# $^{40}$ Ca( $^{24}$ Mg, $\alpha$ 2p $\gamma$ ) 1999Vi12

|                 | History                                                  |                    |                        |  |
|-----------------|----------------------------------------------------------|--------------------|------------------------|--|
| Туре            | Author                                                   | Citation           | Literature Cutoff Date |  |
| Full Evaluation | Caroline D. Nesaraja, Scott D. Geraedts and Balraj Singh | NDS 111,897 (2010) | 12-Jan-2010            |  |

1999Vi12 (also 1999Mo14) E=65 MeV. Measured E $\gamma$ ,  $\gamma\gamma$ , I $\gamma$ (singles and  $\gamma\gamma$ ),  $\gamma\gamma(\theta)$ (DCO) using the AYEBALL array with TESSA type detectors, eight EUROGAM detectors and one GAMMASPHERE detector.

Others:

2004Iz01 and 2002Ru06 are from the same group as 2009Jo03 and data from these two papers are covered in  ${}^{28}$ Si( ${}^{36}$ Ar, $\alpha 2p\gamma$ ) dataset. 2001Ru04 is now superseded by 2009Jo03.

2004Iz01: measured  $\gamma\gamma(\theta)$ (DCO) and lin POL for three  $\gamma$  rays.

2001Ru04: detailed but preliminary level scheme. See 2009Jo03 from the same group for a complete level scheme from  ${}^{28}Si({}^{36}Ar, \alpha 2p\gamma)$  reaction which completely supersedes 2001Ru04.

## <sup>58</sup>Ni Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$             | Comments                                                                                                                                                                   |
|-----------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                     | $0^{+}$                        |                                                                                                                                                                            |
| 1454.4 4              | $2^{+}$                        |                                                                                                                                                                            |
| 2459.5 6              | 4+                             |                                                                                                                                                                            |
| 3620.7 6              | 4+                             |                                                                                                                                                                            |
| 4108.0 7              | $4^{+}$                        |                                                                                                                                                                            |
| 4361.2 14             | (5)                            | $J^{\pi}$ : (2 <sup>+</sup> ,3,4 <sup>+</sup> ) In Adopted Levels.                                                                                                         |
| 4383.6 6              | 5+                             |                                                                                                                                                                            |
| 4963.8 14             | $(5)^{+\#}$                    |                                                                                                                                                                            |
| 5128.2 7              | 6+                             |                                                                                                                                                                            |
| 5386.0 7              | 6+ <b>#</b>                    |                                                                                                                                                                            |
| 6068.3 7              | $(7^{+})$                      |                                                                                                                                                                            |
| 6084.9 8              | 7 <sup>-#</sup>                |                                                                                                                                                                            |
| 6220.6 8              | 7+ <b>#</b>                    |                                                                                                                                                                            |
| 6605.0 8              | 8+                             |                                                                                                                                                                            |
| 7231.8? 9             |                                | E(level): this level is questionable and omitted In Adopted Levels due to the reassignment of $627\gamma$ from 9346, 10 <sup>-</sup> level In high-spin study of 2009Jo03. |
| 7446.3 9              | 9+ <b>#</b>                    |                                                                                                                                                                            |
| 8121.6 10             | (9 <sup>+</sup> ) <sup>#</sup> |                                                                                                                                                                            |

<sup>†</sup> From least-squares fit to  $E\gamma's$ .

<sup>‡</sup> As proposed by 1999Vi12, based on  $\gamma\gamma(\theta)$ (DCO) data, except when stated otherwise.

<sup>#</sup> From 2002Ru06, 2004Iz01 and 2009Jo03.

### $\gamma(^{58}\text{Ni})$

| Eγ                   | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$  | Mult. <sup>†</sup> | Comments                                                                                                 |
|----------------------|-------------------------|------------------------|----------------------|------------------|-------------------------|--------------------|----------------------------------------------------------------------------------------------------------|
| 275.6 4              | 31                      | 4383.6                 | $5^{+}_{0^{+}}$      | 4108.0           | $\frac{4^{+}}{(7^{+})}$ |                    | DCO=0.95 9.                                                                                              |
| 536.73               | 14 1                    | 6605.0                 | 8                    | 6068.3           | $(/ \cdot )$            |                    |                                                                                                          |
| 626.8 <sup>#</sup> 5 | 3 1                     | 7231.8?                |                      | 6605.0           | 8+                      |                    | $E_{\gamma}$ : this $\gamma$ is assigned to a 9346,10 <sup>-</sup> level In high-spin study of 2009Jo03. |
| 682.4 5              | 11                      | 6068.3                 | $(7^{+})$            | 5386.0           | 6+                      |                    | DCO=0.32 8.                                                                                              |
| 698.8 <i>5</i>       | 21                      | 6084.9                 | 7-                   | 5386.0           | 6+                      | D                  | DCO=0.46 8 (1999Vi12)                                                                                    |
| <sup>x</sup> 708.0 5 | 11                      |                        |                      |                  |                         |                    |                                                                                                          |
| 744.6 <i>3</i>       | 30 <i>3</i>             | 5128.2                 | 6+                   | 4383.6           | 5+                      |                    | DCO=1.00 6.                                                                                              |
| 762.9 <i>3</i>       | 35 2                    | 4383.6                 | 5+                   | 3620.7           | 4+                      |                    | DCO=0.94 5.                                                                                              |
| <sup>x</sup> 834.6 4 | 71                      |                        |                      |                  |                         |                    |                                                                                                          |
| 841.3 4              | 11 <i>I</i>             | 7446.3                 | 9+                   | 6605.0           | 8+                      |                    | DCO=0.99 9.                                                                                              |

Continued on next page (footnotes at end of table)

#### $^{40}$ Ca( $^{24}$ Mg, $\alpha$ 2p $\gamma$ ) 1999Vi12 (continued)

# $\gamma$ (<sup>58</sup>Ni) (continued)

| Eγ                    | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | Comments                               |
|-----------------------|-------------------------|------------------------|----------------------|------------------------------------|--------------------|----------------------------------------|
| 940.1 4               | 19 2                    | 6068.3                 | $(7^{+})$            | 5128.2 6+                          |                    |                                        |
| 956.9 7               | 51                      | 6084.9                 | 7-                   | 5128.2 6+                          | D                  | DCO=0.86 16 (1999Vi12)                 |
| 1002.0 10             |                         | 5386.0                 | 6+                   | 4383.6 5+                          |                    | DCO=0.94 6.                            |
| 1004.9 5              | 100 4                   | 2459.5                 | 4+                   | 1454.4 2+                          | Q                  | DCO=1.02 2.                            |
| 1092.4 5              | 61                      | 6220.6                 | 7+                   | 5128.2 6+                          |                    | DCO=0.67 23.                           |
| 1161.1 <i>3</i>       | 39 <i>5</i>             | 3620.7                 | 4+                   | 2459.5 4+                          | D                  | Mult.: $\Delta J=0$ , dipole from DCO. |
|                       |                         |                        |                      |                                    |                    | DCO=1.10 <i>10</i> .                   |
| <sup>x</sup> 1256.2 5 | 21                      |                        |                      |                                    | D                  | DCO=0.30 12                            |
| 1454.4 <i>4</i>       | 122 7                   | 1454.4                 | 2+                   | $0 0^+$                            | Q                  | DCO=1.06 8.                            |
| 1476.8 11             | 14 2                    | 6605.0                 | 8+                   | 5128.2 6+                          | Q                  | DCO=0.98 2.                            |
| 1516.5 7              | 52                      | 8121.6                 | $(9^{+})$            | 6605.0 8+                          | (D)                | DCO=0.61 12.                           |
| 1684.7 <i>10</i>      | 82                      | 6068.3                 | $(7^{+})$            | 4383.6 5+                          |                    | DCO=0.86 18.                           |
| 1764.8 11             | 52                      | 5386.0                 | 6+                   | 3620.7 4+                          |                    | DCO=0.50 16.                           |
| 1901.7 <i>12</i>      | 31                      | 4361.2                 | (5)                  | 2459.5 4+                          |                    |                                        |
| 1924.0 7              | 13 2                    | 4383.6                 | 5+                   | 2459.5 4+                          | D                  | DCO=0.49 5.                            |
| 2166.4 5              | 11 <i>1</i>             | 3620.7                 | 4+                   | 1454.4 2+                          |                    | DCO=1.2 5.                             |
| 2504.2 13             | 52                      | 4963.8                 | $(5)^{+}$            | 2459.5 4+                          |                    | DCO=1.2 5.                             |
| 2653.7 12             | 31                      | 4108.0                 | 4+                   | 1454.4 2+                          |                    | DCO=0.8 3.                             |
| 2668.6 10             | 16 <i>3</i>             | 5128.2                 | 6+                   | 2459.5 4+                          | Q                  | DCO=1.06 9.                            |
| 2926.5 15             | 31                      | 5386.0                 | 6+                   | 2459.5 4+                          |                    | DCO=0.90 27.                           |
| 3626.2 16             |                         | 6084.9                 | 7-                   | 2459.5 4+                          | [E3]               | DCO=0.86 27.                           |

<sup>†</sup> From DCO values. <sup>‡</sup> Intensities listed are singles. 1999Vi12 also quote  $\gamma\gamma$  intensities. <sup>#</sup> Placement of transition in the level scheme is uncertain. <sup>x</sup>  $\gamma$  ray not placed in level scheme.



 $^{58}_{28}{
m Ni}_{30}$