57 Ni β^+ decay **1990Sc23**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. R. Bhat	NDS 85, 415 (1998)	24-Sep-1998

Parent: ⁵⁷Ni: E=0.0; $J^{\pi}=3/2^-$; $T_{1/2}=35.60$ h 6; $Q(\beta^+)=3264.2$ 26; $\%\beta^+$ decay=100.0 1990Sc23,1991HeZZ: E γ , I γ , $\gamma\gamma$ coincidences.

1982Gr10: $E\gamma$, $I\gamma$, $T_{1/2}$.

1969Ga14: Ey, Iy, $\gamma\gamma$ coincidences.

1967Li08: Εγ, Ιγ.

1958Ko60: E γ , I γ , NaI(Tl) detector; β^+ spectrum measurement with a long lens spectrometer, conversion electron data, Fermi-Kurie analysis, ε/β^+ ratios from proportional counter.

1991HeZZ has corrections of three misprints in the γ -ray intensities given in 1990Sc23 and correction of one error as well as variance-covariance matrices of γ -ray intensities.

Others: 1977Au04 and 1970Ra51.

⁵⁷Co Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	7/2-		
1224.01 3	9/2-		
1377.65 5	3/2-	19 ps 4	g = +2.0 (1970 Va10)
			$T_{1/2}$: from $\beta\gamma(t)$ (1967Be17, scin).
			g: $\gamma \gamma(\theta, h)$. Other: + 1.9 6 (1967Be17).
1504.81 4	$1/2^{-}$	0.21 ns 2	$T_{1/2}$: from $\beta\gamma(t)$ (1971Ch43). Other: 0.60 ns 5 (1967Ba10, X $\gamma(t)$).
1757.58 <i>3</i>	$3/2^{-}$		
1897.45 <i>3</i>	$7/2^{-}$		
1919.55 5	$5/2^{-}$		
2133.08 5	5/2-		
2730.91 4	$3/2^{-}, 5/2$		
2804.27 4	$(3/2^{-}, 5/2)$		
3108.12 7	$(3/2)^{-}$		
3177.41 4	5/2-,7/2-		

[†] From 1990Sc23.

[‡] From Adopted Levels.

ε, β^+ radiations

IB,IE,TI From intensity balance at each level. I β^+ (EL=1378)/I β^+ (EL=1505)=7.1 5 (1958Ko60); this decay scheme gives a discrepant value 5.0 2. ε L/ ε K= 0.100 6 (1967Wi17,pc).

E(decay)	E(level)	$I\beta^{+\ddagger}$	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(87 3)	3177.41		0.0208 11	6.06 4	0.0208 11	εK=0.8710; εL=0.1096 5; εM+=0.01941 10
(156 3)	3108.12		0.060 3	6.13 <i>3</i>	0.060 3	εK=0.8792; εL=0.10274 14; εM+=0.01805 3
(460 3)	2804.27		0.291 8	6.41 <i>1</i>	0.291 8	ε K=0.8855; ε L=0.09753; ε M+=0.01701
(533 <i>3</i>)	2730.91		0.0199 7	7.70 2	0.0199 7	ε K=0.8859; ε L=0.09717; ε M+=0.01694
(1131 3)	2133.08		0.0340 19	8.13 2	0.0340 19	ε K=0.8868; ε L=0.09597; ε M+=0.01671
(1345 3)	1919.55	0.444 20	11.9 4	5.74 2	12.3 4	av Eβ=139.0 11; εK=0.8554 9; εL=0.09239 10;
						€M+=0.016079 18
(1507 3)	1757.58	0.80 4	4.86 18	6.22 2	5.66 21	av Eβ=206.5 11; εK=0.7617 20; εL=0.08218 22;
						εM+=0.01430 4

⁵⁷Ni β^+ decay **1990Sc23** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ^{+‡}	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
1734 [†] <i>15</i>	1504.81	7.04 22	10.0 3	6.05 1	17.0 5	av E β =313.7 11; ε K=0.5198 25; ε L=0.0560 3; ε M+=0.00975
1871 [†] <i>10</i>	1377.65	35.3 13	29.2 11	5.64 2	64.5 22	av E β =368.7 11; ε K=0.4025 22; ε L=0.04335 23; ε M+=0.00754 4

[†] $Q(\varepsilon)=3243$ 7 from these E β 's and value adopted by 1977Wa08 disagrees with the current $Q(\varepsilon)=3264.2$ 26 (1995Au04).

[‡] Absolute intensity per 100 decays.

 γ (⁵⁷Co)

I γ normalization: from $\Sigma I_{\gamma}(to g.s.)=100$ with the assumption that g.s. β^+ feeding is zero. The uncertainty was calculated using the variance-covariance matrix of γ -ray intensities in 1991HeZZ.

 $I\gamma(\gamma^{\pm})/I\gamma(1378\gamma)=0.97$ 12 (1967Li08) consistent with 1.07 from this decay scheme.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	$\delta^{\#}$	α#	Comments
127.164 3	20.4 4	1504.81	1/2-	1377.65	3/2-	M1+E2	+0.008 14	0.0221 1	α (K)=0.0194 <i>I</i> ; α (L)=0.00196 α (K)exp=0.023 <i>3</i> ; K/L=9 <i>4</i> (1958Ko60,1956Ko01)
161.86 <i>3</i>	0.0278 8	1919.55	5/2-	1757.58	3/2-	(M1)		0.0118	$\alpha(K)=0.0105; \alpha(L)=0.0010$
252.5		1757.58	3/2-	1504.81	$1/2^{-}$				
304.1 <i>I</i>	0.0024 7	3108.12	$(3/2)^{-}$	2804.27	$(3/2^{-}, 5/2)$				
379.94 2	0.082 2	1757.58	3/2-	1377.65	3/2-				
541.9 <i>1</i>	0.0045 6	1919.55	5/2-	1377.65	3/2-				
673.44 <i>4</i>	0.0601 8	1897.45	$7/2^{-}$	1224.01	9/2-	(M1+E2)	+0.02 1		
696.0 4	0.0011 8	1919.55	5/2-	1224.01	9/2-				
755.3 1	0.0066 8	2133.08	$5/2^{-}$	1377.65	3/2-	M1+E2	-0.35 +18-9		
906.98 <i>5</i>	0.075 2	2804.27	$(3/2^{-}, 5/2)$	1897.45	7/2-	D			
1046.68 <i>3</i>	0.164 4	2804.27	$(3/2^{-}, 5/2)$	1757.58	3/2-	D			
1224.00 4	0.077 3	1224.01	9/2-	0.0	$7/2^{-}$	M1+E2	+0.26 1		
1279.99 6	0.0118 9	3177.41	5/2-,7/2-	1897.45	7/2-				
1350.52 6	0.0024 12	3108.12	$(3/2)^{-}$	1757.58	3/2-				
1377.63 <i>3</i>	100 2	1377.65	3/2-	0.0	7/2-	(E2)			
1603.28 6	0.0048 8	3108.12	$(3/2)^{-}$	1504.81	$1/2^{-}$				
1730.44 6	0.064 3	3108.12	$(3/2)^{-}$	1377.65	3/2-				
1757.55 <i>3</i>	7.04 20	1757.58	3/2-	0.0	$7/2^{-}$	E2			
1897.42 4	0.034 3	1897.45	7/2-	0.0	$7/2^{-}$	(M1(+E2))	-0.04 22		
1919.52 5	15.0 <i>3</i>	1919.55	$5/2^{-}$	0.0	$7/2^{-}$	M1+E2	-0.23 3		
2133.04 5	0.035 2	2133.08	$5/2^{-}$	0.0	$7/2^{-}$	(M1(+E2))	0.00 5		
2730.91 4	0.0243 6	2730.91	3/2-,5/2	0.0	7/2-	D,E2			
2804.20 3	0.120 4	2804.27	$(3/2^{-}, 5/2)$	0.0	7/2-	D,E2			
3177.28 5	0.0136 7	3177.41	5/2-,7/2-	0.0	7/2-				

[†] From 1990Sc23.

[‡] Relative intensity from 1990Sc23 as corrected by 1991HeZZ.

[#] From adopted gammas.

[@] For absolute intensity per 100 decays, multiply by 0.817 17.

⁵⁷₂₇Co₃₀-3

57 Ni β^+ decay 1990Sc23

