⁵⁸Fe(p,d), (d,t), (³He,α) **1965Sh06,1964Le10**

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. R. Bhat	NDS 85, 415 (1998)	24-Sep-1998			

See 1970Ra51 for a comparison of the results from these reactions. All groups cited below measured $\sigma(\theta)$. 1964Le10: E(p)=17.0, 18.5 MeV. Proportional counter telescope. $\theta=15^{\circ}-40^{\circ}$, 5° steps, and $50^{\circ}-70^{\circ}$, 10° steps. DWBA. 1965Sh06: E(p)= 28 MeV. Semiconductor telescope. $\theta \approx 20^{\circ}-50^{\circ}$. DWBA.

1962Bl06 (E(d)=14 MeV, E(3 He)=14.4 MeV. Semi) noted a great difference in the relative strengths of L=1 and L=3 transitions

for (³He, α) and (d,t). In (³He, α) the g.s.+14+140 group $\sigma(\theta)$ is dominated by L=3 to the 140, 5/2⁻, state; in (d,t), by L=1 to the

g.s., $1/2^-$, and 14, $3/2^-$, states. Other unresolved groups observed in both (d,t) and (³He, α) were at ≈ 1.2 and 2.2 MeV while the 0.36-MeV state and a group at ≈ 1.7 MeV were observed in (d,t).

1962Ma21 (E(d)= 21.6 MeV, scin telescope) observed unresolved groups at $\approx 0, 1.3, 2.2, and 4.7$ MeV.

⁵⁷Fe Levels

Energy, J^{π} , and L are from 1965Sh06 and C²s are from 1964Le10, except as noted. ΔE from estimates given by the authors for other reactions. J and L primarily from empirical shapes but with guidance from DWBA.

E(level)	\mathbf{J}^{π}	L	C^2S	Comments
0				$L,C^2S: L=1 (1965Sh06,1964Le10); C^2S=0.70 \text{ for } g.s.+14 \text{ doublet.}$
14				
$1.4 \times 10^2 2$	5/2-	3	0.80	
$3.7 \times 10^2 2$	3/2-	1	0.48	
$7.1 \times 10^2 2$	$(5/2^{-})$	3		
1.30×10^{3}		1	0.21	E(level),L: from 1964Le10.
$2.21 \times 10^3 2$	$7/2^{-}$	3	4.4	C ² S: C ² S=2.03 for composite of 2.21-, 3.19-, and 4.97-MeV states (1965Sh06).
$3.19 \times 10^3 2$	$7/2^{-}$	3		
$4.97 \times 10^3 2$	$(7/2^{-})$	(3)		
$5.27 \times 10^3 2$	$3/2^{+}$	2		J^{π} : adopted value is $1/2^+$.
10.45×10 ³ 5	(7/2 ⁻)	(3)	0.36	C ² S: from 1965Sh06. IAS?(⁵⁷ Mn) (1965Sh06).