Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2022							

 $Q(\beta^{-}) = -21550 SY; S(n) = 19190 SY; S(p) = 1040 SY; Q(\alpha) = -5260 SY$ 2021 Wal6

Estimated uncertainties (2021Wa16): 640 for Q(β^-), 570 for S(n), 430 for S(p), 410 for Q(α).

Q(\varepsilon)=13240 400, Q(\varepsilon p)=12660 400, S(2n)=35830 450, S(2p)=690 400 (syst, 2021Wa16).

2001Gi10: ⁵⁶Zn produced in Ni(⁵⁸Ni,X),E=74.5 MeV/nucleon, with 230.6 mg/cm² thick target. Fragments were identified by ΔE and TOF following SISSI and LISE3 fragment separators at GANIL. A total of 17 events were assigned to ⁵⁶Zn, implying production σ =0.5 nb +20-2.

2007BI09: ⁵⁶Zn produced in Ni(⁷⁰Ge,X),E=71.6 MeV/nucleon, followed by separation of fragments using LISE3 separator at GANIL. About 20 events, assigned to ⁵⁶Zn are displayed in fragment identification plot in Fig. 1 or 2007BI09.

- 2007Do17: Ni(⁵⁸Ni,X),E=74.5 MeV/nucleon at GANIL. Fragment identification by energy loss, residual energy and time-of- flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays. T_{1/2} measured by time correlation of implantation events due to ⁵⁶Zn and subsequent emission of protons and γ rays. Total proton branching ratio arises from time spectrum of events with energy >900 keV in the charged-particle spectrum. Possible small contributions from delayed- α and delayed-2p decays are ignored.
- 2016Or03, 2014Or04 (also conference papers from the same experimental group: 2017RuZX, 2016Ru04, 2016OrZY, 2015Or02, 2014Ru08, 2014Or03, 2014OrZZ, 2012OrZY): ⁵⁶Zn produced in fragmentation of 74.5 MeV/nucleon ⁵⁸Ni beam on a 200 μ m thick natural Ni target at LISE3-GANIL facility. Fragments were selected by LISE3 separator and implanted into a double-sided silicon strip detector (DSSSD), surrounded by four EXOGAM Ge clovers for γ ray detection. Implantations were identified by energy loss ΔE and time-of-flight (TOF) information. Measured E_p , I_p , half-life of ⁵⁶Zn decay, and delayed proton decay branches.

2021Ku30: ⁵⁶Zn produced in ⁹Be(⁷⁸Kr,X),E=345 MeV/nucleon. Measured production σ using BigRIPS separator at the RIBF-RIKEN facility.

Theoretical structure and decay calculations: 20 primary references extracted from the NSR database (www.nndc.bnl.gov/nsr/) are listed in this dataset under 'document' records.

Additional information 1.

⁵⁶Zn Levels

Cross Reference (XREF) Flags

A ⁹Be(⁵⁷Zn,n γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
0#	0+	32.4 ms 11	Α	%ε+%β ⁺ =100; %εp=88.0 26 T_z =-2. %εp is weighted average of 88.5 26 (2016Or03,2014Or04) and 86.0 49 (2007Do17). $T_{1/2}$: weighted average of 32.9 ms 8 (2016Or03,2014Or04, from time correlations between ⁵⁶ Zn implants and protons and least-squares fit; authors also report 32.8 ms 8 in 2016Or03 with maximum likelihood minimization fit; $T_{1/2}$ =27 ms 8 from 1834.5γ decay curve (2014Or04), and 31.2 ms 11 (2016Or03) using Batemann equations for fitting of the correlation-time spectrum containing all the follow-up decays; value of 32.9 ms 8 is adopted in 2016Or03); and 30.0 ms 17 (2007Do17, from (implants)(proton) correlated events).		
830 [#] 5	(2^+)		Α			
2102 [#] 14	(4^{+})		Α			
3482 [#] 21	(6 ⁺)		A			

Adopted Levels, Gammas (continued)

⁵⁶Zn Levels (continued)

[†] From $E\gamma$ values.

[‡] As given in 2021Fe11, from comparison with experimental level structure of mirror nucleus ⁵⁶Fe, and with shell-model calculations using KB3GR interaction. Also, systematics of even-even nuclei.

Band(A): g.s. band.

 $\gamma(^{56}\text{Zn})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
830	(2^+)	830 <i>5</i>	100	0	0^+
2102	(4^+)	1272 <i>13</i>	100	830	(2 ⁺)
3482	(6^+)	1380 <i>16</i>	100	2102	(4 ⁺)

[†] From ${}^{9}\text{Be}({}^{57}\text{Zn},n\gamma)$ (2021Fe11).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{56}_{30}$ Zn₂₆

Adopted Levels, Gammas

