#### ${}^{58}$ Fe(p, $\gamma$ ) 1975Br29

#### History

| Туре            | Author                 | Citation          | Literature Cutoff Date |  |  |
|-----------------|------------------------|-------------------|------------------------|--|--|
| Full Evaluation | M. Shamsuzzoha Basunia | NDS 151, 1 (2018) | 1-Apr-2018             |  |  |

Others: 1972Pe23, 1973PeYY, 1974Ke14, 1977Ri14, 1979PiZO, 1982Ni05, 1993Ti06, 2000Ra27, 2001Fe06. 2000Ra27: E(p)=1.5-3.0 MeV, 90.7% <sup>58</sup>Fe target, pair spectrometer at 55°, NaI detector; measured primary  $\gamma$  spectra, yield of  $\gamma$ 's directly populating g.s.; deduced radiative strength function from summed primary  $\gamma$  spectra for a sequence of E(p) values (energy steps equal to energy loss in target). See also 2001Fe06.

1993Ti06: E(p)=0.785-4.65 MeV, natural Fe target; measured  $\sigma$ (E).

1977Ri14: E(p)=2227; measured absolute resonance strength.

1975Br29: E(p)=2150-2270 in steps of 0.7 keV. Enriched targets (82% <sup>58</sup>Fe + 16% <sup>56</sup>Fe), Ge(Li) and NaI detectors,  $\theta$ =55°; measured excit ( $E\gamma > 5$  MeV),  $E\gamma$ ,  $I\gamma$ .

1974Ke14: E(p)=2200-2250. Ge(Li) detector; measured  $E\gamma(\theta=90^\circ)$ , primary  $\gamma$  ray branching (from  $I\gamma(\theta=55^\circ)$ ), excit ( $E\gamma>1$ MeV), DSAM at  $\theta=0^{\circ}$ ,  $90^{\circ}$ ,  $135^{\circ}$ . 14 resonances (or clusters of levels) observed, E(level)=9526-9566; E(p)(res) consistently 3-5 keV higher than in 1975Br29, 7-10 keV higher than in (p,p') of 1971Li14.

For average resonance spectroscopy, see 1982Ni05.

For  $\gamma$  and inelastic p widths of the eight most intense probable fragments of the  $p_{3/2}$  <sup>59</sup>Fe(g.s.) analogue resonance, see 1975Br29. For additional resonances, see 1972Pe23, 1974Ke14.

<sup>59</sup>Co Levels

| E(level) <sup>†</sup>                                                                                                                                                                                             | T <sub>1/2</sub> ‡                      | Comments                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0<br>1098.62 4<br>1189.78 5<br>1290.79 5<br>1433.24 8                                                                                                                                                           | ≤111 fs                                 | E(level): 1098.9 4 from 1974Ke14.<br>E(level): 1190.2 4 from 1974Ke14.<br>E(level): 1291.3 4 from 1974Ke14.                                                                  |
| 1459.19 <i>17</i><br>1480.97 <i>4</i><br>1743.73 <i>5</i><br>2060.71 <i>7</i><br>2086.24 <i>7</i><br>2154&                                                                                                        | ≤173 fs<br>≤173 fs<br>≤97 fs<br>≤173 fs | E(level): 1481.8 <i>4</i> from 1974Ke14.<br>E(level): 1744.5 <i>4</i> from 1974Ke14.<br>E(level): 2064.5 <i>6</i> from 1974Ke14.<br>E(level): 2087.6 <i>6</i> from 1974Ke14. |
| 2154 <sup>cc</sup><br>2203.68 7<br>2395 <sup>&amp;</sup>                                                                                                                                                          |                                         |                                                                                                                                                                              |
| 2478.04 <i>11</i><br>2540 <sup>&amp;</sup>                                                                                                                                                                        | ≤13 fs                                  | E(level): 2479.1 6 from 1974Ke14.                                                                                                                                            |
| 2581.82 10<br>2711.74 8<br>2769.01 10<br>2781.74 22<br>2816.7 5<br>2828.23 8<br>2912&<br>2955.16 11<br>2963.17 21<br>2973.0 3<br>3015&<br>3063&<br>3086.6 5<br>3121.94 12<br>3141.17 14<br>3162.50 19<br>3193.9 5 | 0.21 ps +10-6                           | E(level): 2582.8 6 from 1974Ke14.                                                                                                                                            |

#### <sup>58</sup>Fe(p,γ) **1975Br29** (continued)

#### <sup>59</sup>Co Levels (continued)

| E(level) <sup>†</sup>   | $J^{\pi}$   | $T_{1/2}$ | Comments                                                                                                                           |
|-------------------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| 3220 <b>&amp;</b>       |             |           |                                                                                                                                    |
| 3240.86 16              |             |           |                                                                                                                                    |
| 3319.93 14              |             |           |                                                                                                                                    |
| 3487.55 16              |             |           |                                                                                                                                    |
| 3562.03 19              |             |           |                                                                                                                                    |
| 3570.1 <i>3</i>         |             |           |                                                                                                                                    |
| 3621.4 3                |             |           |                                                                                                                                    |
| 3649.46 20              |             |           |                                                                                                                                    |
| 4009.3 3                |             |           |                                                                                                                                    |
| 4406.88 21              |             |           |                                                                                                                                    |
| 4412.1 3                |             |           |                                                                                                                                    |
| 4508.58 15              |             |           | E(layal) = 0.524.4 from $E(r)(lab) = 2109 lm V (1075 Pr 20) and S(r) = 7262.6.4 (2017 We 10)$                                      |
| 9324.31 9               | (2.12-)     |           | E(level): 9324.4  from  E(p)(lab)=2198  keV (1975B129)  and  S(p)=7305.0 4 (2017Wa10).                                             |
| 9541.31" <i>13</i>      | $(3/2^{-})$ | ≈15.5 eV  | E(level): 9542.0 from E(p)(lab)=2216 keV (19/5Br29) and S(p)=/363.6 4 (2017Wa10).                                                  |
|                         |             |           | $J^{n}$ : if fragment of $J^{s}$ Fe(g.s.) analogue.                                                                                |
|                         |             |           | $\Gamma_{\gamma} = 0.81 \text{ eV} (1975 \text{Br}29), \text{ if } \Gamma \approx \Gamma_{p0}; 1.0 \text{ eV} (1972 \text{Pe}23).$ |
| 9549.71 <sup>#</sup> 11 | $(3/2^{-})$ | ≈102 eV   | E(level): 9549.9 from E(p)(lab)=2224 keV (1975Br29) and S(p)=7363.6 4 (2017Wa10).                                                  |
|                         |             |           | $J^{\pi}$ : if fragment of <sup>59</sup> Fe(g.s.) analogue.                                                                        |
|                         |             |           | $\Gamma_{\gamma}$ =0.62 eV (1975Br29), if $\Gamma \approx \Gamma_{p0}$ ; 0.92 eV (1972Pe23).                                       |
| 9553.02 <sup>#@</sup> 8 | $(3/2^{-})$ | ≈57 eV    | E(level): 9552.85 from E(p)(lab)=2227 keV (1975Br29) and S(p)=7363.6 4 (2017Wa10).                                                 |
|                         |             |           | $J^{\pi}$ : if fragment of <sup>59</sup> Fe(g.s.) analogue.                                                                        |
|                         |             |           | $\Gamma$ =1.06 eV (1975Br29), if $\Gamma \approx \Gamma_{p0}$ ; 1.40 eV (1972Pe23); 1.25 eV 20 (1977Ri14), if                      |
|                         |             |           | $\Gamma = \Gamma_{\rm p0}.$                                                                                                        |
| 11197                   | $(5/2^{-})$ |           | E(level): from E(p)(lab)=3900 keV (1993Ti06) and S(p)=7363.6 4 (2017Wa10).                                                         |
|                         |             |           | $J^{\pi}$ : analogue of 5/2 <sup>-59</sup> Fe(1570 level).                                                                         |

<sup>†</sup> From least-squares fit to  $\gamma$ -ray energies. Uncertainty for all  $\gamma$  rays were doubled during the fit, differing from least squares adjustment by at least  $3\sigma$  or more (identified by footnote), except 1098.5 $\gamma$  6055.4 $\gamma$ , and 7467.0 $\gamma$  from 1098.5, 9541.3, and 9553.0 keV levels, respectively.

<sup>±</sup> From 1974Ke14, DSAM at E(p)=2233 keV if E(level)<9500; from  $\Gamma_{\gamma}+\Gamma_{p0}+\Gamma_{p1}$  from fig.2 of 1972Pe23 otherwise.

<sup>#</sup> Probable fragment of <sup>59</sup>Fe(g.s.) analogue. In addition to the 3 whose decays are detailed here, 1975Br29 report g.s. analogue fragments at E(p)=2213, 2220, 2223, 2231, and 2234 keV with  $\Gamma_{\gamma} \leq 0.31$  eV.

<sup>@</sup> Resonance strength [(2J+1) $\Gamma_p\Gamma_{\gamma}/\Gamma$ ]=5.0 eV 8 (1977Ri14).

& 2000Ra27 report population of this level by primary  $\gamma$  for E(p)=2.8 MeV,  $\Delta$ (E(p))=220 keV; uncertainty unstated by authors.

#### $\gamma(^{59}\text{Co})$

Unplaced I $\gamma \approx 5\%$  of total observed intensity (1975Br29).

| E <sub>i</sub> (level) | $E_{\gamma}^{\dagger}$ | $E_f$   | $E_i$ (level) | $E_{\gamma}^{\dagger}$  | $E_f$   | $E_i$ (level) | $E_{\gamma}^{\dagger}$ | $E_f$   |
|------------------------|------------------------|---------|---------------|-------------------------|---------|---------------|------------------------|---------|
| 1098.62                | 1098.50 <sup>‡</sup> 5 | 0.0     | 2060.71       | 579.68 6                | 1480.97 | 2711.74       | 1613.03 7              | 1098.62 |
| 1189.78                | 1189.70 5              | 0.0     |               | 2061.7 5                | 0.0     | 2769.01       | 1335.70 7              | 1433.24 |
| 1290.79                | 1290.74 6              | 0.0     | 2086.24       | 795.43 6                | 1290.79 | 2781.74       | 2781.96 25             | 0.0     |
| 1433.24                | 334.56 7               | 1098.62 |               | 2086.65 <sup>‡</sup> 10 | 0.0     | 2816.7        | 2816.7 9               | 0.0     |
| 1459.19                | 1459.00 21             | 0.0     | 2203.68       | 722.77 7                | 1480.97 | 2828.23       | 1729.56 7              | 1098.62 |
| 1480.97                | 382.25 7               | 1098.62 |               | 913.05 20               | 1290.79 |               | 2826 1                 | 0.0     |
|                        | 1481.03 5              | 0.0     |               | 2203.51 22              | 0.0     | 2955.16       | 1856.47 11             | 1098.62 |
| 1743.73                | 553.88 5               | 1189.78 | 2478.04       | 2478.10 11              | 0.0     | 2963.17       | 1219.3 4               | 1743.73 |
|                        | 1743.85 7              | 0.0     | 2581.82       | 2581.62 12              | 0.0     |               | 1774.1 6               | 1189.78 |

Continued on next page (footnotes at end of table)

#### $^{58}$ **Fe**(**p**, $\gamma$ ) 1975Br29 (continued)

# $\gamma$ <sup>(59</sup>Co) (continued)</sup>

| $E_i(\text{level})$ | Eγ <sup>†</sup>       | $I_{\gamma}^{\&}$ | E <sub>f</sub> | $E_i$ (level) | $J_i^{\pi}$ | Eγ <sup>†</sup>       | $\frac{I_{\gamma}^{\&}}{2}$ | E <sub>f</sub>    |
|---------------------|-----------------------|-------------------|----------------|---------------|-------------|-----------------------|-----------------------------|-------------------|
| 2963.17             | 2963.5 5              |                   | 0.0            | 9524.51       |             | 9524.1 <i>3</i>       | 8                           | 0.0               |
| 2973.0              | 1230.8 9              |                   | 1743.73        | 9541.31       | $(3/2^{-})$ | 5034.5 <b>#</b> 4     | 3                           | 4508.38           |
| 3121.94             | 2023.31 11            |                   | 1098.62        |               |             | 5128.5 7              | 1                           | 4412.1            |
| 3141.17             | 1397.45 <i>14</i>     |                   | 1743.73        |               |             | 5134.5 5              | 2                           | 4406.88           |
|                     | 1681.73 24            |                   | 1459.19        |               |             | 5532.0 6              | 2                           | 4009.3            |
| 3162.50             | 2064.4 3              |                   | 1098.62        |               |             | 5892.0 6              | 1                           | 3649.46           |
| 3240.86             | 2142.34 17            |                   | 1098.62        |               |             | 5920.2 9              | 2                           | 3621.4            |
| 3319.93             | 1839.05 15            |                   | 1480.97        |               |             | 6055.4 <sup>‡</sup> 5 | 4                           | 3487.55           |
|                     | 2220.7 4              |                   | 1098.62        |               |             | 6221.7 5              | 2                           | 3319.93           |
| 3487.55             | 2006.6 2              |                   | 1480.97        |               |             | 6300.6 7              | 2                           | 3240.86           |
|                     | 2198.4 12             |                   | 1290.79        |               |             | 6346.8 8              | 1                           | 3193.9            |
|                     | 2388.7 4              |                   | 1098.62        |               |             | 6420.0 7              | 1                           | 3121.94           |
| 3562.03             | 1475.95 <i>21</i>     |                   | 2086.24        |               |             | 6585 2                | 3                           | 2955.16           |
|                     | 2083.0 <sup>#</sup> 4 |                   | 1480.97        |               |             | 6712.2 4              | 5                           | 2828.23           |
|                     | 2269.6 <sup>#</sup> 4 |                   | 1290.79        |               |             | 6770.2 <sup>‡</sup> 5 | 3                           | 2769.01           |
| 3621.4              | 3621.7 6              |                   | 0.0            |               |             | 6958.8 4              | 12                          | 2581.82           |
| 3649.46             | 2550.7 3              |                   | 1098.62        |               |             | 7454.1 6              | 3                           | 2086.24           |
| 4009.3              | 2576.5 5              |                   | 1433.24        |               |             | 7479.5 6              | 4                           | 2060.71           |
| 4406.88             | 2345.0 5              |                   | 2060.71        |               |             | 8058.9 5              | 8                           | 1480.97           |
|                     | 4408 6 5              |                   | 0.0            |               |             | 8106 7 7              | 3                           | 1433 24           |
| 4412.1              | 1456 9 4              |                   | 2955.16        |               |             | 8249 2 5              | 7                           | 1290 79           |
| 1112.1              | 2930 4 5              |                   | 1480.97        |               |             | 8441 6 4              | 11                          | 1098.62           |
|                     | 2980 1                |                   | 1433.24        |               |             | 9540.3 4              | 18                          | 0.0               |
| 4508 38             | 1345 7 3              |                   | 3162.50        | 05/10/71      | $(3/2^{-})$ | 5038 1                | 1                           | 4508 38           |
| +500.50             | 1706 /0 17            |                   | 2711 74        | <i>yyy,ii</i> | (3/2)       | 5137 5 0              | 2                           | 4308.38           |
|                     | 2306.4.6              |                   | 2711.74        |               |             | 51/2 3 3              | 5                           | 4412.1            |
| 9524 51             | 5015 4 4              | 2                 | 4508 38        |               |             | 5541.0.6              | 1                           | 4009 3            |
| 7527.51             | 5874 9 3              | 3                 | 3649 46        |               |             | 5898 9 5              | 2                           | 3649.46           |
|                     | 5002 7 2              | 2                 | 2621.4         |               |             | 5020 1 7              | 2                           | 2621.4            |
|                     | 5902.7 3              | 2                 | 3621.4         |               |             | 5930.4* /             | 2                           | 3621.4            |
|                     | 5955.2 0<br>5062 0 4  | 2                 | 3570.1         |               |             | 5979.5 5<br>6061 1 5  | 2                           | 3370.1<br>2497 55 |
|                     | 5902.9 4              | 2                 | 3302.03        |               |             | 6220 1                | 5<br>1                      | 3467.33           |
|                     | 6204 1 5              | 2                 | 3467.33        |               |             | 6200 1 7              | 1                           | 3319.93           |
|                     | 6284.3.6              | 1                 | 3240.86        |               |             | 6387.8 1              | 2                           | 3162.50           |
|                     | 6330 3 5              | 1                 | 3193.9         |               |             | 6463 0 8              | 1                           | 3086.6            |
|                     | 6381 1                | 2                 | 31/1 17        |               |             | 657638                | 5                           | 2073.0            |
|                     | 6437 4 5              | $\frac{2}{2}$     | 3086.6         |               |             | 6586 1 4              | 5                           | 2973.0            |
|                     | 6552.2                | <1                | 2973.0         |               |             | 6731.6.6              | 2                           | 2816.7            |
|                     | 6561 4 8              | 1                 | 2963.17        |               |             | 6767 3 9              | 2                           | 2781 74           |
|                     | 6568.5.4              | 3                 | 2955.16        |               |             | 6779.3 6              | $\frac{2}{2}$               | 2769.01           |
|                     | 6605.0.5              | 3                 | 2928.23        |               |             | 6834 0 0 5            | 2                           | 2711 74           |
|                     | 6708 7 7              | 3                 | 2826.23        |               |             | 696773                | 14                          | 2711.74           |
|                     | 6743 6 5              | 2                 | 2781 74        |               |             | 7072 0 4              | 4                           | 2301.02           |
|                     | 6753.0.7              | 2                 | 2760.01        |               |             | 7465 0 4 6            | 2                           | 2086.24           |
|                     | 0735.97               | 2                 | 2709.01        |               |             | 7403.0* 0             | 2                           | 2080.24           |
|                     | 6808.3 6              | 2                 | 2711.74        |               |             | 8067.5 5              | 2                           | 1480.97           |
|                     | 6942.3 9              | 3                 | 2581.82        |               |             | 8115.9 4              | 9                           | 1433.24           |
|                     | 7047.7+ 4             | <1                | 2478.04        |               |             | 8258.3 <i>3</i>       | 18                          | 1290.79           |
|                     | 7320.8 2              | 7                 | 2203.68        |               |             | 8450.6 5              | 3                           | 1098.62           |
|                     | /436.7 4              | 2                 | 2086.24        | 0552.02       | (2)2=>      | 9548.7 4              | 5                           | 0.0               |
|                     | /462.5 5              | 3                 | 2060.71        | 9553.02       | $(3/2^{-})$ | 5044.4 2              | 3                           | 4508.38           |
|                     | 7780.0 3              | 6                 | 1/43.73        |               |             | 5140.4 7              | 1                           | 4412.1            |
|                     | 8044.4 5              | 2                 | 1480.97        |               |             | 5145.8 4              | 2                           | 4406.88           |
|                     | 8089.3 6              | 2                 | 1433.24        |               |             | 5543.0 5              | 2                           | 4009.3            |
|                     | 8255.02               | 21                | 1290.79        |               |             | 0003.2 /              | 2                           | 348/.33           |
|                     | 8424.9 3              | 1                 | 1098.62        |               |             | 0.90.90               | 2                           | 3102.50           |
|                     |                       |                   |                | Conti         | nued on n   | ext page (foot        | notes at                    | end of tab        |

ole)

|                        |                        |                   |         | 58                     | Fe(p,γ)                                 | 1975Br2           | 9 (continued)  |
|------------------------|------------------------|-------------------|---------|------------------------|-----------------------------------------|-------------------|----------------|
|                        |                        |                   |         |                        | $\gamma$ <sup>(59</sup> Co) (continued) |                   |                |
| E <sub>i</sub> (level) | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\&}$ | $E_f$   | E <sub>i</sub> (level) | $E_{\gamma}^{\dagger}$                  | $I_{\gamma}^{\&}$ | E <sub>f</sub> |
| 9553.02                | 6411 <i>1</i>          | 2                 | 3141.17 | 9553.02                | 7075.1 6                                | 2                 | 2478.04        |
|                        | 6579.8 <i>3</i>        | 3                 | 2973.0  |                        | 7467.0‡ 3                               | 3 3               | 2086.24        |
|                        | 6590.4 <i>6</i>        | 4                 | 2963.17 |                        | 8071.5 2                                | 5                 | 1480.97        |
|                        | 6724.5 4               | 2                 | 2828.23 |                        | 8119.2 2                                | 19                | 1433.24        |
|                        | 6781.8 <sup>@</sup> 3  | 2                 | 2769.01 |                        | 8261.6 2                                | 17                | 1290.79        |
|                        | 6838.9 <sup>#</sup> 4  | 2                 | 2711.74 |                        | 8454.0 2                                | 5                 | 1098.62        |
|                        | 6970.3 2               | 20                | 2581.82 |                        | 9552.8 5                                | 1                 | 0.0            |

<sup>†</sup>  $\gamma$  ray data are from 1975Br29 except as noted. E $\gamma$  shown for secondary  $\gamma$  rays is weighted average of data from all four resonances (if available), doublets excluded. Note, however, that E $\gamma$  appears to be consistently lower than data from other reactions, and a least squares analysis suggests that  $\Delta E_{\gamma}$  is grossly underestimated. E $\gamma$  differing from least squares adjusted value by at least 3 $\sigma$  are indicated.

<sup> $\ddagger$ </sup> E $\gamma$  differs from least-squares adjusted value between 3 to  $4\sigma$ .

<sup>#</sup> E $\gamma$  differs from least-squares adjusted value between 4 to 5 $\sigma$ .

<sup>@</sup> E $\gamma$  differs from least-squares adjusted value between 5 to  $6\sigma$ .

 $^{\&}$  % photon branching from resonance; 10-20% uncertainty for the most prominent lines; from 1975Br29 unless indicated otherwise. I $\gamma$  from 1975Br29 and 1974Ke14 are in qualitative agreement.

 $x \gamma$  ray not placed in level scheme.

4

Level Scheme

Intensities: % photon branching from each level



<sup>59</sup><sub>27</sub>Co<sub>32</sub>

5

#### Level Scheme (continued)

Intensities: % photon branching from each level





Level Scheme (continued)

Intensities: % photon branching from each level





Level Scheme (continued)

Intensities: % photon branching from each level



<sup>59</sup><sub>27</sub>Co<sub>32</sub>

## Level Scheme (continued)

Intensities: % photon branching from each level



<sup>59</sup><sub>27</sub>Co<sub>32</sub>