59 Ni ε decay 1991Ja02,2015Pf02

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. Shamsuzzoha Basunia	NDS 151, 1 (2018)	1-Apr-2018				

Parent: ⁵⁹Ni: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=7.6\times10^{4}$ y 5; $Q(\varepsilon)=1073.00$ 19; $\%\varepsilon+\%\beta^{+}$ decay=100.0

Others: 1951Br05, 1951Wi14, 1956Sa32, 1963Sc06, 1974Ch06, 1976Be02. 1991Ja02: ⁵⁹Ni activity was prepared by neutron irradiation of 188 mg Ni metal enriched to 99.927% in ⁵⁸Ni for 167 days at a neutron flux of 1.3×10^{14} cm⁻² s⁻¹. After chemical separation from contaminant activities, 10 mm diameter pellets were prepared. K x-rays were measured with a Si(Li) detector. Also internal bremsstrahlung in coincidence with K x-ray was measured using Si(Li) detector and a proportional counter.

2015Pf02: Re-analysis of γ spectrum coincident with cobalt K x-rays observed in the decay of ⁵⁹Ni from 1991Ja02. The high energy side, $E\gamma > 600$ keV, cannot be reproduced with a radiative electron capture calculation. A considerably better description is obtained when a virtual β - transition to the 1099 keV level is introduced.

⁵⁹Co Levels

E(level)	$J^{\pi \dagger}$	Comments		
0.0	7/2-			
1099.256 3	3/2-	E(level): The energy of this level exceeds the decay $Q(\beta^{-})$ value. From re-analysis of γ spectrum coincident with cobalt K x-rays observed in the decay of ⁵⁹ Ni in 1991Ja02, 2015Pf02 propose the population through virtual or 'detour' transitions.		

[†] From Adopted Levels.

ε, β^+ radiations

For studies of internal bremsstrahlung spectrum, see 1956Sa32, 1963Sc06, 1976Be02, 1991Ja02.

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(-26.26 19)	1099.256		≈3.41×10 ⁻³		≈0.00341	I ε : The energy of this level exceeds the decay $Q(\beta^-)$ value, therefore it can be populated only through virtual or 'detour' transitions. From the statement that the virtual and interference of 2% and 2.3%, respectively, of the integrated radiative electron capture gamma spectrum above 195 keV, a branching ratio of 3.41×10^{-3} per 100 decays of ⁵⁹ Ni is deduced in 2015Pf02.
(1073.00 <i>19</i>)	0.0	3.7×10 ⁻⁵ <i>1</i> 2	99.99696 1	11.89 3	99.997 3	av E β =24.69 27; ε K=0.8872; ε L=0.09607; ε M+=0.01672 I β +: %I β +=3.7×10 ⁻⁵ 12 from I(β +)/I(ε K(exp))=4.2×10 ⁻⁷ 13 (1991Ja02), assuming ε K/ ε =0.887. Other: I(β +)/I(ε)=1.5×10 ⁻⁷ (1976Be02). Note that allowed β decay theory gives %I β +=0.00152 9,≈2 orders of magnitude larger than experiment. I ε : 99.997 - %I β +. ε L(exp)/ ε K(exp)=0.121 2 (1974Ch06).

[†] Absolute intensity per 100 decays.