>*l*</sup>  $\Delta J=1$  transition; mult=D or D+O (<sup>28</sup>Si.2 $\alpha$ py). <sup>*m*</sup>  $\Delta$ J=0 transition; mult=D or D+Q (<sup>28</sup>Si,2 $\alpha$ py). <sup>*n*</sup> Additional information 9. <sup>o</sup> If No value given it was assumed  $\delta$ =1.00 for E2/M1,  $\delta$ =1.00 for E3/M2 and  $\delta$ =0.10 for the other multipolarities. <sup>*p*</sup> Placement of transition in the level scheme is uncertain.



#### Level Scheme (continued)



#### Level Scheme (continued)



#### Level Scheme (continued)



Legend

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)



#### Level Scheme (continued)



#### Level Scheme (continued)

Intensities: Relative photon branching from each level



Legend

# Level Scheme (continued)

Intensities: Relative photon branching from each level

 $- - - - - - \rightarrow \gamma$  Decay (Uncertain)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>



 $^{59}_{29}{\rm Cu}_{30}$ 

Level Scheme (continued)



 $^{59}_{29}{\rm Cu}_{30}$ 

Legend

# Level Scheme (continued)



# Level Scheme (continued)



#### Level Scheme (continued)

Intensities: Relative photon branching from each level





## Level Scheme (continued)

Intensities: Relative photon branching from each level



## Level Scheme (continued)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>

# Level Scheme (continued)

Intensities: Relative photon branching from each level



 $^{59}_{29}{
m Cu}_{30}$
Level Scheme (continued)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>

#### Level Scheme (continued)

Intensities: Relative photon branching from each level



Level Scheme (continued)



# Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level



Level Scheme (continued)

Intensities: Relative photon branching from each level



#### Level Scheme (continued)

Intensities: Relative photon branching from each level



#### Level Scheme (continued)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>

Level Scheme (continued)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>

Legend

# Level Scheme (continued)



# Level Scheme (continued)



# Level Scheme (continued)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>

# Level Scheme (continued)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>

#### Level Scheme (continued)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>-89

# Adopted Levels, Gammas

Legend

# Level Scheme (continued)









# Adopted Levels, Gammas (continued)



#### Adopted Levels, Gammas (continued)



# Adopted Levels, Gammas (continued)



<sup>59</sup><sub>29</sub>Cu<sub>30</sub>