

Adopted Levels

Type	Author	Citation	History	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF		15-Sep-2023

$Q(\beta^-)=21690$ *syst*; $S(n)=1920$ *syst*; $S(p)=19710$ *calc*; $Q(\alpha)=-18230$ *calc* [2021Wa16](#), [2019Mo01](#)

Estimated uncertainties ([2021Wa16](#)): 720 for $Q(\beta^-)$, 850 for $S(n)$.

$S(p)$ and $Q(\alpha)$ from [2019Mo01](#). $Q(\beta^-)$ and $S(n)$ from [2021Wa16](#).

$S(2n)=2480\ 780$, $Q(\beta^-n)=19570\ 650$ (*syst*, [2021Wa16](#)). $S(2p)=44990$ ([2019Mo01](#), *theory*). $Q(\beta^-2n)=16640\ 620$, $Q(\beta^-3n)=15080\ 600$, $Q(\beta^-4n)=11240\ 600$, $Q(\beta^-5n)=8040\ 600$, $Q(\beta^-6n)=2040\ 600$ (*syst*, deduced by evaluator from relevant mass excesses in [2021Wa16](#)).

[2018Ta17](#): ^{57}K formed by fragmentation of $^{70}\text{Zn}^{30+}$ beam at 345 MeV/nucleon from RIKEN-RIBF accelerator complex. Rotating target of ^9Be of 15 mm thickness were located at the BigRIPS two-stage ion separator. Particle identification (PID) was achieved by measuring time of flight (TOF), energy loss (ΔE), total kinetic energy (TKE), and magnetic rigidity ($B\rho$) through event by event analysis of reaction products. Particles of interest were stopped in a 76-mm thick CsI crystal after passing through six 1-mm thick silicon p-i-n diodes, while the magnetic rigidity ($B\rho$) of the fragments was reconstructed from position and angle measurements at foci using two sets of position-sensitive parallel plate avalanche counters (PPACs). Optimization was done using LISE⁺⁺ simulation code. A total of eight events were assigned to ^{57}K .

No references in the NSR database for theoretical structure calculations.

[Additional information 1](#).

 ^{57}K Levels

E(level)	Comments
0	$\% \beta^- = 100$; $\% \beta^- n = ?$; $\% \beta^- 2n = ?$; $\% \beta^- 3n = ?$; $\% \beta^- 4n = ?$ $\% \beta^- 5n = ?$; $\% \beta^- 6n = ?$ Only the β^- decay mode is expected, followed by delayed neutron decays, thus 100% β^- decay is assigned by inference. A total of eight events were assigned to ^{57}K , as in the text of 2018Ta17 . In Table I of the paper, six events are assigned for tuned setting of the spectrometer for ^{60}Ca , and one event for setting on ^{57}K . Theoretical $T_{1/2}(\beta) = 5.6$ ms, $\% \beta^- n = 69$, $\% \beta^- 2n = 24$, $\% \beta^- 3n = 5$, $\% \beta^- 4n = 0$, $\% \beta^- 5n = 0$, $\% \beta^- 6n = 0$ (2019Mo01). Theoretical $T_{1/2}(\beta) = 5.6$ ms, $\% \beta^- n = 41.2, 45.9$; $\% \beta^- 2n = 43.2, 37.8$; $\% \beta^- 3n = 4.3, 3.8$; $\% \beta^- 4n = 0.41, 0.49$; $\% \beta^- 5n = 0.010, 0.004$; $\% \beta^- 6n = 0$ (2021Mi17); two values for different fission barriers. The observed events are assumed to correspond to the ^{57}K g.s. $T_{1/2}$: half-life of the ^{57}K activity has not been measured. It is expected to be greater than the time-of-flight through the beam transport system, which may be about 500 ns. From systematics of half-lives of neighboring P isotopes, the half-life is expected to be <10 ms from 10 ms for ^{54}K , 30 ms for ^{53}K , 110 ms for ^{52}K , and 365 ms for ^{51}K , assuming a decreasing trend of half-life as neutron number increases in neutron-rich nuclei. From systematics, $T_{1/2} = 2$ ms in 2021Ko07 . J^π : $1/2^+$ (2019Mo01 , <i>theory</i>); $3/2^+$ (<i>syst</i> , 2021Ko07).