Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	31-Jul-2014					

 $S(n)=17820 SY; S(p)=2280 50; Q(\alpha)=-5510 70$ 2012Wa38

Estimated uncertainty=210 in S(n) (2012Wa38).

Q(\varepsilon p)=6500 50, S(2n)=32860 510 (syst), S(2p)=2970 50 (2012Wa38).

⁵⁸Zn nucleus is of astrophysical interest since it is deemed as a waiting-point nucleus in *rp* process in X-ray bursts.

1998Jo18 (also 2000Oi04): ⁵⁸Zn produced and identified in Nb(p,X) E=1 GeV at ISOLDE at CERN using selective laser-ion source. Measured E γ , I γ , $\beta\gamma$ coin, isotopic half-life.

2002Lo13 (also 2002B117): ⁵⁸Zn obtained from fragmentation of ⁷⁸Kr beam at 73 MeV/nucleon at GANIL using LISE spectrometer. Measured isotopic half-life.

2005Ka46: ⁵⁸Zn produced and identified in Nb(p,X) E=1.4 GeV at ISOLDE at CERN using selective laser-ion source. Measured E γ , I γ , $\beta\gamma$ coin, isotopic half-life. No delayed protons were observed from ⁵⁸Zn isotope. The authors state that analysis of

 58 Ni(3 He,3n) (same reaction as was used by 1983HoZY) experiment is in progress to detect protons.

2007Bl09: fragmentation of ⁷⁰Ge beam at 71.6 MeV/nucleon with Ni target. Measured production cross section.

2009Fu15: fragmentation of 64 Zn⁺²⁹ beam at 79 MeV/nucleon with natural Ni target at LISE3, GANIL facility. Measured half-life by measuring β -delayed γ -ray activity.

2012OrZY: ⁵⁸Zn produced in Ni(⁵⁸Ni,X),E=74.5 MeV/nucleon using LISE3 facility at GANIL. Detected ⁵⁸Zn fragments through TOF, E- Δ E measurements followed by detection of β particles. Half-life of ground state was measured from β -decay curve. This is an independent experiment by the same group as 2009Fu15. Through an e-mail communication of July 30, 2014 with Professor B. Rubio at University of Valencia, another experiment had been done for a precise measurement of ground-state half-life, results of which were communicated to the evaluator.

Others:

1983HoZY: possible identification in ⁵⁸Ni(³He,3n) reaction, claimed to have observed delayed protons. This work remains unpublished.

1994Fo07 (also 1996Fo08,1987Zu03): 58 Ni(π^+,π^-) E=120-292 MeV; measured excitation function for double charge exchange

reaction on T=1 target: ⁵⁸Ni(π^+,π^-)⁵⁸Zn, leading to double isobaric analog states and compared data with theoretical calculations. 1986Se04: ⁵⁸Ni(π^+,π^-) E=292 MeV, deduced mass excess.

2001Fo07: reaction rates of ${}^{57}Cu(p,\gamma){}^{58}Zn$ and levels of ${}^{58}Zn$ from shell-model calculations. The first 2⁺ state is predicted at 1400. 2006Va21, 2004Va38: Structure calculation for Pseudo-orbital SO(6) symmetry in ${}^{58}Zn$, ${}^{58}Cu$ and ${}^{58}Ni$. Additional information 1.

⁵⁸Zn Levels

Cross Reference (XREF) Flags

2 H(57 Cu, 58 Zn γ)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0	0+	86.7 ms 24	Α	$%ε+%β^+=100; %εp<3 (1998Jo18)$ T _{1/2} : weighted average of 86.5 ms 32 (e-mail communication of July 30, 2014 with Professor B. Rubio, University of Valencia), 88 ms 5 (2012OrZY), 90 ms 8 (2009Fu15), 83 ms 10 (2005Ka46), 83 ms 10 (2002Lo13), 86 ms 18 (1998Jo18). Methods: γ decay timing (2009Fu15), β-gated timing (1998Jo18), β(fragment) timing correlations (2002Lo13,2012OrZY). Method not discussed in 2005Ka46. 2012OrZY (and result of new experiment communicated on July 30, 2014), 2009Fu15 and 2002Lo13 are from GANIL; 2005Ka46 and 1998Jo18 are from ISOLDE-CERN. Since all are independent experiments even though some authors are the same on above publications, weighted averaging of all data is justifiable.
1356 <i>3</i>	(2^{+})		Α	
2499 <i>4</i>	(4^{+})		Α	
2609 6	(2+)		A	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁵⁸Zn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
2862 3	(2^{+})	A
2902 3	(1^{+})	Α
3263 4	(2^+)	Α
3378 6	(3^{+})	Α

[†] From least-squares fit to E γ data. All levels listed here above the first 2⁺ level at 1356 keV are proton unbound. [‡] From systematics of even-even nuclei, shell-model predictions, and mirror analogy with ⁵⁸Ni nucleus.

$\gamma(^{58}\text{Zn})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E _f J	f^{π}
1356	(2^{+})	1356 <i>3</i>	100	0.0 0+	
2499	(4^{+})	1143 <i>3</i>	100	1356 (2*	+)
2609	(2^{+})	1253 5	100	1356 (2	+)
2862	(2^{+})	1507 4	100 25	1356 (2*	+)
		2861 4	88 25	$0.0 \ 0^{+}$	
2902	(1^{+})	1545 <i>3</i>	100 15	1356 (2*	+)
		2904 5	23 8	$0.0 \ 0^{+}$	
3263	(2^{+})	1906 4	57 29	1356 (2*	+)
		3265 6	100 29	$0.0 \ 0^+$	
3378	(3+)	879 4	100	2499 (4	+)

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

