13 C(48 Ca,2p γ) **2004Fr17**

History

Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. Shamsuzzoha Basunia	NDS 151, 1 (2018)	1-Apr-2018	

Target: 13 C enriched to 90%; Projectile E=130 MeV. Ions recoiling from the target position were separated from the primary beam particles by the Fragment Mass Analyzer. A parallel-grid avalanche counter (PGAC) was used for the horizontal and vertical positions and a segmented ion chamber was used to measure the energy-loss of the recoiling ions. Measured E γ , I γ , $\gamma\gamma$, (charged particle) γ coin with the GAMMASPHERE array which consisted of 93 Compton-suppressed Ge detectors, 52 of which were of a type with the outer electrode segmented into two halves.

⁵⁹Cr Levels

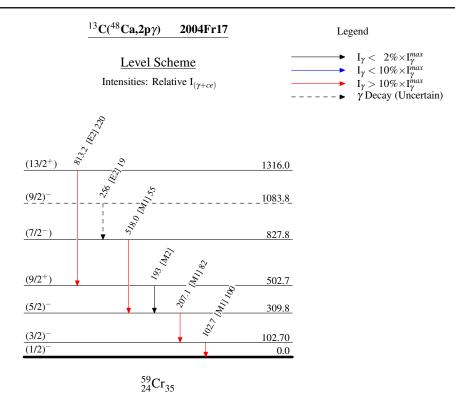
E(level) [†]	$J^{\pi \ddagger}$	Comments				
0.0	$(1/2)^{-}$					
102.70 20	(3/2)	E(level): 208 I in Adopted Levels, based on reversed cascade of $207.1\gamma-102.7\gamma$ from other studies with better statistics.				
309.8 4	$(5/2)^{-}$					
502.7 11	$(9/2^+)$	E(level): From Adopted Levels.				
827.8 5	$(7/2^{-})$	J^{π} : (13/2 ⁺) in table I of 2004Fr17 is a misprint (as per e-mail reply of June 7, 2004 from S.J. Freeman).				
1083.8? 11	$(9/2)^{-}$	E(level), J^{π} : 1093.8, $(7/2)^{-}$ in table I of 2004Fr17 are misprint (as per e-mail reply of June 7, 2004 from				
		S.J. Freeman). Level marked as questionable by evaluator based on uncertain 256γ placement.				
1316.0 <i>11</i>	$(13/2^+)$	J^{π} : (9/2) ⁻ in table I of 2004Fr17 is a misprint (as per e-mail reply of June 7, 2004 from S.J. Freeman).				

[†] From Ey's.

[‡] Proposed in 2004Fr17 on the basis of 59 Cr β^- decay to 59 Mn, γ -ray placement, analysis of transition strengths, and assumption of yrast state feeding.

γ(⁵⁹ Cr)
	-

E_{γ}	$I_{\gamma}^{\#}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α [@]	$I_{(\gamma+ce)}^{\ddagger}$	Comments
102.7 † 2	97.6	102.70	(3/2)-	0.0	(1/2)-	[M1]	0.0248	100	$ce(K)/(\gamma+ce)=0.0215 \ 7;$ $ce(L)/(\gamma+ce)=0.00207 \ 7$
193 <i>I</i>		502.7	(9/2+)	309.8	(5/2)-	[M2]	0.0303		$\alpha(K)=0.0267$ 8; $\alpha(L)=0.00268$ 8 E_{γ} : from Adopted Gammas; not observed by 2004Fr17 due to the long lifetime (96 μ s) of the isomer.
207.1 [†] 3	82 19	309.8	(5/2)-	102.70	(3/2)-	[M1]	0.00415	82 19	α =0.00415; ce(K)/(γ +ce)=0.00367 11; ce(L)/(γ +ce)=0.00035 1
256 ^{&} 1 518.0 2 813.2 3	19 <i>13</i> 55 28 220 26	1083.8? 827.8 1316.0	(9/2) ⁻ (7/2 ⁻) (13/2 ⁺)	827.8 309.8 502.7	(7/2 ⁻) (5/2) ⁻ (9/2 ⁺)	[E2] [M1] [E2]	0.00049 0.00027	19 <i>13</i> 55 28 220 26	α =0.00049; ce(K)/(γ +ce)=0.00043 <i>1</i> α =0.00027; ce(K)/(γ +ce)=0.00024 <i>1</i>


 $^{^{\}dagger}$ Cascade of 207.1 γ -102.7 γ is reversed in Adopted Gammas, based on other studies (2005Li53) with better statistics.

 $^{^{\}ddagger}$ Determined from an A/q-gated γ -ray spectrum without any timing gates placed on the individual Ge detectors. 2004Fr17 state that photon intensities have been corrected for internal conversion, but no multipolarities are listed explicitly.

[#] Deduced (by evaluator) from $I(\gamma+ce)$ and α .

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Placement of transition in the level scheme is uncertain.

