	$\frac{{}^{40}\text{Ca}({}^{28}\text{Si},\!3\alpha\gamma)}{}$	2006Jo03	
	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huo Junde, Huo Su, Yang Dong	NDS 112, 1513 (2011)	29-Oct-2009

⁵⁶Ni Levels

E=122 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, $\alpha\gamma$ coin using Gammasphere of 101 Compton-suppressed Ge detectors for γ rays and 4π CsI Microball array for charged particles.

E(level) [†]	J π ‡	E(level) [†]	J#‡	E(level) [†]	J#‡	E(level) [†]	Jπ‡
$0.0^{@}$	0^{+}	7954.7 [@] 15	8+	10933.7 ^a 20	(9) [#]	13576.8 <mark>&</mark> 23	$(12^+)^{\#}$
2700.3 [@] 9	2^{+}	8223.7 16	8+	11001.8 18	(10^{+})	13644 <i>3</i>	(12^{+})
3924.3 [@] 12	4+	8778.5 17	(7)	11294.7 ^{&} 20	$(10^+)^{\#}$	14449.8 ^{<i>a</i>} 25	(13) [#]
5316.3 [@] 15	6+	9009.7 17	9+	11420.6 17	11^{+}	14735.9 [@] 20	(14^{+})
5350.5 ^{&} 11	$(2^+)^{\#}$	9307.7 ^{&} 18	$(8^+)^{\#}$	11866.7 22	(10^{+})	16354? ^{&} 3	$(14^{+})^{\#}$
6326.5 ^{&} 11	$(4^+)^{\#}$	9418.3 [@] 17	10^{+}	12358.8 [@] 18	12^{+}	16768 ^a 4	(15) [#]
6650.5 15	6+	9477.7 17	(9+)	12504.7 ^{<i>a</i>} 23	(11) [#]		
7601.4 17	(7^{+})	10469.7 18	9	12758.4 18	(12^{+})		
7652.7 ^{&} 14	$(6^+)^{\#}$	10677.3 17	10^{+}	13505.7 18	(12)		

 † From least-squares fit to Ey's.

[‡] From multipolarity of gamma-rays.

[#] From 1999Ru01. [@] Band(A): g.s. band.

[&] Band(B): Band based on (2⁺). ^{*a*} Band(C): Band based on (9).

$\gamma(^{56}\text{Ni})$

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
787 1	4.5 6	9009.7	9+	8223.7 8+	E2+M1	$R_{30-83}=0.6$ 1.
976 <i>1</i>	7.4 18	6326.5	(4^{+})	5350.5 (2 ⁺)	(E2)	
1055 <i>1</i>	8.8 8	9009.7	9+	7954.7 8+	E2+M1	$R_{30-83}=0.5$ 1.
1146 <i>1</i>	2.8 5	13505.7	(12)	12358.8 12+		Mult.: $\Delta J=0$.
						$R_{30-83}=0.8\ 2.$
1224 <i>1</i>	83 <i>3</i>	3924.3	4+	2700.3 2+	E2	$R_{30-83}=1.3 I.$
1254 [‡] 2	1.2 7	9477.7	(9^{+})	8223.7 8+		
1304 <i>1</i>	3.5 5	7954.7	8+	6650.5 6+	E2	$R_{30-83}=1.3 \ 3.$
1326 <i>1</i>	10 3	7652.7	(6^{+})	6326.5 (4+)	(E2)	
1392 <i>1</i>	81 4	5316.3	6+	3924.3 4+	E2	$R_{30-83}=1.4 I.$
1463 <i>1</i>	48 <i>3</i>	9418.3	10^{+}	7954.7 8+	E2	$R_{30-83} = 1.4 I.$
1523 <i>1</i>	2.1 5	9477.7	(9 ⁺)	7954.7 8+	(E2+M1)	$R_{30-83}=1.6 3.$
1571 <i>I</i>	4.2 9	12504.7	(11)	10933.7 (9)		
1626 <i>1</i>	4.6 9	10933.7	(9)	9307.7 (8 ⁺)		
1655 <i>1</i>	8 <i>3</i>	9307.7	(8^{+})	7652.7 (6 ⁺)		
1681 <i>1</i>	5.4 6	12358.8	12+	$10677.3 \ 10^+$	E2	$R_{30-83}=1.22.$
1876 2	<1	9477.7	(9 ⁺)	7601.4 (7 ⁺)		
1945 <i>1</i>	3.7 8	14449.8	(13)	12504.7 (11)		
1987 <i>1</i>	4.6 22	11294.7	(10^{+})	9307.7 (8 ⁺)		
2002 1	7.6 10	11420.6	11+	9418.3 10+	E2+M1	$R_{30-83}=1.65$.
2081 <i>1</i>	1.77	12758.4	(12^{+})	10677.3 10+		E_{γ} : 2801 in table 1 of 2006Jo03 is a misprint.

Continued on next page (footnotes at end of table)

40 Ca(28 Si,3 $\alpha\gamma$) **2006Jo03** (continued)

γ (⁵⁶Ni) (continued)

Eγ	Iγ	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
2086 1	4.6 7	13505.7	(12)	11420.6 11+		Mult.: $\Delta J=1$.
2202 1	2014	10576.0	(10+)	11204 7 (10)		$R_{30-83}=0.8$ 3.
2282 1	2.8 14	13576.8	(12^{+})	11294.7 (10 ⁺)		
2285 1	10 2	7601.4	(7^{+})	5316.3 6+	(E2+M1)	$R_{30-83} > 1.0.$
2318 2	<1	16768	(15)	14449.8 (13)		
2377 1	11 3	14735.9	(14^{+})	12358.8 12+	(E2)	$R_{30-83}=1.1$ <i>1</i> .
2402 1	4.3 21	6326.5	(4^{+})	3924.3 4+		Mult.: $\Delta J=(0)$.
2412 <i>I</i>	5.8 11	11420.6	11^{+}	9009.7 9+	E2	$R_{30-83}=0.9$ 1.
2453 1	8.0 9	10677.3	10^{+}	8223.7 8+	E2	$R_{30-83}=1.1$ 2.
2515 <i>1</i>	4.4 7	10469.7	9	7954.7 8+		Mult.: $\Delta J=1$.
						$R_{30-83}=0.62$.
2626 [‡] 2	<1	11866.7	(10^{+})			
2638 1	65 <i>3</i>	7954.7	8+	5316.3 6+	E2	$R_{30-83}=1.3$ <i>I</i> .
2650 1	3.3 8	5350.5	(2^{+})	2700.3 2+		Mult.: $\Delta J=0$.
2700 1	100 4	2700.3	2+	$0.0 \ 0^+$	E2	$R_{30-83}=1.3$ 1.
2726 1	4.1 7	6650.5	6+	3924.3 4+	E2	$R_{30-83} = 1.4 \ 4.$
2777 [‡] 2	<1	16354?	(14^{+})	13576.8 (12+)		
2908 1	13 <i>I</i>	8223.7	8+	5316.3 6+	E2	$R_{30-83}=1.3$ <i>1</i> .
2940 <i>1</i>	19 2	12358.8	12^{+}	9418.3 10+	E2	$R_{30-83}=1.5$ 1.
3047 <i>1</i>	2.0 5	11001.8	(10^{+})	7954.7 8+	(E2)	
3340 <i>1</i>	8.4 9	12758.4	(12^{+})	9418.3 10+	(E2)	$R_{30-83}=1.6$ 3.
3462 1	<1	8778.5	(7)	5316.3 6+		
3626 1	10 2	6326.5	(4^{+})	2700.3 2+	(E2)	
3729 2	0.8 4	7652.7	(6+)	3924.3 4+	(E2)	
3912 2	2.8 6	11866.7	(10^{+})	7954.7 8+	(E2)	$R_{30-83}=1.0$ 3.
4226 2	1.2 5	13644	(12^+)	9418.3 10+	× /	50 05 .
5351 2	5.3 4	5350.5	(2 ⁺)	0.0 0+	E2	$R_{30-83}=1.6 I.$

[†] From $R_{30-83}=I\gamma(30^{\circ})/I\gamma(83^{\circ})$ deduced from $\gamma\gamma$ matrix. Value of ≈ 1.3 is expected for $\Delta J=2$, stretched quadrupole and ≈ 0.8

for $\Delta J=1$, dipole transitions. Values quite different from two suggest $\Delta J=1$ or 0 with M1+E2 admixtures.

 ‡ Placement of transition in the level scheme is uncertain.

3

40 Ca(28 Si,3 $\alpha\gamma$) 2006Jo03

 $^{56}_{28}{
m Ni}_{28}$