Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh	ENSDF	12-Apr-2010							

 $Q(\beta^{-})=8.30\times10^{3} 23$; $S(n)=6.2\times10^{3} 3$; $S(p)=1.23\times10^{4} 3$; $Q(\alpha)=-8.5\times10^{3} 4$ 2012Wa38

Note: Current evaluation has used the following Q record 8.34E3 23 6.18E3 31 12.54E330-8990 syst 2009AuZZ,2003Au03. $\Delta Q(\alpha)$ =380 (syst,2009AuZZ,2003Au03).

Q(β⁻n)=3020 230, S(2n)=11180 250, S(2p)=29190 770 (2009AuZZ,2003Au03).

1990Tu01: ⁵⁷V activity produced by 800 MeV proton induced fission and fragmentation using natural Th target and subsequent particle analysis with a tof isochronous spectrometer.

1998So03: ⁵⁷V activity produced by the fragmentation of 64.5 MeV/nucleon ⁶⁵Cu beam impinging on a ⁹Be target and subsequent mass separation using the lise3 spectrometer. Measured $T_{1/2}$ from β^- singles and β - γ coincidence decay curves.

Additional information 1.

1998Am04: activity produced by the fragmentation of 500 MeV/nucleon ⁸⁶Kr beam on a ⁹Be target and subsequent mass separation using the FRS spectrometer. Measured $T_{1/2}$. See also 1997AmZZ thesis.

1999So20: calculated potential energy surfaces for odd-A vanadium isotopes by the HFB method with the Gogny D1S force.

2005Li53: shell-model calculations of $3/2^-$, $5/2^-$ and $7/2^-$ states up to 2.5 MeV excitation, carried out in the full *pf* space with the interaction GXPF1; $7/2^-$ and $5/2^-$ are predicted to be g.s. and 95 keV, respectively. First $3/2^-$ state is predicted at 530 keV.

⁵⁷V Levels

Cross Reference (XREF) Flags

A ⁵⁷Ti
$$\beta^-$$
 decay (98 ms)

B
238
U(64 Ni,X γ)

E(level)	J^{π}	T _{1/2}	XREF	Comments		
0.0	(7/2 ⁻)	0.32 s <i>3</i>	AB	%β ⁻ =100; %β ⁻ n=? %β ⁻ n: 0.44 (calculated,1997Mo25). J ^π : shell-model calculations with GXPF1 interaction and full <i>pf</i> space predict 7/2 ⁻ g.s., first 5/2 ⁻ at 95 keV, and first 3/2 ⁻ at 530 keV. Potential energy surface HFB calculations using Gogny DIS force (1999So20) predict 7/2 as the lowest state for slight oblate deformation and 3/2 ⁻ for small prolate deformation. 3/2 ⁻ with π 3/2[521] configuration is predicted (1998So03) in QRPA calculations and comparisons with observed decay pattern. 7/2 ⁻ is preferred from systematics of neighboring odd-A Vanadium and even-even Ti nuclides, and recent (2008LuZZ) observation of an (11/2 ⁻) to (7/2 ⁻) γ transition in ²³⁸ U(⁶⁴ Ni,xγ) reaction. But 5/2,3/2 is favored if β feeding is real in ⁵⁷ V decay to (3/2) ⁻ g.s. in ⁵⁷ Cr. Other: 3/2 ⁻ from calculations (1997Mo25). T _{1/2} : from timing of βγ coin (1998So03). Others: 0.34 s 8 (1998Am04,1997AmZZ, earlier values from the same group: 0.66 s 4 (1995AmZY), 0.6 s 1 (1995AmZX)). See 1998Am04 and 1998So03 for a comparison of their measurements of T _{1/2} with theoretical estimates using different models.		
113.2 <i>4</i> 174.8 <i>4</i>			A A			
1163 1731.9 <i>4</i> 1754.3? <i>5</i> 2036.3 <i>4</i> 2475.6 <i>5</i>	(11/2 ⁻)		B A A A A	J^{π} : from systematics of neighboring odd-A Vanadium and even-even Ti nuclides.		

Adopted Levels, Gammas (continued)

$\gamma(^{57}V)$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f = J_f^{\pi}$	E _i (level)	Eγ	I_{γ}	E_f
113.2 174.8		113.1 <i>4</i> (61.7)	100 35 10	0.0 (7/2-113.2) $1754.3?$ 2036.3	1579.4 [†] 4 1861.5 4	100 100 <i>14</i>	174.8 174.8
1163	$(11/2^{-})$	174.8 <i>4</i> 1163	100 6	$\begin{array}{c} 0.0 & (7/2^{-}) \\ 0.0 & (7/2^{-}) \end{array}$) 2475.6	1922.9 <i>5</i> 744.0 <i>4</i>	19 <i>4</i> 46 8	113.2 1731.9
1731.9	(1557.3 5 1732.2 6	100 <i>23</i> 55 9	174.8 0.0 (7/2 ⁻)	2300.4 4	100 10	174.8

 † Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

