⁵⁶Ti β⁻ decay (200 ms) 2003Ma56,1998Am04,1996Do23

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 25-Mar-2022

Parent: ${}^{56}\text{Ti}$: E=0.0; J^{π} =0+; $T_{1/2}$ =200 ms 5; $Q(\beta^-)$ =676×10¹ 19; % β^- decay=100.0

⁵⁶Ti-T_{1/2}: From ⁵⁶Ti Adopted Levels.

⁵⁶Ti-Q(β ⁻): From 2021Wa16.

2003Ma56: ⁵⁶Ti isotope produced in ⁹Be(⁸⁶Kr³⁴⁺,X) at E(⁸⁶Kr)=140 MeV/nucleon followed by separation of fragments using A1900 fragment separator. Measured Εγ, Ιγ, γγ-coin, βγ-coin, T_{1/2} using a double-sided Si microstrip detector (DSSD) and Segmented Germanium Array (SeGA) arranged around the β counting system.

1998Am04: 56 Ti isotope produced in 9 Be(86 Kr $^{34+}$,X) at E(86 Kr)=500 MeV/nucleon, fragments separated using FRS fragment separator at GSI by a combination of B ρ , Δ E and tof techniques. Measured T_{1/2} of decay of 56 Ti.

1996Do23: 56 Ti isotope produced in 9 Be(65 Cu²⁶⁺,X) at E=64.5 MeV/nucleon; identification of particle from energy loss and tof at GANIL. Measured singles β^{-} and $\beta\gamma$ -coin.

⁵⁶V Levels

 $\frac{E(level)}{0.0} \quad \frac{J^{\pi}}{1^{+}} \quad \frac{T_{1/2}}{216 \text{ ms } 4} \quad \frac{Comments}{J^{\pi}, T_{1/2}: \text{ from the Adopted Levels.}}$

β^- radiations

 $\frac{\text{E(decay)}}{(6.76 \times 10^3 \ I9)} \quad \frac{\text{E(level)}}{0.0} \quad \frac{\text{I}\beta^{-\dagger}}{94 \ 3} \quad \frac{\text{Log } ft}{3.86 \ 6}$

Comments

av E β =3124 93

Iβ⁻: no evidence was found by 2003Ma56 for delayed g rays from 56 Ti decay with absolute γ -ray intensity greater than 2%. Further search for γ rays in 55 V for possible β -delayed neutron decay mode of 56 Ti did not show any γ rays. On this basis, 2003Ma56 deduced β branching of 94% β to 56 V ground state, with little or no β branching to excited states in 56 V. \$Note that results in 1996Do23 are in contradiction to those from 2003Ma56. 1996Do23 estimated that 40% of all the 56 Ti β decay to low-lying levels in 56 V in the range of 0.2 MeV to 0.8 MeV from a comparison of the numbers of 56 Ti β singles and $\beta\gamma$ -coin events, while excluding β feeding of the g.s. of 56 V, as also in the decay of 54 Ti decay.

[†] Absolute intensity per 100 decays.