$^{14}C(^{48}Ca,\alpha n\gamma)$ **2005De34**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	12-Apr-2010						

E=130 MeV. Measured E γ , I γ , $\gamma\gamma$, (fragment) γ coin, $\gamma(\theta)$ with the.

Gammasphere array of 100 Compton-suppressed Ge detectors. Reaction products separated using Fragment Mass Analyzer (FMA) at ANL. ΔE and time-of-flight measured with a parallel-grid avalanche counter and a segmented ion chamber, and were used to identify reaction products.

⁵⁷Cr Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments				
0.0 ^a	3/2 ⁻					
207.87^{a} 8 692.69 ^a 9	5/2 " 5/2 ^{-#}					
941.79 ^{<i>a</i>} 10	7/2 ^{-#}					
1506.91 [@] 14	9/2 ⁽⁺⁾	E(level): γ decays from this level to predicted 5/2 ⁺ band member, ≈ 360 keV below the 9/2 ⁺ member is not observed in 2005De34. For E γ =360 keV, detectable limit of intensity is <4%. The 1/2 ⁺ bandhead is predicted at ≈ 120 keV below the 9/2 ⁺ member, E4 transition is unlikely.				
1581.13 ^{&} 19	$9/2^{(-)}$					
1858.1 4	(9/2 ⁻)					
2098.15 ^{&} 22	$11/2^{(-)}$					
2344.50 [@] 19	$13/2^{(+)}$					
2611.6 ^{&} 3 3377.6 6	(13/2 ⁻)					
3500.4 [@] 3	$17/2^{(+)}$					
3555.4 <mark>&</mark> 5	$(15/2^{-})$					
4136.4 8						
4827.0 15						
4830.4 11						
4920.1° 10	21/2(+)					
5018.0 - 5	$(25/2^+)$					
0014.7 - 10	$(23/2^{+})$					
0044.4 - 21	$(29/2^{+})$					
10972 5 12950? [@] 6	$(33/2^+)$ $(37/2^+)$	Configuration= $\pi(f_{7/2}^4)\nu(g_{9/2})\nu(f_{5/2}p_{3/2}p_{1/2})^4$.				

[†] From least-squares fit to $E\gamma's$.

[±] Assignments based on $\gamma(\theta)$ data and band assignments.

[#] Parity assignment based on observed direct β -feeding of level in decay of ⁵⁷V. The level is based on excitations of *pf*-shell neutrons.

^(a) Band(A): $\nu 1/2$ [440], prolate decoupled band. Positive parity assignment from comparison with ⁵⁵Cr isotone. The $1/2^+$ and $5/2^+$ band members are expected at ≈ 120 keV and ≈ 360 keV, respectively, below the $9/2^+$ member.

& Band(B): γ -sequence based on $9/2^{(-)}$.

^{*a*} Band(C): γ -sequence based on g.s.

				¹⁴ C(⁴⁸ Ca,	$\alpha \mathbf{n} \gamma$)	2005De34 ((continued)		
$\underline{\gamma(^{57}\mathrm{Cr})}$									
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	Comments		
240.8 4	4.6 6	2098.15	$11/2^{(-)}$	1858.1	$(9/2^{-})$				
249.08 8	60.9 22	941.79	$7/2^{-}$	692.69	5/2-	D [#]	A ₂ =-0.16 5		
267.92 9	65.7 24	267.87	5/2-	0.0	3/2-	D [#]	A ₂ =-0.09 5		
424.90 14	14.8 10	692.69	$5/2^{-}$	267.87	5/2-				
513.4 2	15.2 16	2611.6	(13/2 ⁻)	2098.15	$11/2^{(-)}$				
516.88 19	33.3 20	2098.15	$11/2^{(-)}$	1581.13	$9/2^{(-)}$				
565.11 10	89 5	1506.91	$9/2^{(+)}$	941.79	7/2-	D+Q [#]	A ₂ =-0.30 4		
639.1 2	29.5 17	1581.13	$9/2^{(-)}$	941.79	7/2-	D+Q [#]	A ₂ =-0.31 8		
673.8 2	28.3 18	941.79	$7/2^{-}$	267.87	5/2-	ш			
692.61 <i>12</i>	60 3	692.69	$5/2^{-}$	0.0	3/2-	D+Q"	$A_2 = -0.44 \ 8$		
720.0 8	12.9 13	4856.4		4136.4					
/38.8 3	15.5 18	4130.4	12/2(+)	35/7.0	$\alpha (2^{(+)})$		1 0.10.5		
837.59 12	88 5	2344.50	13/2(1)	1506.91	9/2(1)	(Q) ⁺	$A_2 = +0.185$		
941.75 18	100 5	941.79	7/2-	0.0	3/2-	(Q) †	$A_2 = +1.1 I$		
943.8 4	22.3	3555.4	$(15/2^{-})$	2611.6	$(13/2^{-})$	D+Q"	$A_2 = -0.777$		
1030.8 5	20 10	2611.6	$(13/2^{-})$	1581.13	$9/2^{(-)}$	+			
1155.9 2	69 7	3500.4	17/2(+)	2344.50	13/2(+)	(Q) +	$A_2 = +0.19 \ 4$ $A_2 \ for \ 1155.9 + 1156.0 \ doublet.$		
1156.0 4	49 12	2098.15	$11/2^{(-)}$	941.79	7/2-	(Q) [‡]	$A_2 = +0.19 4$ A_2 for 1155.9+1156.0 doublet.		
1166.5 6	6.4 13	1858.1	$(9/2^{-})$	692.69	5/2-				
1279.4 5	33 <i>3</i>	3377.6		2098.15	$11/2^{(-)}$				
1313.8 4	8.3 24	1581.13	$9/2^{(-)}$	267.87	5/2-	(Q) [‡]	A ₂ =+0.19 9		
1326.6 14	19.0 25	4827.0		3500.4	$17/2^{(+)}$				
1364.7 8	16.0 25	4920.1		3555.4	$(15/2^{-})$				
1518.2 4	57 3	5018.6	$21/2^{(+)}$	3500.4	$17/2^{(+)}$	(Q) 4	$A_2 = +0.20 \ 11$		
1593.8 17	10.5 24	1858.1	$(9/2^{-})$	267.87	$5/2^{-}$				
1/96.0 8	21.1 22	6814.7	$(25/2^{+})$	5018.6	$21/2^{(+)}$				
19/8 4	6.5 17	12950?	$(3^{\prime}/2^{+})$	10972	$(33/2^+)$				
2029.7 18 2128 A	10 J 8 6 10	8844.4 10972	$(29/2^+)$ $(33/2^+)$	0814.7 88777	$(23/2^{+})$ $(29/2^{+})$				
2120 7	0.0 19	10912	(33/2)	0044.4	(29/2)				

[†] A₂ coefficients used by 2005De34 to identify stretched $\Delta J=1$ and $\Delta J=2$ transitions. [‡] A₂ consistent with $\Delta J=2$, quadrupole. [#] A₂ consistent with $\Delta J=1$, dipole or dipole+quadrupole. [@] Placement of transition in the level scheme is uncertain.

⁵⁷₂₄Cr₃₃

⁵⁷₂₄Cr₃₃