57 V β^{-} decay (350 ms) 2003Ma02

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	12-Apr-2010			

Parent: ⁵⁷V: E=0; $J^{\pi}=(7/2^{-})$; $T_{1/2}=350$ ms 10; $Q(\beta^{-})=8.34\times10^{3}$ 23; % β^{-} decay=100.0

 57 V-J^{π},T_{1/2}: From 57 V Adopted Levels.

⁵⁷V-Q(β⁻): From 2009AuZZ, 2003Au03.

2003Ma02: ⁵⁷V obtained from fragmentation of the primary beam of ⁸⁶Kr¹⁴⁺⁺ at E=140 MeV/nucleon in a thick Be target followed by separation of fragment isotopes based on atomic mass and atomic number. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ using six Ge detectors from the NSCL SeGA array.

Placement of γ rays is from energy sums, no $\beta\gamma\gamma$ coincidence events were detected in 2003Ma02.

obvious why this γ ray was missed in β^- study.

1998So03: ⁵⁷V activity produced by the fragmentation of 64.5 MeV/nucleon ⁶⁵Cu beam impinging on a ⁹Be target and subsequent mass separation using the lise3 spectrometer. Measured $T_{1/2}$ from β^- singles and β - γ coincidence decay curves. Three γ rays were detected at 267 4, 700 50 and 900 50 keV with intensities of 60, 30, and 30%, ORPA calculations.

1998Am04: $T_{1/2}$ measurement and production of ⁵⁷V.

1990Tu01: ⁵⁷V production.

⁵⁷Cr Levels

E(level) [†]	\mathbf{J}^{π}	Comments
0.0	$(3/2)^{-}$	
267.9 <i>3</i>	$(5/2^{-})$	
692.3 <i>3</i>	$(5/2^{-})$	
941.7 5	$(7/2^{-})$	
1582.2 6		E(level): it should be noted that 1314.3 5+267.8 3=1582.1 6 and 892.5 6+692.4 4=1584.9 7 differ by 2.8 9 keV. This suggest two separate levels near this energy. See comment in 'Adopted Levels', where 892.5γ and
		1314.3γ are placed from two separate levels based on above discrepancy in energy sum and on results from
		$^{14}C(^{48}Ca,\alpha n\gamma)$ reaction. In the latter reaction, a strong 639.1 γ is also seen from a 1581 level. It is not

[†] From least-squares fit to $E\gamma's$.

β^{-} radiations

E(decay)	E(level)	Iβ ^{-†‡}	$\log ft^{\dagger}$		Comments	
$(6.76 \times 10^3 \ 23)$	1582.2	32	5.8	av Eβ=2978 15		
$(7.40 \times 10^3 \ 23)$	941.7	92	5.2	av Eβ=3292 15		
$(7.65 \times 10^3 \ 23)$	692.3	20 3	5.0	av Eβ=3414 15		
$(8.07 \times 10^3 \ 23)$	267.9	47 5	4.7	av Eβ=3622 15		
$(8.34 \times 10^3 \ 23)$	0.0	21 5	5.1	av Eβ=3753 15		

[†] Apparent β feedings, thus log *ft* values should be considered (by the evaluator) as lower limits only, thus no uncertainties in log *ft* values are listed.

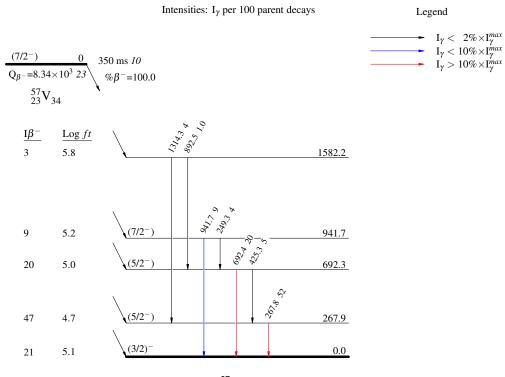
[‡] Absolute intensity per 100 decays.

57 V β^{-} decay (350 ms) 2003Ma02 (continued)

$\gamma(^{57}\mathrm{Cr})$

Eγ	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
249.3 7	21	941.7	$(7/2^{-})$	692.3	$(5/2^{-})$	
267.8 <i>3</i>	52 4	267.9	$(5/2^{-})$	0.0	$(3/2)^{-}$	E_{γ} : 267 4 (1998So03), $I\gamma$ =60%.
425.3 5	3 1	692.3	$(5/2^{-})$	267.9	$(5/2^{-})$	·
692.4 4	20 3	692.3	$(5/2^{-})$	0.0	$(3/2)^{-}$	E_{γ} : 700 50 (1998So03), $I\gamma$ =30%.
892.5 6	1.0 5	1582.2		692.3	$(5/2^{-})$	
941.7 5	71	941.7	$(7/2^{-})$	0.0	$(3/2)^{-}$	E_{γ} : 900 50 (1998So03), $I\gamma$ =30%.
^x 1289.6 5	21					
1314.3 [‡] 5	2 1	1582.2		267.9	$(5/2^{-})$	

[†] I γ /100 decays were deduced (by 2003Ma02) from the number of observed γ rays, the γ -ray efficiency curve and the number of ⁵⁷V implants correlated with β decays.


[±] In ¹⁴C(⁴⁸Ca, α n γ), a 1581 level was shown to decay by 639.1 γ and 1313.8 γ . In β^- decay,

[#] Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

57 V β^- decay (350 ms) 2003Ma02

Decay Scheme

⁵⁷₂₄Cr₃₃