Adopted Levels, Gammas

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Caroline D. Nesaraja, Scott D. Geraedts and Balraj Singh	NDS 111,897 (2010)	12-Jan-2010

 $O(\beta^{-})=1.152\times10^{4} 24$; $S(n)=4.2\times10^{3} 3$; $S(p)=1.37\times10^{4} 3$; $O(\alpha)=-9.1\times10^{3} 4$ 2012Wa38

Note: Current evaluation has used the following Q record 11.63E3 32 4.09E3 3413.95E3 52-8.41E3 45 2009AuZZ.2003Au03. Q(β⁻n)=4240 250 (2009AuZZ,2003Au03).

S(2n)=10270 320 (2009AuZZ); S(2p)=29520 740 (2009AuZZ,syst).

1994Se12, 1990Tu01: first identification of ⁵⁸V from Th(p,F) at E=800 MeV, followed by time-of-flight, isochronous spectrometer, deduced mass.

1994KoZV: ⁵⁹Co(³He,X) E=11-92 MeV. Measured cross section.

1998Am04: Fragmentation of ⁸⁶Kr beam with Be target. Measured isotopic half-life.

1998So03: ⁵⁸V from ⁹Be(65 Cu,X) reaction at 64.5 MeV/nucleon. Measured γ , β , $\beta\gamma$ coin, isotopic half-life.

1999So20 (also 1999Le67): ⁵⁸V from ⁵⁸Ni(⁸⁶Kr,X) reaction at 60.4 MeV/nucleon. Measured E β , I β (t), isotopic half-life.

2001Pr13 (also 2001Pr05): Fragmentation of ⁷⁰Zn beam with Be target, measured γ , β , $\beta\gamma$ coin, isotopic half-life.

2003Ma02: Fragmentation of ⁸⁶Kr beam with Be target. Measured γ , β , $\gamma\gamma$, $\gamma\beta$ coin, isotopic half-life. 2005Ga01 (also 2003So21: ⁵⁸V produced in fragmentation of ⁷⁶Ge³⁰⁺ beam on a ⁵⁸Ni target. LISE3 achromatic spectrometer used to separate fragments; time-of-flight method, energy loss and magnetic rigidity used to identify fragments. Measured Ey, Iy, I β , $\gamma\gamma$, $\beta\gamma$ coin, $\gamma(t)$, lifetimes with four Ge detectors placed around a thick Si telescope. Half-lives determined by fitting procedure involving five parameters: half-lives of mother, daughter and grand-daughter nuclei, the β -efficiency and the background rate over the 1 s collecting time.

Additional information 1.

⁵⁸V Levels

Cross Reference (XREF) Flags

⁵⁸Ti β^- decay (59 ms)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	(1+)	191 ms <i>10</i>	A	 ⁷%β⁻=100; %β⁻n=? E(level): the 205-ms activity is assumed to belong to the g.s. of ⁵⁸V. J^π: β feeding of <38 7 to g.s. of ⁵⁸Cr in ⁵⁸V decay suggests 1⁺ or 0⁺, the former being more likely from possible configuration= ν1f_{5/2}⊗π1f_{7/2}. However, from shell model calculations, 2005Ga01 predict 2⁺ for g.s. and 1⁺ as first excited state; strong 114γ may define a 1⁺ level in ⁵⁸V at this energy, in which case the ground state of ⁵⁸V may be 2⁺. Although, the decay scheme of ⁵⁸V is not well established, 2⁺ seems unlikely in view of some evidence of β feeding of g.s. of ⁵⁸Cr. See also discussions in 2003Ma02 (also 2004Li12) for discussion in favor of 1⁺ for g.s. of ⁵⁶V and ⁵⁸V. T_{1/2}: weighted average of 185 ms 10 (2003Ma02), 205 ms 20 (1998So03), 0.20 s 2 (1998Am04). Calculated delayed-neutron decay mode: %β⁻n=0.8 (1997Mo25).
114? 2			A	
				γ ⁽⁵⁸ V)
E _i (level)	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
114?	114†2	2 100	0.0 (1 ⁺)	E_{γ} : A 114 2 γ seen in ⁵⁸ Ti decay is either a member of γ -cascade from high-lying excited state in ⁵⁸ V or corresponds to direct decay of a 114 level to the g.s. Since no other transition was observed, the latter possibility seems more likely. Other: 116 2 (2002MaZN).

[†] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Intensities: Relative photon branching from each level ---- κ γ Decay (Uncertain)

