⁵⁸Ni(t,³He) **1985Aj02**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	C. D. Nesaraja and B. Singh	ENSDF	31-Oct-2015						

1985Aj02 (also 1984Aj03): E=25 MeV, Q3D spectrograph, FWHM≈23 keV. Measured $\sigma(E,\theta)$ from 5.5° to 50° (lab), DWBA and coupled- channel analysis.

2006Co14 (also 2005Ze04,2007Ze03): E=115 MeV/nucleon secondary triton beam was produced from primary α beam at 140 MeV/nucleon hitting a ⁹Be target. The A-1200 fragment separator was used to separate triton beam. Magnetic spectrometer S-800 was used to detect ³He particles. Time-of-flight method and energy loss measurements were used to identify ³He particles. FWHM≈250 keV. Measured σ (q) from 0° to 4.5°. DWBA analysis. Large-scale shell-model calculations. Two pronounced groups were observed at 2 MeV and 4 MeV which were forward peaked indicating L=0 (Gamow-Teller) transitions. The $\sigma(\theta)$ distribution for peak in the 1.75-2.0 MeV range and 0° to 4.5° is consistent with mixed 1⁺ and 2⁺ states. At angles of 2°-3°, a wide structure between 7-15 MeV was observed with probable L=1 (dipole) transitions due to isovector spin giant dipole resonance (L=1, S=1, $J^{\pi}=0^{-},1^{-},2^{-})$ and its non-spin-flip partner (L=1, S=0, $J^{\pi}=1^{-}$).

2006Gu02: E=130 MeV. Magnetic spectrometer BBS was used to detect ³He particles. FWHM≈350 keV. Measured σ(q) from 0.33° to 6.6°(c.m.). DWBA and RPA analysis. Two pronounced groups were observed at 2 MeV and 4 MeV which were forward peaked indicating L=0 (Gamow-Teller) transitions and a wide structure between 7-15 MeV was observed with probable L=1 (dipole) transitions.

⁵⁸Co Levels

							_	
E(level)	J^{π}	L	E(level)	$J^{\pi \dagger}$	L	E(level)	$J^{\pi^{\ddagger}}$	L
0.0	2+	2	1870 ^{&} 10	1+	0+2	3237 [‡] 15		
25 <i>3</i>	5+	4+6	1977 10	3+	2+4	3290 15	(1^{+})	0+2
53 <i>3</i>	4+	4	2015 10			3346 [‡] 15		
112 3	3+	2+4	2074 10	$4^+, 5^+$	4	3403 15	$4^+, 5^+$	4
367 # 5	3+ #		2102 10			3431 15	3+	2+4
385 [#] 10	5+ #		2171 [‡] <i>15</i>	3+	2+4	3484 20		
460 8	4+	4	2241 10	1^{+}	0+2	3518 [@] 20	(4^{+})	
889 8	$4^+, 3^+$	4	2336 10			3545 20		
1044 [‡] 10	3+	2+4	2459 [‡] 15			3612 [‡] 20	(1^{+})	0+2
1052 8	1^{+}	0+2	2481 15	2^{+}	2	3668 [‡] 20	(1^{+})	0+2
1073 15			2523 15			3720 [‡] 20	(3 ⁺)	2+4
1133 15			2634 [‡] 15	$3^+, 2^+$	2,2+4	3781 [‡] 15		
1191 <i>10</i>	5+	4+6	2700 15			3804 20		
1242 [‡] 10	2^{+}	2	2741 15	5+	4+6	3890 20	(2^{+})	2
1377 [‡] 10	1^{+}	0+2	2776 15			3925 20	$(2^+, 1^+)$	2
1424 8	3+	2+4	2858 12	$4^+, 5^+$	4	3957 20		
1447 10	1+	0+2	2893 15			4021 20	(3^{+})	2+4
1527 10	$2^+, 3^+$	2	2953 15			4053 20	2+	2
1555 10	5+	4+6	2997 15	2+	2	4087 [@] 20	(4^{+})	
1610 10	$4^+, 3^+$	4	3069 [@] 15	5+	4+6	4113 20		
1674 10	$3^+, 2^+$	2,2+4	3100 [‡] <i>15</i>	$2^+, 3^+$	2	4170 20		
1738 [‡] 10	1^{+}	0+2	3154 15			4206 [‡] 20		
1843 10	3+	2+4	3216 20	3+	2+4	4287 [‡] 20		

[†] From $\sigma(\theta)$ and coupled-channels analysis normalized to seven lowest states with adopted J^{π} from Adopted Levels.

[‡] Unresolved group.

[#] Analyzed as a combined 367+385 unresolved group. The angular distribution could be fitted by L=2+4 corresponding to known 3^+ and 5^+ for the 367 and 385 levels, respectively.

[@] The $\sigma(\theta)$ distribution not shown in figure 6 of 1985Aj02.

[&] B(GT)=0.72 5 (2006Co14).