⁵⁷Fe(γ , γ): Mossbauer

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. R. Bhat	NDS 85, 415 (1998)	24-Sep-1998				

Includes 57 Co ε decay Mossbauer experiments.

The following groups, using polarized iron foils, obtained the Mossbauer absorption σ_0 at room temperature and deduced $\alpha(14.4\gamma)$, assuming $J_f=3/2$ and $J_i=1/2$: 1965Ha34 (enriched foils); 1965Ki03 (natural foil); 1965Nu01 (natural foil); and 1970Jo30 (natural foils).

Additional information 1.

Others: the 14.4 γ arising from ⁵⁷Co ε decay has been used extensively in Mossbauer spectroscopy. See 1989Ra17 for measurements related to the determination of μ 's and Q's and 1970Ra51 and recent references for other measurements. 1989Sm04 compared the T_{1/2} of the 14.4-keV level excited by γ rays with the T_{1/2} for spontaneous decay. 1985Da10 measured isomer shift for ⁵⁷Fe.

⁵⁷Fe Levels

See 1972Ru04 (Mossbauer, $\gamma\gamma$ (t)) for chemical effects in T_{1/2}(14.4 state).

E(level) [†]	J^{π}	Comments
0.0	$1/2^{-}$	Q=+0.21 3 (1969Ch08,1969Ch03)
		Q: ⁵⁷ Co-doped Mg oxide. Measured Q splitting.
14.413 [‡] <i>3</i>	$3/2^{-}$	Q=+0.283 35 (1968Ar08)
		Q: ⁵⁷ Co in Pd source, α -Fe oxide absorber. Measured Mossbauer-effect Q interactions.
136.4745 12	5/2-	g=-0.39 4 (1967He04)
		g: ⁵⁷ Co source, ⁵⁷ Fe scatterer. Measured 6.4 K x ray and observed partially resolved 136-keV hfs. The sign
		of the g-factor is discrepant with the adopted for μ and with $g=+0.366$ 18 from inelastic scattering.

[†] From Adopted Levels, except as noted.

[‡] From 14.413 γ .

$\gamma(^{57}\text{Fe})$

Time reversal invariance and parity nonconservation studies: 1977Ch30,1976Ch14: measured linear polarization of the 122 γ and deduced the relative phase of E2,M1 (⁵⁷Co in Fe source; Compton polarimeter). Results are consistent with time reversal invariance. 1980Da12: analyzed atomic processes which have to be considered in the analysis of time reversal and Mossbauer absorption experiments. 1987In03: measured the asymmetry of photon emission by polarized ⁵⁷Fe nuclei for the 14.4 keV transition. Deduced the ratio of reduced matrix element of an E1 transition due to a possible spatial parity violation to the reduced matrix element of the regular M1 transition to be 2.9×10^{-4} 6. 1989Be10, 1993Be24: reanalysis of the time reversal experiment of 1977Ch30 in terms of nucleon-nucleon potential models. 1993Su17: estimate of circular polarization of the 14.4 keV Mossbauer transition and comparison with experimental data. 1996Re07: experimental limits on the interference of M1 and E2 multipoles in the γ transitions in ⁵⁷Fe are used to set limit on the strength of time-reversal-violating parity conserving interaction.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	α ^{<i>a</i>}	Comments
14.413	3/2-	14.413 [#] 3	0.0	1/2-	8.18 [@] 11	M23/M1=0.08173 51; N1/M1=0.0381 25 M23/M1,N1/M1: from 1979Sa32 (⁵⁷ Fe in Au; iron-free spectrometer). See also 1976Sh30, 1973Sh01, and 1972Fu08; these measurements show chemical effects on the outer-shell ratios and spectral shapes.

⁵⁷Fe(γ , γ): Mossbauer (continued)

$\gamma(^{57}\text{Fe})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	Comments
136.4745	5/2-	122.0614 ^{&} 4	100 10	14.413	3/2-	M1+E2	-0.15 4	Mult., δ : from $\gamma\gamma(\theta,h)$ (1963De04, NaI). δ =- 2.580 24 less likely since it would give too large an E2 transition probability.
		136.4743 ^{&} 5	12.0 12	0.0	$1/2^{-}$	E2		Mult.: from adopted gammas; assumed by 1977Ch30.

[†] From adopted gammas, except as noted.

[‡] Relative photon branching from each level. 1977Ch30 assumed I $\gamma(122\gamma)$ =89% and I $\gamma(136\gamma)$ =11% from 1967Le24.

[#] From 1978Co12. Center of resonance curve. Monochromatic synchrotron radiation (\approx 3 eV width; cryst); ce detected by channeltron.

[@] From adopted gammas; 8.21 *15* from the evaluation of 1984HaZS based on σ_0 .

[&] Not separated in polarimeter of 1977Ch30.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

