Adopted Levels, Gammas

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. Shamsuzzoha Basunia	NDS 151, 1 (2018)	1-Apr-2018				

 $Q(\beta^{-})=7.44\times10^{3} 21$; S(n)=4.17×10³ 22; S(p)=1.497×10⁴ 23; Q(α)=-8.84×10³ 27 2017Wa10

Measured mass excess: -48132 keV 20 (2018Mo14).

Production: on-line mass separation of products from W(⁷⁶Ge,x), E(⁷⁶Ge)=11.5 MeV/nucleon (1988Bo06,1985Bo49); fragmentation of 64.5 MeV/nucleon ⁶⁵Cu beam by ⁹Be (1996Do23); 60.3 MeV/nucleon ⁸⁶Kr beam fragmentation by Ni (1998Gr14); ⁵⁹V β^- decay (1999So20).

⁵⁹Cr Levels

Cross Reference (XREF) Flags

- **A** 59 V β^- decay
- **B** 59 Cr IT decay (96 μ s)

C $^{13}C(^{48}Ca, 2p\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(1/2 ⁻)	0.74 s 28	ABC	$%β^-=100$ $T_{1/2}$: From 1.0 s 4 (1985Bo49 – coin β-1238γ(t)), 0.6 s 3 (1988Bo06 – coin β-112γ(t)), 0.46 s 5 (1996Do23 – β(t) and βγ(t)), and 1.05 s 9 (2005Li53 – 1238γ(t)) – using the limitation of statistical weight method (1985ZiZY). Discrepant dataset. Weighted average is 0.74 s 6. Values reported in 1985Bo49, 1988Bo06, and 1996Do23 are from the same research group. 1996Do23 note new value is better compared to earlier ones due to better accuracy of isotope-separation over mass-separation (1985Bo49, 1988Bo06). However, 2005Li53 verify consistency of their ⁵⁹ Cr and ⁵⁹ V half-life values. The evaluator recommends a value from these discrepant datasets. Possible (γ 1/2[321]) oblate configuration (see J ^π footnote).
207.4 3	$(3/2^{-})$		ABC	Possible (v 3/2[321]) oblate configuration (see J^{π} footnote).
309.7 4	$(5/2^{-})$		ABC	Possible $(\nu 5/2[312])^{-1}$ oblate configuration (see J^{π} footnote).
502.7 11	$(9/2^+)$	96 μs 20	В	T _{1/2} : from ⁵⁹ Cr IT decay (1998Gr14). Possible (ν 9/2[404]) intruder oblate configuration (see J^{π} footnote).
524.4? [#] 5			Α	
800.0 4			Α	
827.7 4	$(7/2^{-})^{@}$		С	
915.3 4			Α	
1083.8? 11	(9/2) ^{-@}		С	
1315.9 <i>11</i>	$(13/2^+)^{@}$		С	
1340.7 5			Α	
1365.6 5			Α	
1531.8? [#] 5			Α	
2509.0? 8			Α	

[†] From least-squares fit to $E\gamma$.

[‡] Possible values suggested in 1999So20, except otherwise noted. For small to moderate deformations, a (ν f_{5/2}) g.s. configuration is expected, with the 35th neutron occupying the 3/2[301] and 1/2[321] orbitals, respectively, for prolate and oblate deformations. QRPA calculations predict prolate and oblate configurations 480 keV apart (1999So20), so ⁵⁹Cr possibly exhibits shape

Adopted Levels, Gammas (continued)

⁵⁹Cr Levels (continued)

coexistence. 1998Gr14 suggest that the 503-keV isomeric level is analogous to $g_{9/2}$ intruder states known in several nuclides with N≈40 and Z≈28 which de-excite via an M2 transition to a $5/2^-$ (ν f_{5/2}) state (e.g., in ⁶¹Fe, ⁶⁷Ni). For oblate deformation, the 1/2[321], 3/2[321] and 9/2[404] orbitals can lie quite close in energy, and a $5/2^-$ state could arise from a hole in the 5/2[312] orbital. For prolate deformation, a 9/2⁺ state would lie at very high excitation (see, e.g., fig. 7 of 1998So03), so oblate deformation is favored for ⁵⁹Cr.

[#] The ordering of the 841-317 and 1222-977 cascades are uncertain thus the location of the 525 and 1532 levels would be different if the orderings are reversed.

 $\gamma(^{59}Cr)$

[@] Proposed in 2004Fr17 on the basis of ⁵⁹Cr β ⁻decay to ⁵⁹Mn, γ -ray placement, analysis of transition strengths, and assumption of yrast state feeding.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
207.4	(3/2 ⁻)	207.4 3	100	0.0	(1/2 ⁻)		E_{γ} : Weighted average of 207.8 4 (⁵⁹ V β ⁻ decay), 208 <i>l</i> (⁵⁹ Cr IT decay (96 μs)), and 207.1 3 (⁴⁸ Ca,2pγ).
309.7	(5/2 ⁻)	102.5 2	100	207.4	(3/2 ⁻)		E_{γ} : Weighted average of 102.0 4 (⁵⁹ V β ⁻ decay), 102 <i>I</i> (⁵⁹ Cr IT decay (96 μs)), and 102.7 2 (⁴⁸ Ca,2pγ).
502.7	(9/2+)	193 [@] 1	100	309.7	(5/2-)	[M2]	 B(M2)(W.u.)=0.080 17 Mult.: RUL eliminates E3, M3 and higher multipolarities; M2 favored by analogy with isomeric states in neighboring nuclides. 1999So20 conclude that the 193γ is the isomeric transition rather than the 208γ (suggested in 1998Gr14) because the 208γ and 102γ are present in ⁵⁹V β⁻ decay but the 193γ is not.
524.4? 800.0		317.3 [#] 4 490.8 5 592.4 4 799.9 5	100 55 <i>10</i> 100 7 26 7	207.4 309.7 207.4 0.0	$(3/2^{-})$ $(5/2^{-})$ $(3/2^{-})$ $(1/2^{-})$		
827.7 915.3	(7/2-)	518.0 [‡] 2 606.0 4 707.6 5	100 100 6 17 5	309.7 309.7 207.4	$(5/2^{-})$ $(5/2^{-})$ $(3/2^{-})$		
1083.8?	$(9/2)^{-}$	256 ^{‡a} 1	100	827.7	$(7/2^{-})$		
1315.9 1340.7	(13/2 ⁺)	813.2 [‡] 3 425.5 4 1030.8 4	100 71 <i>13</i> 100 <i>13</i>	502.7 915.3 309.7	$(9/2^+)$ $(5/2^-)$		
1365.6		841.4 [#] 4 1157.8 5	100 <i>11</i> 30 7	524.4? 207.4	$(3/2^{-})$		
1531.8? 2509.0?		1222.1 ^{&} 4 977.2 ^{&} 5 1593.4 ^a 5 2198.7 ^a 5	100 64 9 100 18 23 9	309.7 1531.8? 915.3 309.7	(5/2 ⁻)		

[†] From ⁵⁹V β^- decay, except as noted.

[‡] From (⁴⁸Ca,2p γ).

[#] Ordering of the 841-317 cascade not determined with certainty ($^{59}V\beta^{-}$ decay – 2005Li53).

[@] From ⁵⁹Cr IT decay (96 μ s).

[&] Ordering of the 1222-977 cascade not determined with certainty (2005Li53).

^a Placement of transition in the level scheme is uncertain.

⁵⁹₂₄Cr₃₅