${}^{58}_{24}\text{Cr}_{34}$ -1

58 V β^- decay (191 ms) 2003Ma02

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Caroline D. Nesaraja, Scott D. Geraedts and Balraj Singh	NDS 111, 897 (2010)	12-Jan-2010

Parent: ⁵⁸V: E=0; $J^{\pi}=(1^+)$; $T_{1/2}=191$ ms *10*; $Q(\beta^-)=11.63\times 10^3$ *32*; $\%\beta^-$ decay=100.0

⁵⁸V-T_{1/2}: weighted average of 185 ms 10 (2003Ma02), 205 ms 20 (1998So03), 200 ms 20 (1998Am04).

⁵⁸V-Q(β⁻): 11630 *320* (2009AuZZ,2003Au03).

2003Ma02 (also 2001Pr13,2001Pr05): ⁵⁸V obtained from fragmentation of the primary beam of ⁸⁶Kr¹⁴⁺ at E=140 MeV/nucleon in a thick Be target followed by separation of fragment isotopes based on atomic mass and atomic number. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$, isotopic half-life using six Ge detectors from the MSU Segmented Ge detector array.

⁵⁸V Half-life measurements: 1998Am04, 1998So03.

⁵⁸V Isotopic identification: 1994Se12, 1990Tu01.

The decay scheme is considered as incomplete by the evaluators. The β feedings to 4⁺ levels are not possible from (1⁺) parent state.

⁵⁸Cr Levels

E(level)	$J^{\pi \dagger}$
0.0	0^{+}
879.7 4	2+
1936.1 6	4+
2977.3 9	(4^{+})

[†] From 'Adopted Levels'.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\ddagger}$	Log ft	Comments
(8.7×10 ³ [#] 3)	2977.3	<8 [†]		$I\beta^{-}: < 8 \ 3.$
$(9.7 \times 10^{3\#} 3)$	1936.1	<20		$I\beta^{-}: < 20 5.$
$(1.08 \times 10^4 \ 3)$	879.7	<34	>5.3	av $E\beta = 5.07 \times 10^3 \ 16$
				$I\beta^{-}: < 34 \ 8.$
$(1.16 \times 10^4 \ 3)$	0.0	<38	>5.3	av $E\beta = 5.50 \times 10^3 \ 16$
				$I\beta^{-}: < 38.7.$

[†] Apparent β feedings. For (1⁺) parent state, the direct feeding of 4⁺ states is not possible.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{58}Cr)$

I γ normalization: I γ /100 decays of ⁵⁸V are given by 2003Ma02.

Eγ	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$
879.7 4	62 7	879.7	2+	0.0 0+
1041.2 [‡] 7	8 <i>3</i>	2977.3	(4^{+})	1936.1 4+
1056.4 [‡] 5	28 4	1936.1	4^{+}	879.7 2+
^x 1501.4 6	52			

58 V β^- decay (191 ms) 2003Ma02 (continued)

$\gamma(^{58}Cr)$ (continued)

Eγ	$I_{\gamma}^{\dagger \#}$	$E_i(level)$
x1570.6 6	52	
^x 2216.8 7	13 2	

[†] I γ /100 decays were deduced (by 2003Ma02) from the number of observed γ rays, the γ -ray efficiency curve and the number of ⁵⁸V implants correlated with β decays.

[‡] Placement proposed by evaluators based on results of other reactions. This γ was not placed in level scheme by 2003Ma02.

[#] Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

58 V β^- decay (191 ms) 2003Ma02

Decay Scheme

