| <sup>28</sup> Si( <sup>32</sup> S,2p2nγ) | 2006Jo03 |
|------------------------------------------|----------|
|------------------------------------------|----------|

| History         |                              |                      |                        |  |  |
|-----------------|------------------------------|----------------------|------------------------|--|--|
| Туре            | Author                       | Citation             | Literature Cutoff Date |  |  |
| Full Evaluation | Huo Junde, Huo Su, Yang Dong | NDS 112, 1513 (2011) | 29-Oct-2009            |  |  |

E=130 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$ ,  $\gamma p$  coin,  $\gamma n$  coin using Gammasphere of 78 Compton-suppressed Ge detectors for  $\gamma$  rays,  $4\pi$  CsI Microball array for charged particles and a shell consisting of 30 liquid scintillator detectors for neutrons.

<sup>56</sup>Ni Levels

| E(level) <sup>†</sup>  | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>  | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>  | Jπ‡               | E(level) <sup>†</sup>   | J <sup>π</sup> ‡ |
|------------------------|--------------------|------------------------|--------------------|------------------------|-------------------|-------------------------|------------------|
| 0.0 <sup>#</sup>       | $0^{+}$            | 6522.1 <i>18</i>       | 5                  | 9009.7 17              | 9+                | 11420.6 17              | $11^{+}$         |
| 2700.3 <sup>#</sup> 9  | 2+                 | 6650.5 15              | 6+                 | 9240.5 22              | (8 <sup>+</sup> ) | 11866.7 22              | $(10^{+})$       |
| 3924.3 <sup>#</sup> 12 | 4+                 | 7601.4 17              | $(7^{+})$          | 9418.3 <sup>#</sup> 17 | $10^{+}$          | 12358.8 <sup>#</sup> 18 | $12^{+}$         |
| 4932.3 16              | $3^+, 5^+$         | 7954.7 <sup>#</sup> 15 | 8+                 | 9477.7 <i>17</i>       | (9 <sup>+</sup> ) | 13505.7 18              | (12)             |
| 5316.3 <sup>#</sup> 15 | 6+                 | 8223.7 16              | 8+                 | 10469.7 <i>18</i>      | 9                 |                         |                  |
| 5665.1 15              | 5                  | 8778.5 17              | (7)                | 10677.3 17             | $10^{+}$          |                         |                  |

 $^{\dagger}$  From least-squares fit to Ey's.

<sup>‡</sup> From multipolarity of gamma-rays.

# Band(A): g.s. band.

 $\gamma(^{56}\text{Ni})$ 

| Eγ            | Iγ           | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | Comments              |
|---------------|--------------|------------------------|----------------------|------------------------------------|--------------------|-----------------------|
| 787 1         | 5.9 5        | 9009.7                 | 9+                   | 8223.7 8+                          | E2+M1              |                       |
| 857 <i>1</i>  | 3.8 4        | 6522.1                 | 5                    | 5665.1 5                           |                    |                       |
| 1008 <i>1</i> | 4.7 5        | 4932.3                 | $3^+, 5^+$           | 3924.3 4+                          | E2+M1              | $R_{30-83}=0.4$ 2.    |
| 1055 <i>1</i> | 7.2 6        | 9009.7                 | 9+                   | 7954.7 8+                          | E2+M1              | $R_{30-83}=0.7$ 2.    |
| 1224 <i>1</i> | 100 <i>3</i> | 3924.3                 | 4+                   | 2700.3 2+                          | E2                 | $R_{30-83}=1.3 I.$    |
| 1304 <i>1</i> | 2.6 4        | 7954.7                 | 8+                   | 6650.5 6+                          | E2                 |                       |
| 1392 <i>1</i> | 69 <i>3</i>  | 5316.3                 | 6+                   | 3924.3 4+                          | E2                 | $R_{30-83}=1.4 I.$    |
| 1463 <i>1</i> | 17 <i>I</i>  | 9418.3                 | $10^{+}$             | 7954.7 8+                          | E2                 | $R_{30-83}=1.4$ 2.    |
| 1523 <i>I</i> | 2.1 4        | 9477.7                 | (9 <sup>+</sup> )    | 7954.7 8+                          | (E2+M1)            | $R_{30-83}=1.4$ 4.    |
| 1681 <i>1</i> | 2.6 5        | 12358.8                | $12^{+}$             | 10677.3 10+                        | E2                 |                       |
| 1741 <i>1</i> | 7.9 8        | 5665.1                 | 5                    | 3924.3 4+                          | D                  | Mult.: $\Delta J=1$ . |
|               |              |                        |                      |                                    |                    | $R_{30-83}=0.6\ 2.$   |
| 1876 2        | 1.4 4        | 9477.7                 | (9+)                 | 7601.4 (7+)                        |                    |                       |
| 2002 1        | 3.7 16       | 11420.6                | $11^{+}$             | 9418.3 10+                         | E2+M1              | $R_{30-83} > 1.$      |
| 2086 1        | 2.6 5        | 13505.7                | (12)                 | 11420.6 11+                        | D                  | Mult.: $\Delta J=1$ . |
| 2285 1        | 7.3 13       | 7601.4                 | $(7^{+})$            | 5316.3 6+                          | (E2+M1)            | $R_{30-83} > 1.$      |
| 2412 <i>1</i> | 3.2 6        | 11420.6                | $11^{+}$             | 9009.7 9+                          | E2                 |                       |
| 2453 1        | 4.1 6        | 10677.3                | $10^{+}$             | 8223.7 8+                          | E2                 | $R_{30-83}=1.5$ 4.    |
| 2515 <i>1</i> | 2.1 8        | 10469.7                | 9                    | 7954.7 8+                          | D                  | Mult.: $\Delta J=1$ . |
|               |              |                        |                      |                                    |                    | $R_{30-83}=1.0 \ 3.$  |
| 2638 1        | 31 2         | 7954.7                 | $8^{+}$              | 5316.3 6+                          | E2                 | $R_{30-83}=1.4$ 2.    |
| 2700 1        | 100 4        | 2700.3                 | 2+                   | $0.0 \ 0^+$                        | E2                 | $R_{30-83}=1.2$ 1.    |
| 2726 1        | 5.8 12       | 6650.5                 | 6+                   | 3924.3 4+                          | E2                 | $R_{30-83}=1.2$ 4.    |
| 2908 1        | 12 <i>I</i>  | 8223.7                 | 8+                   | 5316.3 6+                          | E2                 | $R_{30-83}=1.02.$     |
| 2940 1        | 5.1 7        | 12358.8                | $12^{+}$             | 9418.3 10+                         | E2                 | $R_{30-83}=1.2$ 3.    |
| 3114 2        | <1           | 8778.5                 | (7)                  | 5665.1 5                           |                    |                       |
| 3462 <i>1</i> | 2.1 4        | 8778.5                 | (7)                  | 5316.3 6+                          |                    |                       |
| 3912 2        | <1           | 11866.7                | $(10^{+})$           | 7954.7 8+                          | (E2)               |                       |
| 3924 2        | 1.5 4        | 9240.5                 | $(8^{+})$            | 5316.3 6+                          | (E2)               |                       |

Continued on next page (footnotes at end of table)

## <sup>28</sup>Si(<sup>32</sup>S,2p2nγ) **2006Jo03** (continued)

## $\gamma$ (<sup>56</sup>Ni) (continued)

<sup>†</sup> From  $R_{30-83}=I\gamma(30^\circ)/I\gamma(83^\circ)$  deduced from  $\gamma\gamma$  matrix. Value of  $\approx 1.3$  is expected for  $\Delta J=2$  stretched quadrupole, and  $\approx 0.8$  for  $\Delta J=1$  dipole transitions. Values quite different from two suggest  $\Delta J=1$  or 0 with M1+E2 admixtures.



<sup>56</sup><sub>28</sub>Ni<sub>28</sub>



 $^{56}_{28}\rm{Ni}_{28}$