Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	12-Apr-2010					

 $Q(\beta^{-})=4962.0\ 24$; $S(n)=5314\ 3$; $S(p)=1.369\times10^{4}\ 18$; $Q(\alpha)=-8.12\times10^{3}\ 10$ 2012Wa38

Note: Current evaluation has used the following Q record 4962.7 26 *5314.2* 26 13.73E320-8.12E3 10 2009AuZZ,2003Au03. S(2n)=13559.3 20, S(2p)=25430 150 (2009AuZZ,2003Au03).

1978Da04: first identification and production of 57 Cr in 48 Ca(11 B,np) at E=21 MeV. Measured half-life.

1990Tu01: ⁵⁷Cr activity produced by 800 MeV proton induced fission and fragmentation using natural Th target and subsequent particle analysis with a tof isochronous spectrometer.

1990Da15: yield measurement in Ti(α ,xnyp) at E=30-60 MeV.

1994Se12: mass measurement.

2005Gu37: mass measurement using Penning-trap method.

2007Na31: production yield in ¹³⁶Xe(p,X) E=1 GeV/nucleon, GSI.

2008Ka41: shell-model calculations, B(E2).

Other reaction:

1982Se09: ⁵⁹Co(π -,2p) E=stopped pions. Negative pions at momentum of 110 MeV/c were moderated and stopped in ⁵⁹Co target at Swiss Institute for Nuclear Research. Measured pp-coin and $\sigma(\theta)$ for coincident protons using six Δ E-E silicon telescopes. Deduced yields for pp-, pd- and pt-channels and missing mass spectra.

⁵⁷Cr Levels

Cross Reference (XREF) Flags

A
57
V β^- decay (350 ms)
B 14 C(48 Ca, α n γ)

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
0.0 ^{<i>a</i>}	(3/2)-	21.1 s <i>10</i>	AB	$\%\beta^{-}=100$ J ^{π} : log ft=5.45 9 to 5/2 ⁻ g.s. in ⁵⁷ Mn. 3/2 ⁻ in isotones (N=33) ⁵⁹ Fe, ⁶¹ Ni and ⁶³ Zn. T _{1/2} : from timing of 205.8 γ (1978Da04).
267.87 ^a 8	$(5/2^{-})^{\#}$		AB	
692.69 ^a 9	$(5/2^{-})^{\#}$		AB	
941.79 ^a 10	$(7/2^{-})^{\#}$		AB	
1506.91 [@] 14	$(9/2^+)$		В	
1581.13 ^{&} 19	(9/2 ⁻)		AB	E(level): a 1581 level is reported in ${}^{14}C({}^{48}Ca,\alpha n\gamma)$ deexciting by 639.1 2 and 1313.8 4 γ rays, I γ (1313.8 γ)/I γ (639.1 γ)=28 8/100 6. In ${}^{57}V\beta^{-}$ decay, a 1582 level is reported deexciting by 892.5 6 and 1314.3 5 γ rays, I γ (1314.3 γ)/I γ (892.5 γ)=100 50/50 25. Moreover 892.5 γ fits poorly if placed from the same level as 639.1 γ 1313.8 γ , thus two levels are defined by the evaluator, although, it remains unclear why 639.1 γ was missed in β^{-} decay experiment.
1585.2 6			Α	
1858.1 4	$(9/2^{-})$		В	
2098.14 ^{&} 22	$(11/2^{-})$		В	
2344.50 [@] 19	$(13/2^+)$		В	
2611.6 ^{&} 3	$(13/2^{-})$		В	
3377.6 6			В	
3500.4 ^w 3	$(17/2^+)$		В	
3555.4 ^{&} 5	$(15/2^{-})$		В	
4136.4 8			В	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁵⁷Cr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
4827.0 15		В	
4856.4 11		В	
4920.1 <mark>&</mark> 10		В	
5018.6 [@] 5	$(21/2^+)$	В	
6814.7 [@] 10	$(25/2^+)$	В	
8844.4 [@] 21	$(29/2^+)$	В	
10972 [@] 5	$(33/2^+)$	В	
12950? [@] 6	$(37/2^+)$	В	Configuration= $\pi(f_{7/2}^4)\nu(g_{9/2})\nu(f_{5/2}p_{3/2}p_{1/2})^4$.

[†] From least-squares fit to $E\gamma'$ s. Reduced χ^2 =2.0, but still within the critical χ^2 value.

[±] Assignments based on $\gamma(\theta)$ data and band assignments.

[#] Parity assignment based on observed direct β -feeding of level in decay of ⁵⁷V. The level is based on excitations of *pf*-shell neutrons.

^(a) Band(A): $\nu 1/2[440]$, prolate decoupled band. Positive parity assignment is from comparison with ⁵⁵Cr isotone. The $1/2^+$ and $5/2^+$ band members are expected at ≈ 120 keV and ≈ 360 keV, respectively, below the $9/2^+$ member.

& Band(B): γ -sequence based on $9/2^{(-)}$.

^{*a*} Band(C): γ -sequence based on g.s.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
267.87	$(5/2^{-})$	267.92 9	100	0.0	$(3/2)^{-}$	D	
692.69	$(5/2^{-})$	424.90 14	24.7 17	267.87	$(5/2^{-})$		I_{γ} : other: 15 5 in β^- decay.
	(-1)	692.61 12	100 5	0.0	$(3/2)^{-}$	D+O	,
941.79	$(7/2^{-})$	249.08 8	60.9 22	692.69	$(5/2^{-})$	D	I_{γ} : other: 28 14 in β^- decay.
		673.8 2	28.3 18	267.87	$(5/2^{-})$		γ not reported in β^- decay.
		941.75 18	100 5	0.0	$(3/2)^{-}$	(Q)	
1506.91	$(9/2^+)$	565.11 10	100	941.79	$(7/2^{-})$	D+Q	
1581.13	(9/2 ⁻)	639.1 2	100 6	941.79	(7/2 ⁻)	D+Q	E _γ : γ from ¹⁴ C(⁴⁸ Ca,αnγ) only, not reported in $β^-$ decay.
		1313.8 4	28 8	267.87	$(5/2^{-})$	(Q)	
1585.2		892.5 6	100	692.69	$(5/2^{-})$		
1858.1	$(9/2^{-})$	1166.5 6	61 12	692.69	$(5/2^{-})$		
		1593.8 17	100 23	267.87	$(5/2^{-})$		
2098.14	$(11/2^{-})$	240.8 4	9.4 12	1858.1	$(9/2^{-})$		
		516.88 19	68 4	1581.13	$(9/2^{-})$		
		1156.0 4	100 24	941.79	$(7/2^{-})$	(Q)	
2344.50	$(13/2^+)$	837.59 12	100	1506.91	$(9/2^+)$	(Q)	
2611.6	$(13/2^{-})$	513.4 2	76 8	2098.14	$(11/2^{-})$		
		1030.8 5	100 50	1581.13	$(9/2^{-})$		
3377.6		1279.4 5	100	2098.14	$(11/2^{-})$		
3500.4	$(17/2^+)$	1155.9 2	100	2344.50	$(13/2^+)$	(Q)	
3555.4	$(15/2^{-})$	943.8 4	100	2611.6	$(13/2^{-})$	D+Q	
4136.4		758.8 5	100	3377.6			
4827.0		1326.6 14	100	3500.4	$(17/2^+)$		
4856.4		720.0 8	100	4136.4			
4920.1		1364.7 8	100	3555.4	$(15/2^{-})$		
5018.6	$(21/2^+)$	1518.2 4	100	3500.4	$(17/2^+)$	(Q)	
6814.7	$(25/2^+)$	1796.0 8	100	5018.6	$(21/2^+)$		
8844.4	$(29/2^+)$	2029.7 18	100	6814.7	$(25/2^+)$		

$\gamma(^{57}\mathrm{Cr})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

 $\gamma(^{57}Cr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
10972	$(33/2^+)$	2128 4	100	8844.4	$(29/2^+)$
12950?	$(37/2^+)$	1978 [#] 4	100	10972	$(33/2^+)$

[†] From ¹⁴C(⁴⁸Ca,αηγ), except that for 1585 level which is from β⁻ decay only.
[‡] From γ(q) data in ¹⁴C(⁴⁸Ca,αηγ). Mult=D or D+Q is from negative A₂ and indicates ΔJ=1 transition, mult=Q is from positive A₂ and indicates ΔJ=2 transition.
[#] Placement of transition in the level scheme is uncertain.

⁵⁷₂₄Cr₃₃

Adopted Levels, Gammas

⁵⁷₂₄Cr₃₃