⁵⁴Cr(t,pγ) **1976Ba45**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2022				

1976Ba45: E(t)=2.9 MeV from 3-MV Van de Graaff accelerator at Lockheed Palo Alto Research Laboratory. Measured proton spectra, E γ , I γ , p $\gamma(\theta)$, level lifetimes by DSAM using a Ge(Li) detector and an array of five NaI(Tl) detectors for γ rays, and a thick annular silicon detector for protons. Target was >95% enriched and \approx 120 μ g/cm² thick. Comparison with shell-model calculations.

Additional information 1.

⁵⁶Cr Levels

A special search by 1976ba45 for a 0^+ state between 1.8 and 3.0 MeV excitation proved negative (1976Ba45).

E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	Comments		
0.0	0^{+}				
1007.6 15	2	≥1.4 ps	2^+ in the Adopted Levels.		
			$T_{1/2}$: from DSAM (1976Ba45).		
1832.2 26	2		2^+ in the Adopted Levels.		
2327.8 26	2	≤0.055 ps	2 ⁺ in the Adopted Levels.		
2687 13	1,2,3,4	-	4 ⁺ in the Adopted Levels.		
3166 6	2,3,4	≤0.21 ps	-		

[†] From 1976Ba45. Spins from analysis of their $p\gamma(\theta)$ data.

[‡] From attenuated Doppler-shift method in py-coin using Ge(Li) detector for γ rays.

E _i (level)	\mathbf{J}_i^{π}	Eγ	Ι _γ @	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^a	δ ^b	Comments
1007.6	2	1007.6 [†] 15	100	0.0 0+	Q		$A_2 = +0.71 6; A_4 = -1.49 8$
1832.2	2	824.6 [†] 21	85 <i>5</i>	1007.6 2	D+Q	-1.8 10	$A_2 = -0.51 \ II; A_4 = -0.04 \ II$
		1830 [‡] <i>10</i>	15 5	$0.0 \ 0^+$	Q		A ₂ =+0.33 15; A ₄ =-0.85 19
2327.8	2	495.5	<5	1832.2 2			
		1320.2 [†] 20 2327.6	90 10 <5	$\begin{array}{ccc} 1007.6 & 2 \\ 0.0 & 0^+ \end{array}$	D(+Q)	+0.17 30	A ₂ =+0.49 <i>10</i> ; A ₄ =+0.20 <i>9</i>
2687	1,2,3,4	359 [#] 13	18 5	2327.8 2			
		860 [‡] 20	23 5	1832.2 2			
		1680 [‡] <i>15</i>	59 7	1007.6 2			A_2 =+0.51 <i>11</i> ; A_4 =+0.22 <i>12</i> δ (O/Q)≥+1.73 or +0.35 <i>35</i> for J(2687)=4. δ (Q/D)≥+0.27 for J(2687)=3, -0.3 <i>14</i> for J(2687)=2, and ≥+0.36 or -0.78 <i>42</i> for J(2687)=1.
3166	2,3,4	479 [#] 14	20 8	2687 1,2,3,4			
		835 ^{‡c} 15	≤20 ^{&}	2327.8 2			
		1330 ^{‡c} 10	≤20 ^{&}	1832.2 2			
		2158 [†] 6	60 8	1007.6 2	D+Q,Q		$\begin{array}{l} A_2 = +0.70 \ 11; \ A_4 = -0.12 \ 10 \\ \delta(Q/D) = +1.0 \ 11 \ \text{for J}(3166) = 2, \ \delta = +2.1 \ 16 \\ \text{if J}(3166) = 3. \ \delta(O/Q) = +0.18 \ 18 \ \text{if} \\ J(3166) = 4. \end{array}$

$\gamma(^{56}\mathrm{Cr})$

54 Cr(t,p γ) 1976Ba45 (continued)

$\gamma(^{56}Cr)$ (continued)

[†] From spectrum using Ge(Li) detector.
 [‡] From spectrum using NaI(Tl) detector.

- # From level-energy difference.
 @ Branching ratios from data using NaI(Tl) detector.
- [&] Combined intensity of $\leq 20\%$ for 835γ and 1330γ .
- ^{*a*} Assigned by evaluator based on $\gamma(\theta)$ data in 1976Ba45.
- ^b From $p\gamma(\theta)$ measurement.
- ^c Placement of transition in the level scheme is uncertain.

54 Cr(t,p γ) 1976Ba45

Legend

