Adopted Levels, Gammas

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2022			

 $Q(\beta^{-}) = -13240 \text{ SY}; S(n) = 1507 \times 10^{1} 16; S(p) = 583 6; Q(\alpha) = -6711 8$ 2021Wa16

Estimated $\Delta Q(\beta^{-})=400$ (2021Wa16).

Q(\varepsilon)=15278 6, Q(\varepsilon p)=8111 6, S(2n)=33530 400 (syst), S(2p)=5198 6 (2021Wa16).

- 1987Po04: ⁵⁶Cu produced and identified in Ni,Al(⁵⁸Ni,X)),E=55 MeV/nucleon and fragments separated using LISE spectrometer at GANIL. A total of 1420 events were assigned to ⁵⁶Cu, and production rates were measured.
- 1998Ra15: ⁵⁶Cu produced in Si(³²S,X),E=148 MeV and fragments separated using separator at GSI facility. Measured half-life of decay of 56 Cu by $\beta\gamma$ -coin decay curve. 2002Ro25 and 2002Ro16 are conference articles related to work reported in 1998Ra15.

2001Bo54: ⁵⁶Cu produced in ²⁸Si(³²S,X),E=148 MeV and fragments separated using separator at GSI facility. Measured half-life of decay of ⁵⁶Cu by γ -decay curves, and $\%\beta^+p$ decay branch.

2002Lo13 (also 2002B117): ⁵⁶Cu produced in ⁹Be,C(⁷⁸Kr,X),E=73 MeV/nucleon and fragments separated using LISE separator at GANIL. Measured half-life of decay of ⁵⁶Cu from timing of correlated (implants)(decay) events.

2007B109: ⁵⁶Cu produced in Ni(⁷⁰Ge,X),E=71.6 MeV/nculeon and fragments separated using LISE-3 separator at GANIL. Measured production cross section of ⁵⁶Cu.

2017Ku12: ⁵⁶Cu isotope produced in fragmentation of 79 MeV/nucleon ⁶⁴Zn²⁹⁺ beam with Ni target of 236 mg/cm² thickness. Fragments were selected with the LISE3 separator at GANIL and identified by time-of-flight and energy loss using silicon ΔE detector and implanted into a double-sided silicon strip detector (DSSSD). The implanted ions and charged-particle decays were detected by the DSSSD, which was surrounded by four HPGe Clover detectors (three EXOGAM clovers and a smaller Euroball clover) for γ -ray detection. Half-life of ⁵⁶Cu decay was measured by (⁵⁶Cu implants) β time-correlated decay events.

2020Gi02 (also 2017GoZT): ⁵⁶Cu produced at RIBF-RIKEN facility in ⁹Be(⁷⁸Kr,X) reaction at E=345 MeV/nucleon, followed by selection of ions using BigRIPS separator and Zero degree spectrometer ZDS, and implanted in the detection system WAS3ABi, consisting of three highly-segmented 1 mm thick double-sided silicon detectors, a stack of ten segmented 1 mm thick single-sided silicon strip detectors. Measured half-life of ⁵⁶Cu from timing of correlated (implants)(decay) events. Mass measurements: 2018Va01, 2018Zh29.

Theoretical structure and decay calculations: 17 primary references extracted from the NSR database (www.nndc.bnl.gov/nsr/) are listed in this dataset under 'document' records. Additional information 1.

⁵⁶Cu Levels

Cross Reference (XREF) Flags

- ⁵⁶Zn ε decay (32.4 ms) A
- В
- ¹H(⁵⁶Ni,N) ²H(⁵⁶Ni,⁵⁶Cuγ) С

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0	(4+)	80.4 ms 8	ABC	$%ε+%β^+=100; %εp=0.40$ 12 (2001Bo54) XREF: B(?). T _z =-1. J ^π : analogy to g.s., 4 ⁺ in ⁵⁶ Co mirror nucleus. T _{1/2} : from 2001Bo54. Others: 78 ms 15 (1998Ra15), 82 ms 9 (2002B117,2002Lo13). T _{1/2} : NRM weighted average of 80.2 ms 7 (2020Gi02,2017GoZT, correlated implants-decay events at RIBF-RIKEN); 80 ms 2 (2017Ku12, ⁵⁶ Cu implants)β correlated decays at GANIL); 82 ms 9 (2002Lo13,2002B117, correlated implants-decays at GANIL); 93 ms 3 (2001Bo54, γ-decay curves at GSI); 78 ms 15 (1998Ra15, βγ-coin decay curve at GSI). In NRM weighted average, uncertainty in 2001Bo54 gets inflated to 5.4 ms from the stated uncertainty of 3 ms. Weighted average is 80.8 ms 13, but reduced χ^2 =4.4 is larger that the critical χ^2 =2.4 at 95%

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁵⁶Cu Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
			confidence level. Unweighted average is 82.6 ms 27.
			Total number of 56 Cu implanted ions= 1.77×10^5 in Ni(64 Zn,X), E=79 MeV/nucleon (2017Ku12).
166 <i>1</i>	(3 ⁺)	С	J^{π} : analogy to 158, 3 ⁺ level in ⁵⁶ Co mirror nucleus.
572 1	(5 ⁺)	С	J^{π} : analogy to 576, 5 ⁺ level in ⁵⁶ Co mirror nucleus.
826 4	(4 ⁺)	С	J^{π} : analogy to 830, 4 ⁺ level in ⁵⁶ Co mirror nucleus.
<1×10 ^{3#}		В	E(level): excitation energy below the proton-decay threshold. This peak may have components of g.s and levels up to 1037, (2^+) level.
1027 4	(2^+)	C	J^{n} : L=2 in 50 Ni(p,n) inverse reaction suggests positive parity.
1037 4	(2^+)	C	J^{*} : analogy to 9/0, 2 [*] level in ⁵⁰ Co mirror nucleus.
1224 4	$(3^+, 5^+)$	C	J^{*} : analogy to 1115, S^{*} and 1009, S^{*} levels in ⁵⁵ Co mirror nucleus.
1414 12	(0^{+})	A	
			J [*] : analogy to 1451, 0 ⁺ level in ⁵⁶ Co mirror nucleus.
1714+ 12	1+	Α	%p=34 22 (2014Or04)
			$\begin{bmatrix} I \\ I \end{bmatrix} = \begin{bmatrix} I \\ I \end{bmatrix}$
	< 1 ± 2		J^{-1} log $f = 4.1$ from 0 ⁻¹ parent state.
2560+ 12	(1^{+})	A	%p=100
			I=1 I^{π_1} analogy to 2636 1 ⁺ level in ⁵⁶ Co mirror nucleus
2694 12	1+		g' = 100
2084 12	1	A	%p = 100 T-1
			I^{-1} $I^{\pi}: \log ft = 4.1$ from 0 ⁺ parent state.
3116 12	1+	۸	%n-100
5440* 12	1	п	T=1
			E(level): probable doublet, both with $J^{\pi}=1^+$.
			J ^{π} : log <i>ft</i> =3.8 <i>1</i> from 0 ⁺ parent state; analogy to 3432,1 ⁺ and 3496,1 ⁺ levels in ⁵⁶ Co mirror nucleus, as reported in 2013Fu15 in (³ He,t). In ⁵⁶ Co Adopted Levels in ENSDF database, corresponding two levels are 3436, 0 ⁺ ,1 ⁺ and 3510, (0 ⁺).
3531 [‡] 12	0^{+}	Α	%p=44 6 (2014Or04)
			T=2
			$T_z=-1$. J ^{π} : log <i>ft</i> =3.44 <i>11</i> , superallowed β decay from 0 ⁺ parent state; isobaric analog state (IAS) of g.s. in ⁵⁶ Zn.
5×10 ^{3#} 3	1+	В	E(level): two peaks at 2.8 and 4.8 MeV are visible in this energy range from Fig. 2e in 2011Sa52. Part of this structure may contain 3446, 1 ⁺ level.
			J [*] : from L=0, Gamow-Teller transition in ${}^{50}Ni(p,n)$ inverse reaction.
12×10^{37} 3		В	J^{n} : L=1 in ³⁰ Ni(p,n) inverse reaction suggests negative parity.

[†] From Eγ data unless otherwise stated.
[‡] From ⁵⁶Zn ε decay.
[#] From ¹H(⁵⁶Ni,n).

$\gamma(^{56}\mathrm{Cu})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
166	(3 ⁺)	166 [‡] 1	100‡	0	(4 ⁺)
572	(5 ⁺)	572 [‡] 1	100 [‡]	0	(4^{+})
826	(4^{+})	660 [‡] 3	100 [‡]	166	(3 ⁺)
1037	(2^{+})	871 [‡] 3	100 [‡]	166	(3 ⁺)

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{56}Cu)$	(continued)
	· · · · · · · · · · · · · · · · · · ·

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	${ m J}_f^\pi$
1224	$(3^+, 5^+)$	1224 [‡] 4	100 [‡]	0	(4 ⁺)
1714	1+	309.0 [†] 10		1414	(0^{+})
3531	0^{+}	861.2 [†] <i>10</i>	18 [†] 6	2684	1^{+}
		1834.5 [†] 10	100 [†] <i>30</i>	1714	1^{+}

[†] From ⁵⁶Zn ε decay. [‡] From ²H(⁵⁶Ni, ⁵⁶Cu γ).

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

⁵⁶₂₉Cu₂₇