Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2022					

 $Q(\beta^{-})=1391\times10^{1}\ 28$; $S(n)=275\times10^{1}\ 27$; $S(p)=1415\times10^{1}\ 31$; $Q(\alpha)=-1080\times10^{1}\ 26$ 2021Wa16

 $Q(\beta^{-}2n)=4080\ 260$ deduced by evaluator from relevant mass excesses in 2021Wa16.

1997Be70: ⁵⁶Sc identified in ⁹Be(²³⁸U,F), E=750 MeV/nucleon, fragments separator (FRS) at GSI facility, identification by time-of-flight. Measured production cross section of 50 nb from 68 counts assigned to ⁵⁶Sc.

2004Li12: ⁵⁶Sc produced in ⁹Be(⁸⁶Kr,X) fragmentation reaction. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$, $\beta\gamma$ (t) using a double-sided strip detector. Identity of particle from energy loss and time of flight from a PIN detector, the NSCL β calorimeter, and scintillator.

2004Li75 (also 2004Li12,2004Li72,2005Ma93): ⁵⁶Sc isotope produced in ⁹Be(⁸⁶Kr³⁴⁺,X) fragmentation reaction at E=140 MeV/nucleon; A1900 fragment separator. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$, $\beta\gamma(t)$, lifetime using a double-sided Si microstrip detector (DSSD) and the MSU segmented Germanium Array (SeGA). Identity of particle from energy loss and time of flight from a PIN detector, the NSCL β calorimeter, and scintillator. The SeGA array was arranged around the β counting system and comprised twelve Ge detectors. In the mixed (26 ms+75 ms) activity, 2004Li75 estimated 83% 11 contribution from low-spin isomer and 20% 4 from the high-spin isomer, based on absolute γ -ray intensities and deduced β feeding to the ⁵⁶Ti g.s. Comparison theoretical calculations using shell model and *pf* model space.

2008Ma01 (also 2005Ma93): ⁵⁶Sc isotope produced in ⁹Be(⁷⁶Ge,X) reaction at E=140 MeV/nucleon ⁷⁶Ge beam provided by NSCL at Michigan State University. Isotopes separated with A1900 fragment separator. Time-of-flight technique.

2010Cr02: E=130 MeV/nucleon 76 Ge³⁰⁺ beam provided by the K500 and K1200 cyclotrons at NSCL at Michigan State University. Isotopes separated with A1900 fragment separator. Time-of-flight technique. Fully stripped secondary fragments were sent to NSCL Beta Counting System (BCS). System of three Si PIN detectors, a double-sided silicon strip detector and six single sided silicon strip detectors. Detected γ rays using 16 Ge detectors of the Segmented Germanium array. Measured half-life of 56 Sc by fitting the decay curves to a single exponential function with a constant background. Also measured delayed- neutron decay probability.

Mass measurements: 2020Mi13, 2020Me06, 2015Me08.

Theoretical calculations: three reference extracted from the NSR database (www.nndc.bnl.gov/nsr/), listed here under document records.

Additional information 1.

No level-scheme information is available from β^- decay of ⁵⁶Ca.

ALl data are from ⁵⁶Sc IT decay dataset.

⁵⁶Sc Levels

Cross Reference (XREF) Flags

A 56 Sc IT decay (0.29 μ s)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	(1 ⁺)	26 ms 6	A	$\[mu] \] eq:sphere:s$
0+x	(5 ⁺ ,6 ⁺)	75 ms 6		$%β^-$ =100; $%β^-$ n>14 2 (2010Cr02); $%β^-$ 2n=? Observation of 591.7 3 (Iγ=14% 2) and 1203.5 3 (Iγ=8% 1) γ rays from the decay of longer-live activity of ⁵⁶ Sc to ⁵⁵ Ti confirms β-delayed-neutron decay of 75-ms activity of ⁵⁶ Sc (2010Cr02). Authors give $%β^-$ n≥14 2, probably considering other

Continued on next page (footnotes at end of table)

 $Q(\beta^{-}n)=8250\ 260,\ S(2n)=7220\ 260,\ S(2p)=34940\ 480\ (syst)\ (2021Wa16).$

Adopted Levels, Gammas (continued)

⁵⁶Sc Levels (continued)

		possible delayed β -delayed-neutron branches. This value is in approximate agreement with theoretical $\%\beta^{-}n=10$ from 2019Mo01 for the ground state decay.
		E(level), J^{π} : shell-model calculations (2004Li75) predict 6 ⁺ at 543 keV from
		$\pi 1f_{7/2} \otimes v 1f_{5/2}$ configuration. 2004Li75 (also 2005Ma93) proposed (6 ⁺ ,7 ⁺). However, 2010Cr02 (from the same group as 2004Li75) proposed (5 ⁺ ,6 ⁺) from apparent large
		(probably allowed) β feeding of 6 ⁺ state in ⁵⁶ Ti, and apparent β feeding of 4 ⁺ state
		in ⁵⁶ Ti, although, for the latter, there is possibility of missing γ transitions from higher
		levels feeding the 4^+ state in ⁵⁶ Ti.
		T _{1/2} : from timing of b-correlated 691 γ and 1161 γ (2010Cr02). Other: 60 ms 7 (2004Li75, from β -correlated γ decay curve). 2010Cr02 and 2004Li75 are from the same laboratory with some of the same authors.
	۵	
	л л	
0.20 // 2	л л	%.IT-100
0.29 μs 2	л	$T_{1/2}$: weighted average of 0.29 μ s 2 (2020Mi13) and 0.290 μ s 30 (2010Cr02, fitting the implant correlated isomeric transition decay curve to a single exponential function with a constant background). Others: 0.35 μ s +26–12 (2012Ka36, implants- γ correlated decay); <20 μ s (2004Li75, time window selected by 2004Li75 for the observation of isomeric transitions in correlation with implanted nuclei).
	0.29 μs 2	Α Α 0.29 μs 2 Α

[†] Tentative assignments based on (1^+) for g.s. and E2 assignment to 187.8 γ (2010Cr02).

$\frac{\gamma(^{56}Sc)}{\gamma(^{56}Sc)}$								
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments	
587.2	(2^{+})	587.3 <i>3</i>	100	$0.0 (1^+)$				
727.5	(3^{+})	140.5 3	100 25	587.2 (2+)				
		727.3 4	59 10	$0.0 (1^+)$				
775.1	(4^{+})	47.7 <i>3</i>	100 27	727.5 (3+)	(M1)	0.115	B(M1)(W.u.)=0.00038 7	
		187.8 <i>3</i>	70 19	587.2 (2 ⁺)	(E2)	0.0263	B(E2)(W.u.)=0.26 6	
							Mult.: from Weisskopf estimates (2010Cr02).	

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

 $_{21}^{56}{
m Sc}_{35}$