Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2022	

 $Q(\beta^{-})=21490 SY; S(n)=560 SY; S(p)=19120 CA; Q(\alpha)=-16800 SY 2021Wa16,2019Mo01$

S(p) from theory (2019Mo01). Other values are from 2019Mo01.

Estimated uncertainties (2021Wa16): 650 for $Q(\beta^{-})$, 780 for S(n), 920 for $Q(\alpha)$.

 $Q(\beta^{-}n)=18560\ 620,\ S(2n)=3010\ 720\ (syst,\ 2021Wa16).\ S(2p)=43320\ (theory, 2019Mo01).$

 $Q(\beta^{-}2n)=17000\ 600\ (syst),\ Q(\beta^{-}3n)=13160\ 600\ (syst),\ Q(\beta^{-}4n)=9960\ 600\ (syst),\ Q(\beta^{-}5n)=3950\ 600\ (syst)\ deduced by evaluator from relevant mass excesses in 2021Wa16.$

2009Ta24, 2009Ta05: ⁵⁶K identified by fragmentation of ⁷⁶Ge beam at 132 MeV/nucleon with W target at NSCL facility using A1900 fragment separator combined with S800 analysis beam line to form a two stage separator system. The transmitted fragments were analyzed event-by-event in momentum and particle identification. The nuclei of interest were stopped in eight Si diodes which provided measurement of energy loss, nuclear charge and total kinetic energy. The time-of-flight of each particle that reached the detector stack was measured in four different ways using plastic scintillators, Si detectors, and parallel-plate avalanche counters. The simultaneous measurement of ΔE signals, the magnetic rigidity, total kinetic energy and the time-of-flight (tof) provided unambiguous identification of the atomic number, charge state and mass number.

Theoretical calculations: only one primary reference extracted from the NSR database (www.nndc.bnl.gov/nsr/) is listed under document records.

Additional information 1.

⁵⁶K Levels

E(1	evel)
L (1	0,01)

Comments

0 $\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?; \ \%\beta^{-}3n=?; \ \%\beta^{-}4n=? \ \%\beta^{-}5n=?$

As β^- is the only possible decay mode, followed by β^- -delayed-neutrons, 100% β^- decay is assigned by inference. Theoretical T_{1/2}=3.9 ms, $\%\beta^-$ n=51, $\%\beta^-$ 2n=34, $\%\beta^-$ 3n=1, $\%\beta^-$ 4n=0, $\%\beta^-$ 5n=0 (2019Mo01).

Theoretical $T_{1/2}=7.3$ ms, $\%\beta^{-}n=18.9$, 21.2; $\%\beta^{-}2n=65.3$, 62.8; $\%\beta^{-}3n=2.0$, 2.3; $\%\beta^{-}4n=0.34$, 0.21; $\%\beta^{-}5n=0$ (2021Mi17).

Measured cross section= 8×10^{-11} mb 3 for W target (read by the evaluator from Fig. 8 in 2009Ta24). E(level): fragment observed by 2009Ta05, 2009Ta24 is assumed to be in the ground state of ⁵⁶K.

 J^{π} : 1⁻ or 2⁻ from $\Omega_p = 1/2^+$ and $\Omega_n = 3/2^-$ (theory,2019Mo01); 2⁻ from systematics (2021Ko07).

 $T_{1/2}$: >620 ns estimated from time-of-flight of 620-650 ns (from (e-mail reply of Sept 23, 2009 from O. Tarasov). Actual half-life is expected to be much longer as suggested by theoretical values of 3.9 ms (2019Mo01), 7.3 ms (2021Mi17), and 5 ms from systematics (2021Ko07). From a decreasing trend of half-lives with increasing neutron number in neutron-rich nuclei, $T_{1/2}$ of ⁵⁶K is expected to be <10 ms from known half-lives of 10 ms for ⁵⁴K, 30 ms for ⁵³K and 110 ms for ⁵²K.