| History         |                                                          |                    |                        |  |  |  |  |  |
|-----------------|----------------------------------------------------------|--------------------|------------------------|--|--|--|--|--|
| Туре            | Author                                                   | Citation           | Literature Cutoff Date |  |  |  |  |  |
| Full Evaluation | Caroline D. Nesaraja, Scott D. Geraedts and Balraj Singh | NDS 111,897 (2010) | 12-Jan-2010            |  |  |  |  |  |

 $Q(\beta^{-})=6327 \ 3$ ;  $S(n)=6413 \ 3$ ;  $S(p)=10592 \ 4$ ;  $Q(\alpha)=-8360 \ 16$ 2012Wa38

Note: Current evaluation has used the following Q record 6250 30 6491 30 10672 30 -8441 34 2009AuZZ,2003Au03.

 $S(2n)=15140 \ 30, \ S(2p)=24400 \ 210 \ (2009AuZZ).$ First identification of <sup>58</sup>Mn nuclide by 1961Ch04 in <sup>58</sup>Fe(n,p) reaction.

2007Na31: <sup>136</sup>Xe(p,X) E=1 GeV/nucleon, measured cross section.

Additional information 1.

2006Li15: Shell-model calculations in the full pf space.

Other reaction: 1989AnZZ: <sup>58</sup>Fe(<sup>12</sup>C, <sup>12</sup>N) E=70 MeV/nucleon. Deduced Gamow-Teller strengths. The details of this study are not available.

## <sup>58</sup>Mn Levels

#### Cross Reference (XREF) Flags

|                                    |                                  |                            | $ \begin{array}{ccc}     A & {}^{58}C \\     B & {}^{58}M \\     C & {}^{13}C \\ \end{array} $ | $ \begin{array}{ll} r \ \beta^{-} \ decay \ (7.0 \ s) & D & {}^{48}\mathrm{Ca}({}^{13}\mathrm{C},2np\gamma) \\ \mathrm{In \ IT \ decay \ (65.4 \ s)} & E & {}^{58}\mathrm{Fe}(\mathrm{t},{}^{3}\mathrm{He}) \\ ({}^{48}\mathrm{Ca},\mathrm{p}2n\gamma), {}^{14}\mathrm{C}({}^{48}\mathrm{Ca},\mathrm{p}3n\gamma) & F & {}^{238}\mathrm{U}({}^{70}\mathrm{Zn},\mathrm{X}\gamma) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|----------------------------------|----------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E(level) <sup>†</sup>              | $J^{\pi \ddagger}$               | T <sub>1/2</sub> &         | XREF                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0<br>71.77 <sup><i>a</i></sup> 5 | 1+<br>4+#                        | 3.0 s <i>1</i><br>65.4 s 5 | AB E<br>BCDEF                                                                                  | <ul> <li>%β<sup>-</sup>=100</li> <li>E(level): the group in (t,<sup>3</sup>He) is a broad group with a spacing of 35 keV 15, implying that there may be another level near 35 keV.</li> <li>J<sup>π</sup>: strong β feeding (log <i>ft</i>≈4.9) to 0<sup>+</sup>. Shell-model calculations in the full <i>fp</i> space (2006Li15) predict 4<sup>+</sup> g.s. and 1<sup>+</sup> as the first excited state. First 0<sup>+</sup> in this calculation is predicted above 1.5 MeV. The <sup>60</sup>Mn nuclide also has 1<sup>+</sup> g.s. and 4<sup>+</sup> isomer (2006Li15). J<sup>π</sup>=2<sup>+</sup>,3<sup>+</sup> assigned from σ(θ) in (t,<sup>3</sup>He) is inconsistent, which may be due to the complex structure of the lowest energy group in (t,<sup>3</sup>He) that is assigned (1985Aj02) to the g.s.</li> <li>T<sub>1/2</sub>: from timing of β decay curve (1969Wa10). Other: 2.4 s 9 (1988Bo06).</li> <li>%β<sup>-</sup>≈90; %IT≈10</li> <li>XREF: E(88).</li> <li>%IT: B(M3)(W.u.) values in ENSDF database for A=45-90 mass region. The highest value of B(M3)(W.u.)=4.8 <i>10</i> in this mass region gives %IT&lt;20, but B(M3)(W.u.)=0.159 <i>12</i> for a similar M3 transition in <sup>60</sup>Mn gives %IT=0.5.</li> <li>T<sub>1/2</sub>: from timing of β, γ and ce; weighted average of 66 s 6 (1961Ch04), 65 s <i>1</i> (1969Wa10), 65.3 s 7 (1971Dy01,1972Dy01), 65.1 s <i>11</i> (1978Wy02) and 69 s 2 (1993ScZS, timing of 72-keV γ and corresponding ce(K) line).</li> </ul> |
| 125.69 <sup><i>a</i></sup> 16      | $(2^+)^{\#}$                     |                            | c                                                                                              | $J^{\pi}$ : $\gamma$ to $1^+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 109.92 <sup></sup> 15<br>183-10    | $(3^{+})^{*}$                    |                            | E                                                                                              | $J^{*}$ : $\gamma$ s to 4 <sup>+</sup> and (2 <sup>+</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 289.4 4                            | 1+@                              |                            | A E                                                                                            | XREF: E(303).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 429.67 <sup>a</sup> 15             | (3 <sup>+</sup> ) <sup>#</sup>   |                            | С                                                                                              | $J^{\pi}$ : $\gamma'$ s to $4^+$ and $(2^+)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 448.03 <sup>a</sup> 10             | (5 <sup>+</sup> ) <sup>#</sup>   | <35 ps                     | CD F                                                                                           | $J^{\pi}$ : $\Delta J=1$ , D+Q $\gamma$ to 4 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 463.4 11                           | (0 to 3 <sup>+</sup> )           |                            | A E                                                                                            | T <sub>1/2</sub> : recoil-distance method in ( <sup>13</sup> C,2np $\gamma$ ).<br>XREF: E(466).<br>J <sup><math>\pi</math></sup> : $\gamma$ to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 591.22 <sup>a</sup> 18<br>651 15   | $(4^+)^{\#}$<br>1 <sup>+</sup> @ |                            | C<br>E                                                                                         | $J^{\pi}$ : $\gamma'$ s to (2 <sup>+</sup> ) and (3 <sup>+</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Continued on next page (footnotes at end of table)

# <sup>58</sup>Mn Levels (continued)

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$                 | $T_{1/2}^{\&}$ | XREF   | Comments                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|------------------------------------|----------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 661.11 <sup>a</sup> 14  | 5+#                                |                | СЕ     | XREF: E(679).                                                                                                                                                                                                                                                                                                                                                           |
|                         |                                    |                |        | $J^{\pi}$ : $\gamma'$ s to (3 <sup>+</sup> ) and (5 <sup>+</sup> ); $\sigma(\theta)$ and coupled-channels analysis in <sup>58</sup> Fe(t, <sup>3</sup> He).<br>E(level): 679 <i>10</i> level in (t, <sup>3</sup> He) is associated with 661.1 level from ( <sup>48</sup> Ca,p2n $\gamma$ ), based on $J^{\pi}$ analogy, although, the energy matching is somewhat poor. |
| 683.1 6                 | (0 to 3 <sup>+</sup> )             |                | Α      | $J^{\pi}$ : $\gamma$ from 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                              |
| 735.38 <sup>a</sup> 12  | $(4^+)^{\#}$                       |                | С      | $J^{\pi}$ : $\gamma'$ s to (3 <sup>+</sup> ) and (5 <sup>+</sup> ).                                                                                                                                                                                                                                                                                                     |
| 748 10                  | 1+@                                |                | Е      |                                                                                                                                                                                                                                                                                                                                                                         |
| 809.7 6                 | 1+                                 |                | Α      | $J^{\pi}$ : strong $\beta$ feeding (log $ft \approx 4.0$ ) from 0 <sup>+</sup> .                                                                                                                                                                                                                                                                                        |
| 817 10                  | 1 <sup>+</sup> @                   |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 1044 15                 | 1+@                                |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 1240.16 <sup>a</sup> 19 | $(6^+)^{\#}$                       |                | С      | $J^{\pi}$ : $\gamma$ to 5 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                |
| 1250 20                 | $(2)^{+}$                          |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 1275 20                 | 1+@                                |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 1338.13 19              | (4)                                |                | C      | $J^{\pi}$ : $\gamma$ 's to 4 <sup>+</sup> and (5 <sup>+</sup> ).                                                                                                                                                                                                                                                                                                        |
| 1350 15                 | 3+@                                |                | E      | E(level): from energy matching, this level may be the same as 1338.1, but the spins differ by one unit.                                                                                                                                                                                                                                                                 |
| 1385 15                 | 5 <sup>+ @</sup>                   |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 1413 15                 | (5)                                |                | E      | $\pi$ , $a/a$ , $4^+$ and $(5^+)$                                                                                                                                                                                                                                                                                                                                       |
| 1437.39 13              | (3)                                |                | C F    | $J: \gamma 8.4$ and (3).<br>E(layal): from approxy matching this layal may be the same as 1457.6 but                                                                                                                                                                                                                                                                    |
| 14/0 15                 | (4)                                |                | E      | the spins differ by one unit.                                                                                                                                                                                                                                                                                                                                           |
| 1535 20                 | (4) <sup>+</sup>                   |                | E      | $I^{\pi}$ , $\Lambda I = 1$ dipole of to $5^+$ , of to $(6^+)$                                                                                                                                                                                                                                                                                                          |
| 1001.45 10              | (0)                                |                | CD F   | $T_{1/2} > 0.4 \text{ ps or } <35 \text{ ps from DSA in } ({}^{13}\text{C},2\text{npv}).$                                                                                                                                                                                                                                                                               |
| 1880.42 <sup>b</sup> 18 | (7)                                | <35 ps         | CD F   | $T_{1/2}$ : recoil-distance method in ( <sup>13</sup> C,2np $\gamma$ ).<br>$J^{\pi}$ : $\Delta J=1$ , dipole $\gamma$ to (6 <sup>+</sup> ).                                                                                                                                                                                                                             |
| 2259 15                 | $(3,4)^+$                          |                | Е      |                                                                                                                                                                                                                                                                                                                                                                         |
| 2282 15                 | $(5,4)^+$ <sup>(a)</sup>           |                | Е      |                                                                                                                                                                                                                                                                                                                                                                         |
| 2339.7 3                |                                    |                | С      |                                                                                                                                                                                                                                                                                                                                                                         |
| 2368 10                 | $(2,3,4)^+$                        |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 2412 10                 | $(2,3)^+$ <sup>(a)</sup>           |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 2459.7 <sup>b</sup> 5   | (8)                                | <0.4 ps        | CD F   | $J^{\pi}$ : $\gamma$ to (7); band member.                                                                                                                                                                                                                                                                                                                               |
| 2487 10                 | $(2,3)^+$ @                        |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 2506 15                 | (NOT 1 <sup>+</sup> ) <sup>@</sup> |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 2564 10                 |                                    |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 2854.7 4                |                                    |                | С<br>F |                                                                                                                                                                                                                                                                                                                                                                         |
| 3040 10                 | $(NOT 1^+)^{@}$                    |                | F      |                                                                                                                                                                                                                                                                                                                                                                         |
| $3042.6^{b}.5$          | (1011)                             | < 0.4 ns       |        | $I^{\pi}$ : $\Lambda I = 1$ dipole $\gamma$ to (8): $\gamma$ to and (7): hand member                                                                                                                                                                                                                                                                                    |
| 3012.0 5                | ())                                | <0.4 ps        | CD T   | $T_{1/2}$ : DSA in ( <sup>13</sup> C,2np $\gamma$ ).                                                                                                                                                                                                                                                                                                                    |
| 3258 15                 |                                    |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 3415 20                 |                                    |                | E      |                                                                                                                                                                                                                                                                                                                                                                         |
| 3462.1 5                |                                    |                | С      |                                                                                                                                                                                                                                                                                                                                                                         |
| 3721.4 <sup>b</sup> 5   | (10)                               | <0.3 ps        | CD     | $J^{\pi}$ : $\Delta J=1$ , dipole $\gamma$ to (9); $\Delta J=(2)$ , (Q) $\gamma$ to and (8); band member.                                                                                                                                                                                                                                                               |
| 1707 ( 10               |                                    |                | 6      | $T_{1/2}$ : DSA in ( <sup>13</sup> C,2np $\gamma$ ).                                                                                                                                                                                                                                                                                                                    |
| 4/0/.6 <i>18</i>        | (11)                               |                | C      | J <sup><math>\pi</math></sup> : $\gamma$ to (8) suggests (8,9,10).                                                                                                                                                                                                                                                                                                      |
| 4/33.10 3               | (11)                               |                | CD     | J <sup>**</sup> : $\Delta J=1$ , dipole $\gamma$ to (10); $\gamma$ to (9); band member.                                                                                                                                                                                                                                                                                 |

Continued on next page (footnotes at end of table)

#### <sup>58</sup>Mn Levels (continued)

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$ | XREF | Comments                                               |
|-------------------------|--------------------|------|--------------------------------------------------------|
| 4812.4 5                | (11)               | С    | $J^{\pi}$ : $\gamma'$ s to (9) and (10).               |
| 4941.1 6                |                    | С    | $J^{\pi}$ : $\gamma$ to (9) suggests (9,10,11).        |
| 5311.9 6                |                    | С    | $J^{\pi}$ : $\gamma$ to (10) suggests (10,11,12).      |
| 5424.4 <mark>b</mark> 5 | (12)               | С    | $J^{\pi}$ : $\gamma$ 's to (10) and (11); band member. |
| 6337.2 12               |                    | С    | $J^{\pi}$ : $\gamma$ to (10) suggests (10,11,12).      |
| 6566.4 7                |                    | С    | $J^{\pi}$ : $\gamma$ to (11) suggests (11,12,13).      |
| 6872.6 <sup>b</sup> 5   | (13)               | С    | $J^{\pi}$ : $\gamma$ 's to (11) and (12); band member. |
| 7442.5 <mark>b</mark> 9 | (14)               | С    | $J^{\pi}$ : $\gamma$ to (12); band member.             |
| 9831.1 <sup>b</sup> 14  | (16)               | С    | $J^{\pi}$ : $\gamma$ to (14); band member.             |

<sup>†</sup> From least-squares fit to  $E\gamma$ 's. In earlier evaluation (1997Bh02), energy of 72 keV was added to each level in the (t,<sup>3</sup>He) dataset. With the revised assignment of 4<sup>+</sup> for the isomer, the adjustment in the energy levels seems to be no longer required.

<sup>‡</sup> In (t,<sup>3</sup>He) reaction target  $J^{\pi}=0^+$ .

<sup>#</sup> From GXPF1A shell-model calculations and predictions (2010St01) for low-lying, low-spin states.

<sup>(a)</sup> From  $\sigma(\theta)$  and coupled-channels analysis (1985Aj02) in <sup>58</sup>Fe(t, <sup>3</sup>He).

<sup>&</sup> From ( $^{13}C, 2np\gamma$ ), except as noted otherwise.

<sup>*a*</sup> Band(A): multiplet structure.

<sup>b</sup> Band(B):  $\Delta J=1$  band based on (7). Possible negative-parity rotational band involving  $g_{9/2}$  neutron excitation (2010St01).

# $\gamma(^{58}Mn)$

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$  | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$  | $\mathbf{J}_f^{\pi}$  | Mult. <sup>‡</sup> | α <b>#</b> | Comments                                                                                                                                                                                                                    |
|------------------------|-----------------------|------------------------|------------------------|--------|-----------------------|--------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 71.77                  | 4+                    | 71.78 5                | 100                    | 0.0    | 1+                    | M3                 | 14.07      | $\alpha(K)=12.09 \ 18; \ \alpha(L)=1.734 \ 25; \\ \alpha(M)=0.236 \ 4; \ \alpha(N+)=0.00891 \ 13 \\ \alpha(N)=0.00891 \ 13 \\ Mult.: \ from \ \alpha(K)exp \ and \ \alpha(L)exp \\ (1993ScZS) \ in \ ^{58}Mn \ it \ decay.$ |
| 125.69                 | $(2^{+})$             | 125.5 2                | 100                    | 0.0    | 1+                    |                    |            |                                                                                                                                                                                                                             |
| 169.92                 | $(3^{+})$             | 44.2 <i>3</i>          | 42 8                   | 125.69 | $(2^{+})$             |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 97.9 <i>3</i>          | 100.0 22               | 71.77  | 4+                    |                    |            |                                                                                                                                                                                                                             |
| 289.4                  | 1+                    | 289.5 4                | 100                    | 0.0    | 1+                    |                    |            |                                                                                                                                                                                                                             |
| 429.67                 | (3 <sup>+</sup> )     | 303.1 4                | 45 9                   | 125.69 | $(2^{+})$             |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 358.0 2                | 100 27                 | 71.77  | 4+                    |                    |            |                                                                                                                                                                                                                             |
| 448.03                 | $(5^{+})$             | 376.1 <i>1</i>         | 100                    | 71.77  | 4+                    | D+Q                |            |                                                                                                                                                                                                                             |
| 463.4                  | $(0 \text{ to } 3^+)$ | 174 <i>1</i>           | 100                    | 289.4  | 1+                    |                    |            |                                                                                                                                                                                                                             |
| 591.22                 | $(4^{+})$             | 421.4 2                | 100 14                 | 169.92 | (3 <sup>+</sup> )     |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 465.8 <i>5</i>         | 13 <i>3</i>            | 125.69 | $(2^{+})$             |                    |            |                                                                                                                                                                                                                             |
| 661.11                 | 5+                    | 212.8 2                | 14.2 18                | 448.03 | (5 <sup>+</sup> )     |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 490.9 <i>4</i>         | 14.8 <i>18</i>         | 169.92 | (3+)                  |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 589.8 2                | 100 14                 | 71.77  | 4+                    |                    |            |                                                                                                                                                                                                                             |
| 683.1                  | $(0 \text{ to } 3^+)$ | 682.9 <i>6</i>         | 100                    | 0.0    | $1^{+}$               |                    |            |                                                                                                                                                                                                                             |
| 735.38                 | (4 <sup>+</sup> )     | 286.8 2                | 18.6 <i>14</i>         | 448.03 | $(5^{+})$             |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 305.6 2                | 21.1 23                | 429.67 | (3 <sup>+</sup> )     |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 565.3 2                | 100 9                  | 169.92 | (3+)                  |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 663.8 2                | 17.4 <i>17</i>         | 71.77  | 4+                    |                    |            |                                                                                                                                                                                                                             |
| 809.7                  | 1+                    | 126 <i>1</i>           | 100 4                  | 683.1  | $(0 \text{ to } 3^+)$ |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 520.4 5                | 21 1                   | 289.4  | 1+                    |                    |            |                                                                                                                                                                                                                             |
| 1240.16                | (6+)                  | 580.0 6                | 100 10                 | 661.11 | 5+                    |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 792.1 <i>3</i>         | 30 6                   | 448.03 | $(5^+)$               |                    |            |                                                                                                                                                                                                                             |
| 1338.13                | (4)                   | 601.9 5                | 21 3                   | 735.38 | $(4^{+})$             |                    |            |                                                                                                                                                                                                                             |
|                        |                       | 890.3 2                | 22 6                   | 448.03 | $(5^{+})$             |                    |            |                                                                                                                                                                                                                             |

Continued on next page (footnotes at end of table)

#### $\gamma$ <sup>(58</sup>Mn) (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult.‡ |
|------------------------|----------------------|------------------------|------------------------|---------|----------------------|--------|
| 1338.13                | (4)                  | 1266.6.9               | 100.20                 | 71.77   | $4^{+}$              |        |
| 1457.59                | (5)                  | 119.8 4                | 30 4                   | 1338.13 | .(4)                 |        |
|                        | (-)                  | 721.7 2                | 46.5                   | 735.38  | $(4^+)$              |        |
|                        |                      | 866.5 2                | 10.0 11                | 591.22  | $(4^+)$              |        |
|                        |                      | 1009.5 2               | 100 11                 | 448.03  | $(5^+)$              |        |
|                        |                      | 1386.2.3               | 51.5                   | 71.77   | 4+                   |        |
| 1601.43                | (6)                  | 143.7 2                | 25.2 21                | 1457.59 | (5)                  | (D)    |
|                        | (-)                  | 361.4 2                | 4.3 3                  | 1240.16 | $(6^{+})$            |        |
|                        |                      | 940.3 2                | 2.9 3                  | 661.11  | 5+                   |        |
|                        |                      | 1153.5 <i>3</i>        | 100 8                  | 448.03  | $(5^{+})$            | D      |
| 1880.42                | (7)                  | 279.0 1                | 100 6                  | 1601.43 | (6)                  | D      |
|                        |                      | 640.2 2                | 6.1 6                  | 1240.16 | $(6^{+})$            |        |
| 2339.7                 |                      | 459.3 2                | 100                    | 1880.42 | (7)                  |        |
| 2459.7                 | (8)                  | 579.1 5                | 100                    | 1880.42 | (7)                  |        |
| 2854.7                 |                      | 515.0 2                | 100                    | 2339.7  |                      |        |
| 3042.6                 | (9)                  | 582.8 5                | 100 13                 | 2459.7  | (8)                  | D      |
|                        |                      | 1162.4 5               | 41 <i>3</i>            | 1880.42 | (7)                  |        |
| 3462.1                 |                      | 607.4 <i>3</i>         | 100                    | 2854.7  |                      |        |
| 3721.4                 | (10)                 | 678.7 <i>1</i>         | 100 7                  | 3042.6  | (9)                  | D      |
|                        |                      | 1261.6 7               | 27 3                   | 2459.7  | (8)                  | (Q)    |
| 4707.6                 |                      | 2247.9 17              | 100                    | 2459.7  | (8)                  |        |
| 4733.1                 | (11)                 | 1012.1 4               | 99 8                   | 3721.4  | (10)                 | D      |
|                        |                      | 1690.5 2               | 100 7                  | 3042.6  | (9)                  |        |
| 4812.4                 | (11)                 | 1090.9 2               | 100 9                  | 3721.4  | (10)                 |        |
|                        |                      | 1770.6 7               | 73 4                   | 3042.6  | (9)                  |        |
| 4941.1                 |                      | 1898.4 <i>3</i>        | 100                    | 3042.6  | (9)                  |        |
| 5311.9                 |                      | 1590.5 <i>3</i>        | 100                    | 3721.4  | (10)                 |        |
| 5424.4                 | (12)                 | 612.0 2                | 11.6 <i>11</i>         | 4812.4  | (11)                 |        |
|                        |                      | 691.6 2                | 100 7                  | 4733.1  | (11)                 |        |
|                        |                      | 1702.3 4               | 42 <i>3</i>            | 3721.4  | (10)                 |        |
| 6337.2                 |                      | 2615.7 11              | 100                    | 3721.4  | (10)                 |        |
| 6566.4                 |                      | 1833.3 5               | 100                    | 4733.1  | (11)                 |        |
| 6872.6                 | (13)                 | 1448.2 2               | 100 9                  | 5424.4  | (12)                 |        |
|                        |                      | 2059.9 12              | 23.2 23                | 4812.4  | (11)                 |        |
|                        |                      | 2138.9 10              | 68 5                   | 4733.1  | (11)                 |        |
| 7442.5                 | (14)                 | 2018.0 7               | 100                    | 5424.4  | (12)                 |        |
| 9831.1                 | (16)                 | 2388.6 11              | 100                    | 7442.5  | (14)                 |        |

<sup>†</sup> From <sup>13</sup>C(<sup>48</sup>Ca,p2n $\gamma$ ), <sup>14</sup>C(<sup>48</sup>Ca,p3n $\gamma$ ) for levels populated in in-beam  $\gamma$ -ray studies. This work provides the most complete set of transitions and levels. The level schemes in <sup>48</sup>Ca(<sup>13</sup>C,2np $\gamma$ ) and <sup>238</sup>U(<sup>70</sup>Zn,X $\gamma$ ) are incomplete and the ordering of the cascades have been rearranged in the more extensive study in (<sup>48</sup>Ca,p2n $\gamma$ ) reaction (2010St01).

<sup>‡</sup> From  $\gamma(\theta)$  and  $\gamma\gamma(\theta)$  in (<sup>13</sup>C,2np $\gamma$ ), except as noted. Mult=D or D+Q indicates  $\Delta J=1$ ; mult=Q indicates  $\Delta J=2$  transition no multipolarity information is provided in the (<sup>48</sup>Ca,p2n $\gamma$ ) reaction.

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

## Level Scheme

Intensities: Relative photon branching from each level



 $^{58}_{25}Mn_{33}$ 

Level Scheme (continued)

Intensities: Relative photon branching from each level



<sup>58</sup><sub>25</sub>Mn<sub>33</sub>





7



 $^{58}_{25}Mn_{33}$