${}^{56}\text{Sc}\,\beta^-$ decay (26 ms) 2010Cr02

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2022

Parent: ⁵⁶Sc: E=0; J^{π} =(1⁺); $T_{1/2}$ =26 ms 6; $Q(\beta^{-})$ =1391×10¹ 28; % β^{-} decay=100.0 ⁵⁶Sc-E, J^{π} : From ⁵⁶Sc Adopted Levels.

 56 Sc-T_{1/2}: Measured by fitting the implants-correlated isomeric transition decay curve to a single exponential function with a constant background (2010Cr02).

⁵⁶Sc-Q(β^{-}): From 2021Wa16.

2010Cr02: ⁵⁶Sc activity was produced in ⁹Be(⁷⁶Ge,X) at E⁷⁶Ge) of 130 MeV/nucleon provided by the K500 and K1200 cyclotrons at NSCL, followed by fragment separation using A1900 fragment separator, and time-of-flight technique. Fully stripped secondary fragments were sent to Beta Counting System (BCS) of three Si PIN detectors, a double-sided silicon strip detector, six single sided silicon strip detectors, and 16 HPGe detectors of the Segmented Germanium Array (SeGA). Measured E γ , I γ , $\gamma\gamma$ -coin, and T_{1/2} of ⁵⁶Sc decay.

⁵⁶Ti Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0	0^{+}	200 ms 5	
1128.7 <i>3</i>	2^{+}		
1879.6 5			J^{π} : (0,1,2) ⁺ proposed by 2010Cr02 based on β feeding from (1 ⁺). However, evaluator considers the observed β feeding as an apparent value only.

[†] From $E\gamma$ values.

[‡] From the Adopted Levels.

β^{-} radiations

The decay scheme is likely incomplete as only apparent I β feedings are given, and in view of large Q value of 13.9 MeV and highest level in ⁵⁶Ti populated at 1880 keV in this decay. Thus, no log *ft* values are deduced.

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	Comments
$(1.20 \times 10^4 \ 3)$	1879.6	8 2	av $E\beta = 5.61 \times 10^3 \ 35$
$(1.28 \times 10^4 \ 3)$	1128.7	10 5	av E β =5.97×10 ³ 35
$(1.39 \times 10^4 \ 3)$	0	≤45	av E β =6.52×10 ³ 35
			<i>Iβ</i> [−] : ≤38 7 in 2010Cr02 from estimated ≈70% β feeding to levels in ⁵⁶ Ti, from measured ratio of γ-ray intensities in decays of β [−] n daughter ⁵⁵ Ti and β [−] grand-daughter ⁵⁶ V.

[†] Apparent β feedings from transition intensity balances.

[‡] Absolute intensity per 100 decays.

$\gamma(^{56}\text{Ti})$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
750.9 4	82	1879.6	2+	1128.7	$\frac{2^{+}}{0^{+}}$	Total absorved intensity -48.4 (2010Cr02) from the two estivities
x1711.6.3	31	1120.7	2	0	0	Total observed intensity=48 4 (2010c102) from the two activities.

[†] From 2010Cr02.

 $^{56} {\rm Sc}\,\beta^-$ decay (26 ms) 2010Cr02 (continued)

 γ (⁵⁶Ti) (continued)

[‡] Absolute intensity per 100 decays. ^{*x*} γ ray not placed in level scheme.

56 Sc β^- decay (26 ms) 2010Cr02

Decay Scheme

3