²⁸Si(³⁶Ar,2*αγ*) **2008Jo04,1999Ru01,1999Ru02**

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Huo Junde, Huo Su, Yang Dong	NDS 112, 1513 (2011)	29-Oct-2009		

2008Jo04: Three experiments performed using Gammasphere array of HPGe detectors with Compton-suppression, and Microball array for charged particle detection. Measured E γ , I γ , $\gamma\gamma$, (particle) $\gamma\gamma(\theta)$, (proton) γ coin. Charged particles were detected using neutron shell of liquid scintillators and Δ E-E Si telescopes. Comparisons with Nilsson-Strutinsky calculations. Experiment GS54 is also described in 1999Ru01, 1999Ru02.

1999Ru01,1999Ru02: E=143 MeV. Measured E γ , I γ , $\gamma\gamma$, particle- γ coin, $\gamma(\theta)$, and $\gamma\gamma(\theta)$ (DCO) using Gammasphere array with 82 Ge detectors, 4π CsI Microball and fifteen liquid scintillators for neutrons.

All data are from 2008Jo04, except As noted.

Experiment	GS54	GSFMA42	GSFMA138
Facility	LBNL	Argonne	Argonne
Beam energy	143 MeV	148 MeV	142 MeV
Gammasphere Ge detectors	82	86	77
No. of MICROBALL elements	complete	65	16
Liquid scintillators	15	20	30
Si telescopes	0	4	8
FMA and Ion chamber			Yes

⁵⁶Ni Levels

E(level) [†]	Jπ‡	Comments
0.0#	0+	
2700.3 [#] 9	2+	
3924.3 [#] 12	4+	
5316.4 [#] 16	6+	
5350.5 [@] 11	2^{+}	
6326.4 [@] 11	4+	
7652.6 [@] 14	6+	
7954.6 [#] 18	8+	
8225 3	(8 ⁺)	
8890? ^{&} 3	(5)	
9309.5 ^{^w} 17	8+	
9417.8 [#] 20	10^{+}	
9735.5 ^{&} 19	7	%p≈100
		This level decays by protons to $7/2^-$, g.s. in ⁵⁵ Co. E(p)(lab)=2540 <i>30</i> , observed in (proton)(summed γ) coin spectrum.
10679 3	(10^{+})	-
10935.5 ^{&} 18	9	
11296.4 [@] 18	10^{+}	
12357.8 <mark>#</mark> 22	12^{+}	
12508.5 ^{&} 19	11	
13578 [@] 3	12+	
13644.4 24	(12^{+})	J^{π} : from earlier paper 2006Jo03 from the same group as 2008Jo04.
14454.5 21	13	
14735" 3	14+	
103304	15	
10//5 5	13	

28 Si(36 Ar,2 $\alpha\gamma$) 2008Jo04,1999Ru01,1999Ru02 (continued)

⁵⁶Ni Levels (continued)

E(level) [†]	Jπ‡
18632 [#] 5	(16 ⁺)
19521 <mark>&</mark> 5	17
22459 <mark>&</mark> 7	

[†] From least-squares fit to Eγ's.
[‡] From multipolarity of gamma-rays.
[#] Band(A): yrast (g.s.) band.
[@] Band(B): SD-1 band.

& Band(C): SD-2 band.

γ (⁵⁶Ni)

DCO ratios (E2 gated) and A_2 's are for 30° – 83° arrangement, SEE 1999Ru01.

E_{γ}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
845 2	11	9735.5	7	8890?	(5)	(E2)	
976 <i>1</i>	82	6326.4	4+	5350.5	2+	E2	A ₂ =1.49 <i>18</i> (1999Ru01).
							$R_{30-83}=1.1 \ I \ (2008Jo04).$
1200 1	25 <i>3</i>	10935.5	9	9735.5	7	E2	$R_{30-83}=1.2\ 2\ (2008Jo04).$
1212 <i>1</i>	31	12508.5	11	11296.4	10^{+}		$R_{30-83}=0.7$ 4.
1224 <i>1</i>	89 <i>5</i>	3924.3	4+	2700.3	2+	E2	DCO=1.01 17 (1999Ru01).
							$A_2 = 1.24 \ 10 \ (1999 Ru 01).$
1006 1	<u> </u>		< +	(22)	4	50	$R_{30-83}=1.2$ <i>I</i> .
1326 1	23 4	7652.6	6-	6326.4	4+	E2	$A_2 = 1.27 \ 15 \ (1999 Ru01).$
1202 1	70 5	5216 4	(+	2024.2	4+	F0	$R_{30-83}=1.2 I (2008J004).$
1392 1	18 3	5510.4	0	3924.3	4.	E2	$DCO=0.89 \ I0 \ (1999 K II 0 I).$
							$A_2 = 1.30 \ 21 \ (1999 \text{Ku01}).$
1463 1	28.3	0/17 8	10^{+}	7054.6	8+	F2	$R_{30-83} = 1.2 T (2008)004).$
1403 1	20 5	9417.0	10	7954.0	0	112	$\Delta_{2} = 1.30 \ I/(1000 \text{Ru} 01)$
							$R_{20} = 1.50 \ I + (199) \ Ru(01).$
1573 1	38.3	12508.5	11	10935.5	9	E2	$A_{2}=1.31$ /8 (1999Ru01).
					-		$R_{30-83}=1.5 I (2008Jo04).$
1626 <i>1</i>	13 2	10935.5	9	9309.5	8+	D	$A_2 = 0.90 \ 13 \ (1999 Ru01).$
							$R_{30-83} = 0.8 I (2008 Jo04).$
1657 <i>1</i>	25 <i>3</i>	9309.5	8+	7652.6	6+	E2	$A_2 = 1.15 \ 15 \ (1999 Ru 01).$
							$R_{30-83}=1.1 \ I \ (2008Jo04).$
1946 <i>1</i>	35 5	14454.5	13	12508.5	11	E2	$A_2 = 1.24 \ 18 \ (1999 Ru 01).$
							$R_{30-83}=1.2\ 2\ (2008Jo04).$
1987 <i>1</i>	13 2	11296.4	10^{+}	9309.5	8+	E2	$A_2 = 1.30 \ 36 \ (1999 Ru 01).$
			_		~ 1		$R_{30-83}=1.3 \ I \ (2008Jo04).$
2083 2	11	9735.5	7	7652.6	6 ⁺		
2282 2	11.2	13578	12+	11296.4	10+	E2	$R_{30-83}=1.2\ 2\ (2008Jo04).$
2318 2	28.2	16/73	15	14454.5	13	E2	$R_{30-83}=1.2 I (2008J004).$
2349 3	31	13644.4	(12^{+})	11296.4	10+	F0	
23112	95	14/33	14	12357.8	12.	E2	$A_2 = 1.40 \ 21 \ (1999 K ll 01).$
2402 1	31	6326 1	4+	3024 2	4+		$\Lambda_{30-83} = 1.2 J (2000 J 004).$ $\Lambda_{20-83} = 1.40 J g (1000 P u 01)$
2402 1	51	10670	+	3924.3	+		$A_2 = 1.47 IO(1777 KU01).$
2454 2	6 /	10679	(10')	8225	(8')		

²⁸Si(³⁶Ar, $2\alpha\gamma$) 2008Jo04,1999Ru01,1999Ru02 (continued) γ (⁵⁶Ni) (continued) Mult.[‡] Eγ I_{γ} E_i(level) J_i^{π} \mathbf{E}_{f} Comments J_f^{π} 7954.6 2638 1 36 4 8^{+} 5316.4 6+ E2 DCO=1.16 30 (1999Ru01). A₂=1.26 *13* (1999Ru01). R₃₀₋₈₃=1.3 2 (2008Jo04). 2650 1 5350.5 2^+ 2700.3 2+ 31 D+Q Mult.: $\Delta J=0$ transition. R₃₀₋₈₃=1.6 3 (2008Jo04). 2^+ 2700 1 100 4 2700.3 $0.0 \ 0^+$ E2 DCO=0.95 28 (1999Ru01). A₂=1.42 *13* (1999Ru01). R₃₀₋₈₃=1.3 1 (2008Jo04). R₃₀₋₈₃=1.5 1 (2008Jo04). 2748 4 14 2 19521 17 16773 15 E2 2779 *3* 31 16358 13 13578 12^{+} R₃₀₋₈₃=0.7 2 (2008Jo04). D 2908[†] 2 10 *1* 8225 A₂=1.14 23 (1999Ru01). (8^+) 5316.4 6+ 2938 4 21 22459 19521 17 2940 1 12357.8 12^{+} 9417.8 10+ DCO=1.02 40 (1999Ru01). 12 *1* E2 A₂=1.67 28 (1999Ru01). R₃₀₋₈₃=1.2 3 (2008Jo04). 3626 1 12 *1* 6326.4 4^{+} 2700.3 2+ E2 A₂=1.51 32 (1999Ru01). R₃₀₋₈₃=1.4 3 (2008Jo04). 3729 2 11 7652.6 6^{+} 3924.3 4+ E2 18632 3897 4 (16^{+}) 14735 14^{+} <1 4226 2 13644.4 9417.8 10+ 21 (12^{+}) 5351 2 51 5350.5 2^{+} $0.0 \ 0^+$ E2 R₃₀₋₈₃=1.1 2 (2008Jo04).

[†] From 1999Ru01.

[‡] From anisotropy ratio $R_{30-83} = I\gamma(30^{\circ})/I\gamma(83^{\circ})$ with particle-gated $\gamma\gamma$ spectra. Expected ratio ≈ 1.3 for stretched quadrupoles and ≈ 0.8 for stretched dipole transitions, see 2008Jo04.

3

 $^{56}_{28}\rm{Ni}_{28}$

4

²⁸Si(³⁶Ar,2αγ) <u>2008Jo04,1999Ru01,1999Ru02</u>

⁵⁶₂₈Ni₂₈